首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
This paper presents an algorithm and a fully coupled hydromechanical‐fracture formulation for the simulation of three‐dimensional nonplanar hydraulic fracture propagation. The propagation algorithm automatically estimates the magnitude of time steps such that a regularized form of Irwin's criterion is satisfied along the predicted 3‐D fracture front at every fracture propagation step. A generalized finite element method is used for the discretization of elasticity equations governing the deformation of the rock, and a finite element method is adopted for the solution of the fluid flow equation on the basis of Poiseuille's cubic law. Adaptive mesh refinement is used for discretization error control, leading to significantly fewer degrees of freedom than available nonadaptive methods. An efficient computational scheme to handle nonlinear time‐dependent problems with adaptive mesh refinement is presented. Explicit fracture surface representations are used to avoid mapping of 3‐D solutions between generalized finite element method meshes. Examples demonstrating the accuracy, robustness, and computational efficiency of the proposed formulation, regularized Irwin's criterion, and propagation algorithm are presented.  相似文献   

2.
Hydraulic fracturing (HF) treatment often involves particle migration and is applied for propping or plugging fractures. Particle migration behaviors, e.g., bridging, packing, and plugging, significantly affect the HF process. Hence, it is crucial to effectively simulate particle migration. In this study, a new numerical approach is developed based on a coupled element partition method (EPM). The EPM is used to model natural and hydraulic fractures, in which a fracture is allowed to propagate across an element, thereby avoiding remeshing in fracture simulations. To characterize the water flow process in a fracture, a fully hydromechanical coupled equation is adopted in the EPM. To model particle transportation in fractures with water flow, each particle is treated as a discrete element. The particles move in the fracture as a result of being dragged by fluid. Their movement, contact, and packing behaviors are simulated using the discrete element method. To reflect the plugging effect, an equivalent aperture approach is proposed. Using this method, the particle migration and its effect on water flow are well simulated. The simulation results show that this method can effectively reproduce particle bridging, plugging, and unblocking in a hydraulic fracture. Furthermore, it is demonstrated that particle plugging significantly affects water flow in a fracture and hence the propagation of hydraulic fracture. This method provides a simple and feasible approach for the simulation of particle migration in a hydraulic fracture.  相似文献   

3.
石路杨  李建  许晓瑞  余天堂 《岩土力学》2016,37(10):3003-3010
建立了求解自然裂纹和水力裂纹扩展的扩展有限元法,对裂纹附近区域的节点采用广义形函数,并采用线增函数消除混合单元,以提高裂纹附近的精度。引入水力劈裂的非耦合模型,即假设裂纹中的水压力为均布力;用砂浆法(线段-线段接触法)结合增广型拉格朗日乘子法处理受压裂纹段的接触条件。并通过算例分析了以下内容:计算了受压裂纹和裂纹面分布均布水压力的水力裂纹的应力强度因子,并与解析解进行了比较,结果表明,提出的方法具有很高的精度;模拟了水力裂纹对自然裂纹面的影响,并分析了自然裂纹面上的接触力和接触状态。  相似文献   

4.
郑安兴  罗先启 《岩土力学》2018,39(9):3461-3468
危岩是三峡库区典型的地质灾害类型之一,而主控结构面受荷断裂扩展是危岩发育成灾的关键核心。将危岩主控结构面类比为宏观裂纹,利用扩展有限元法在模拟裂纹扩展方面的优势,基于考虑裂纹面水压力作用的虚功原理推导出了采用扩展有限元法分析水力劈裂问题的控制方程,给出了危岩主控结构面水力劈裂问题的扩展有限元实现方法,对重庆万州太白岩危岩主控结构面的水力劈裂进行了数值模拟分析。计算结果表明:暴雨是威胁危岩稳定性的最敏感因素,随着裂隙水压力上升,裂端拉应力会急剧升高,危岩的稳定性降低;I型裂纹扩展是危岩主要的结构面扩展形式,结构面一旦发生开裂,将处于非稳定扩展状态。  相似文献   

5.
Modeling hydraulic fracturing in the presence of a natural fracture network is a challenging task, owing to the complex interactions between fluid, rock matrix, and rock interfaces, as well as the interactions between propagating fractures and existing natural interfaces. Understanding these complex interactions through numerical modeling is critical to the design of optimum stimulation strategies. In this paper, we present an explicitly integrated, fully coupled discrete‐finite element approach for the simulation of hydraulic fracturing in arbitrary fracture networks. The individual physical processes involved in hydraulic fracturing are identified and addressed as separate modules: a finite element approach for geomechanics in the rock matrix, a finite volume approach for resolving hydrodynamics, a geomechanical joint model for interfacial resolution, and an adaptive remeshing module. The model is verified against the Khristianovich–Geertsma–DeKlerk closed‐form solution for the propagation of a single hydraulic fracture and validated against laboratory testing results on the interaction between a propagating hydraulic fracture and an existing fracture. Preliminary results of simulating hydraulic fracturing in a natural fracture system consisting of multiple fractures are also presented. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a new, fully-coupled, hydro-mechanical (HM) formulation for a finite-discrete element method computer code. In the newly-developed, hydraulic solver, fluid flow is assumed to occur through the same triangular mesh used for the mechanical calculations. The flow of a viscous, compressible fluid is explicitly solved based on a cubic law approximation. The implementation is verified against closed-form solutions for several flow problems. The approach is then applied to a field-scale simulation of fluid injection in a jointed, porous rock mass. Results show that the proposed method can be used to obtain unique geomechanical insights into coupled HM phenomena.  相似文献   

7.
We present a stabilized extended finite element formulation to simulate the hydraulic fracturing process in an elasto‐plastic medium. The fracture propagation process is governed by a cohesive fracture model, where a trilinear traction‐separation law is used to describe normal contact, cohesion and strength softening on the fracture face. Fluid flow inside the fracture channel is governed by the lubrication equation, and the flow rate is related to the fluid pressure gradient by the ‘cubic’ law. Fluid leak off happens only in the normal direction and is assumed to be governed by the Carter's leak‐off model. We propose a ‘local’ U‐P (displacement‐pressure) formulation to discretize the fluid‐solid coupled system, where volume shape functions are used to interpolate the fluid pressure field on the fracture face. The ‘local’ U‐P approach is compatible with the extended finite element framework, and a separate mesh is not required to describe the fluid flow. The coupled system of equations is solved iteratively by the standard Newton‐Raphson method. We identify instability issues associated with the fluid flow inside the fracture channel, and use the polynomial pressure projection method to reduce the pressure oscillations resulting from the instability. Numerical examples demonstrate that the proposed framework is effective in modeling 3D hydraulic fracture propagation. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

8.
A virtual multidimensional internal bond (VMIB) model developed to simulate the propagation of hydraulic fractures using the finite‐element method is formulated within the framework of the virtual internal bond theory (VIB) that considers a solid as randomized material particles in the micro scale, and derives the macro constitutive relation from the cohesive law between the material particles with an implicit fracture criterion. Hydraulic pressure is applied using a new scheme that enables simulation of hydraulically driven cracks. When the model is applied to study hydraulic fracture propagation in the presence of a natural fracture, the results show the method to be very effective. It shows that although the in situ stress ratio is the dominant factor governing the propagation direction, a natural fault can also strongly influence the hydraulic fracture behavior. This influence is conditioned by the shear stiffness of the fault and the distance to the original hydraulic fracture. The model results show that when the fault is strong in shear, its impact on hydraulic fracture trajectory is weak and the hydraulic fracture will likely penetrate the fault. For a weak fault, however, the fracture tends to be arrested at the natural fault. The distance between the fault and the hydraulic fracture is also important; the fault influence increases with decreasing distance. The VMIB does not require selection of a fracture criterion and remeshing when the fracture propagates. Therefore, it is advantageous for modeling fracture initiation and propagation in naturally fractured rock. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
许桂生  陈胜宏 《岩土力学》2005,26(5):745-749
针对无压渗流问题,在传导矩阵调整法的基础上,对穿越自由面的单元用复合单元来处理,每个复合单元具有两套结点水头,一套用于饱和区的水头插值;另一套则用于无水区。通过变分原理,推出了控制方程并在程序中实现。应用复合单元法可以较好地解决自由面的插值问题,消除了穿过自由面单元的水上部分对自由面附近结点水头的贡献,同时对逸出面边界条件的处理也更加方便和准确。算例表明了该方法的有效性。  相似文献   

10.
为有效模拟裂缝性页岩储层中水力裂缝随机扩展过程,基于单元节点的拓扑数据结构,利用网格节点分裂方式,建立了一种基于有限元网格嵌入零厚度内聚力单元的水力裂缝随机扩展新方法。利用KGD模型解析解和2种室内试验,验证了新方法的准确性和有效性。同时,通过数值算例研究了水平地应力差和储层非均质性对水力裂缝随机扩展过程的影响。研究表明:(1)该方法弥补了ABAQUS平台内置的内聚力单元无法有效模拟水力裂缝随机扩展的不足;(2)在较高水平地应力差下页岩储层非均质性越强,与水力裂缝相交的高角度天然裂缝越容易开启。所建方法能准确地描述复杂水力裂缝的随机扩展行为,可为裂缝性页岩储层的数值模拟提供新手段。  相似文献   

11.
Hydraulic fracturing (HF) of underground formations has widely been used in different fields of engineering. Despite the technological advances in techniques of in situ HF, the industry uses semi‐analytical tools to design HF treatment. This is due to the complex interaction among various mechanisms involved in this process, so that for thorough simulations of HF operations a fully coupled numerical model is required. In this study, using element‐free Galerkin (EFG) mesh‐less method, a new formulation for numerical modeling of hydraulic fracture propagation in porous media is developed. This numerical approach, which is based on the simultaneous solution of equilibrium and continuity equations, considers the hydro‐mechanical coupling between the crack and its surrounding porous medium. Therefore, the developed EFG model is capable of simulating fluid leak‐off and fluid lag phenomena. To create the discrete equation system, the Galerkin technique is applied, and the essential boundary conditions are imposed via penalty method. Then, the resultant constrained integral equations are discretized in space using EFG shape functions. For temporal discretization, a fully implicit scheme is employed. The final set of algebraic equations that forms a non‐linear equation system is solved using the direct iterative procedure. Modeling of cracks is performed on the basis of linear elastic fracture mechanics, and for this purpose, the so‐called diffraction method is employed. For verification of the model, a number of problems are solved. According to the obtained results, the developed EFG computer program can successfully be applied for simulating the complex process of hydraulic fracture propagation in porous media. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A hybrid discrete‐continuum numerical scheme is developed to study the behavior of a hydraulic fracture crossing natural fractures. The fully coupled hybrid scheme utilizes a discrete element model for an inner domain, within which the hydraulic fracture propagates and interacts with natural fractures. The inner domain is embedded in an outer continuum domain that is implemented to extend the length of the hydraulic fracture and to better approximate the boundary effects. The fracture is identified to propagate initially in the viscosity‐dominated regime, and the numerical scheme is calibrated by using the theoretical plane strain hydraulic fracture solution. The simulation results for orthogonal crossing indicate three fundamental crossing scenarios, which occur for various stress ratios and friction coefficients of the natural fracture: (i) no crossing, that is, the hydraulic fracture is arrested by the natural fracture and makes a T‐shape intersection; (ii) offset crossing, that is, the hydraulic fracture crosses the natural fracture with an offset; and (iii) direct crossing, that is, the hydraulic fracture directly crosses the natural fracture without diversion. Each crossing scenario is associated with a distinct net pressure history. Additionally, the effects of strength contrast and stiffness contrast of rock materials and intersection angle between the hydraulic fracture and the natural fracture are also investigated. The simulations also illustrate that the level of fracturing complexity increases as the number and extent of the natural fractures increase. As a result, we can conclude that complex hydraulic fracture propagation patterns occur because of complicated crossing behavior during the stimulation of naturally fractured reservoirs. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

13.
Reconstruction of geological structures has the potential to provide additional insight into the effect of the depositional history on the current-day geomechanical and hydro-geologic state. Accurate modeling of the reconstruction process is, however, complex, necessitating advanced procedures for the prediction of fault formation and evolution within fully coupled geomechanical, fluid flow and temperature fields. In this paper, a 3-D computational approach is presented that is able to forward model complex structural evolution with multiple intersecting faults that exhibit large relative movement within a coupled geomechanical/flow environment. The approach adopts the Lagrangian method, complemented by robust and efficient automated adaptive meshing techniques, an elasto-plastic constitutive model based on critical state concepts, and global energy dissipation regularized by inclusion of fracture energy in the equations governing state variable evolution. The proposed model is validated by comparison of 2-D plane strain and 3-D thin-slice predictions of a bench-scale experiment, and then applied to two conceptual coupled geomechanical/fluid flow field-scale benchmarks.  相似文献   

14.
This paper presents a finite element approach to solve geotechnical problems with interfaces. The behaviours of interfaces obey the Mohr–Coulomb law. The FEM formulae are constructed by means of the principle of virtual displacement with contact boundary. To meet displacement compatibility conditions on contact boundary, independent degrees of freedom are taken as unknowns in FEM equations, instead of conventional nodal displacements. Examples on pressure distribution beneath a rigid strip footing, lateral earth pressure on retaining walls, behaviours of axially loaded bored piles, a shield‐driven metro tunnel, and interaction of a sliding slope with the tunnels going through it are solved with this method. The results show good agreement with analytical solutions or with in situ test results. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

15.
罗玉龙  彭华 《岩土力学》2008,29(12):3443-3450
软弱夹层的渗流、应力耦合作用是影响滑坡体稳定性的主要因素。为正确评价含软弱夹层的大野坪滑坡体的整体稳定性,基于Biot固结微分方程,采用虚位移原理,按照Goodman单元的形成格式,引入Desai单元控制嵌入的思想,构造了二维4节点耦合薄层单元,给出了能够模拟滑坡体蠕变特性的弹黏塑性本构模型,编制了相应的有限元程序,并用孔压实测数据检验了程序的正确性。同时,对大野坪滑坡体处于正常蓄水位和水位骤降两种工况的渗流场、应力场进行了非线性有限元耦合分析。结果表明:正常蓄水位,滑坡体处于稳定状态;而水位骤降工况,使滑坡体中前部孔隙水压力、位移、剪应力水平等均有大幅度地提高,塑性区沿着软弱夹层向上也有较大发展,致使滑坡体有可能沿着软弱夹层在中前部发生局部折线滑动,对滑坡体的稳定性极为不利。最后,采用刚体极限平衡法,对耦合分析的结果进行校核,两者结论一致。该研究成果为全面评价淋溪河水电站建设的可行性提供了重要的理论依据,建立耦合单元研究软弱夹层耦合特性的方法,为其他含软弱夹层的滑坡体的稳定性评价提供了有益的借鉴。  相似文献   

16.
储层流固耦合的数学模型和非线性有限元方程   总被引:2,自引:0,他引:2  
张广明  刘合  张劲  吴恒安  王秀喜 《岩土力学》2010,31(5):1657-1662
根据饱和多孔介质固体骨架的平衡方程和多孔介质中流体的连续性方程,建立了储层流固耦合数学模型。模型中引入了Jaumann应力速率公式描述多孔介质固体骨架的大变形效应,并考虑了地应力、初始孔隙压力、初始流体密度和初始孔隙度对耦合模型的影响。基于与微分方程等价的加权余量公式,在空间域采用有限元离散,对时间域进行隐式差分格式离散,导出了以单元节点位移和单元节点孔隙压力为未知量的储层流固耦合的非线性有限元增量方程。该模型在石油工程中有广泛的应用,为储层流固耦合的数值模拟奠定了理论基础。  相似文献   

17.
基于离散裂隙网络模型的裂隙水渗流计算   总被引:1,自引:1,他引:0  
离散裂隙网络模型(Discrete Fracture Network(DFN))是研究裂隙水渗流最为有效的手段之一。文章根据裂隙几何参数和水力参数的统计分布,利用Monte Carlo随机模拟技术生成二维裂隙网络,基于图论无向图的邻接矩阵判断裂隙网络的连通,利用递归算法提取出裂隙网络的主干网或优势流路径。基于立方定律和渗流连续性方程,利用数值解析法建立了二维裂隙网络渗流模型,分析不同边界条件下裂隙网络中的流体流动。结果表明,该方法可以模拟区域宏观水力梯度和边界条件下,裂隙网络水力梯度方向总的流量,以及节点的水位、节点间的流量和流动方向的变化特征,为区域岩溶裂隙水渗流计算提供了一种实用、可行的方法。   相似文献   

18.
基于P-CCNBD试样的岩石动态断裂韧度测试方法   总被引:2,自引:0,他引:2  
苟小平  杨井瑞  王启智 《岩土力学》2013,34(9):2449-2459
预裂的人字形切槽巴西圆盘(Pre-cracked chevron notched Brazilian disc,简称P-CCNBD)是将人字形切槽巴西圆盘(cracked chevron notched Brazilian disc,简称CCNBD)的切槽尖端再稍加切削制成直裂纹前沿的试样。利用霍普金森压杆对P-CCNBD砂岩试样进行径向冲击,完成I型动态断裂试验后再做数值分析得到岩石的动态断裂韧度。为了验证数值模拟的可靠性,先进行了无限平面中一条有限尺寸裂纹表面受冲击拉伸作用的动态有限元分析,结果表明,数值模拟的结果与Shi得到的结果非常吻合。将试验-数值法和他人的准静态法分别确定的砂岩的动态起裂韧度进行对比,两种方法得到的结果有一定的差异。采用试验-数值法,将比较成熟的直裂纹巴西圆盘(cracked straight-through Brazilian disc,简称CSTBD)和P-CCNBD两种试样测得的结果进行对比,两者吻合较好。得到的动态起裂韧度都有随着加载率的增加而增大的加载率效应。分析了准静态法的缺陷,认为试验-数值法得到的结果更为合理。  相似文献   

19.
Thermal oil recovery processes involve high pressures and temperatures, leading to large volume changes and induced stresses. These cannot be handled by traditional reservoir simulation because it does not consider coupled geomechanics effects. In this paper we present a fully coupled, thermal half‐space model using a hybrid DDFEM method. A finite element method (FEM) solution is adopted for the reservoir and the surrounding thermally affected zone, and a displacement discontinuity method is used for the surrounding elastic, non‐thermal zone. This approach analyzes stress, pressure, temperature and volume change in the reservoir; it also provides stresses and displacements around the reservoir (including transient ground surface movements) in a natural manner without introducing extra spatial discretization outside the FEM zone. To overcome spurious spatial temperature oscillations in the convection‐dominated thermal advection–diffusion problem, we place the transient problem into an advection–diffusion–reaction problem framework, which is then efficiently addressed by a stabilized finite element approach, the subgrid‐scale/gradient subgrid‐scale method. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号