首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 206 毫秒
1.
Field investigations reveal spatial variations in fault zone width along strike-slip active faults of the Arima–Takatsuki Tectonic Line (ATTL) and the Rokko–Awaji Fault Zone (RAFZ) of southwest Japan, which together form a left-stepping geometric pattern. The fault zones are composed of damage zones dominated by fractured host rocks, non-foliated and foliated cataclasites, and a fault core zone that consists of cataclastic rocks including fault gouge and fault breccia. The fault damage zones of the ATTL are characterized by subsidiary faults and fractures that are asymmetrically developed on each side of the main fault. The width of the damage zone varies along faults developed within granitic rocks of the ATTL and RAFZ, from ∼50 to ∼1000 m. In contrast, the width of the damage zone within rhyolitic tuff on the northwestern side of the ATTL varies from ∼30 to ∼100 m. The fault core zone is generally concentrated in a narrow zone of ∼0.5–∼5 m in width, consisting mainly of pulverized cataclastic rocks that lack the primary cohesion of the host rocks, including a narrow zone of fault gouge (<0.5 m) and fault-breccia zones either side of the fault. The present results indicate that spatial variations in the width of damage zone and the asymmetric distribution of damage zones across the studied strike-slip faults are mainly caused by local concentrations in compressive stress within an overstep area between left-stepping strike-slip faults of the ATTL and RAFZ. The findings demonstrate that fault zone structures and the spatial distribution in the width of damage zone are strongly affected by the geometric patterns of strike-slip faults.  相似文献   

2.
Field studies of fracture systems associated with 58 normal fault zones crosscutting sedimentary rocks were performed in the Northwest German Basin. Fracture orientations, densities, apertures and lengths, as well as fault zone structural indices, were analysed separately for fault damage zones and host rocks. The results show a pronounced difference between carbonate and clastic rocks: mainly in carbonate rocks we found presence of clear damage zones, characterized by higher fracture densities than in the host rocks. While the maximum aperture is similar for both units, the percentage of fractures with large apertures is much higher in the damage zones than in the host rocks.Based on laboratory measurements of Young's moduli and field measurements of fracture densities, we calculate effective stiffnesses Ee, that is the Young's moduli of the in situ rock masses, within the normal fault zones. Compared with carbonate rocks, Ee computed for clastic-rock damage zones decreases significantly less due to lower fracture densities. We conclude that normal fault zones in carbonate rocks have more profound effects on enhancing permeability in fluid reservoirs than those in clastic rocks. The results are of great importance for modelling the hydromechanical behaviour of normal fault zones in subsurface fluid reservoirs.  相似文献   

3.
Many low-efficiency hydrocarbon reservoirs are productive largely because effective reservoir permeability is controlled by faults and natural fractures. Accurate and low-cost information on basic fault and fracture properties, orientation in particular, is critical in reducing well costs and increasing well recoveries. This paper describes how we used an advanced numerical modelling technique, the finite element method (FEM), to compute site-specific in situ stresses and rock deformation and to predict fracture attributes as a function of material properties, structural position and tectonic stress. Presented are the numerical results of two-dimensional, plane-strain end-member FEM models of a hydrocarbon-bearing fault-propagation-fold structure. Interpretation of the modelling results remains qualitative because of the intrinsic limitations of numerical modelling; however, it still allows comparisons with (the little available) geological and geophysical data.

In all models, the weak mechanical strength and flow properties of a thick shale layer (the main seal) leads to a decoupling of the structural deformation of the shallower sediments from the underlying sediments and basement, and results in flexural slip across the shale layer. All models predict rock fracturing to initiate at the surface and to expand with depth under increasing horizontal tectonic compression. The stress regime for the formation of new fractures changes from compressional to shear with depth. If pre-existing fractures exist, only (sub)horizontal fractures are predicted to open, thus defining the principal orientation of effective reservoir permeability. In models that do not include a blind thrust fault in the basement, flexural amplification of the initial fold structure generates additional fracturing in the crest of the anticline controlled by the material properties of the rocks. The folding-induced fracturing expands laterally along the stratigraphic boundaries under enhanced tectonic loading. Models incorporating a blind thrust fault correctly predict the formation of secondary syn- and anti-thetic mesoscale faults in the basement and sediments of the hanging wall. Some of these faults cut reservoir and/or seal layers, and thus may influence effective reservoir permeability and affect seal integrity. The predicted faults divide the sediments across the anticline in several compartments with different stress levels and different rock failure (and proximity to failure). These numerical model outcomes can assist classic interpretation of seismic and well bore data in search of fractured and overpressured hydrocarbon reservoirs.  相似文献   


4.
On the basis of field observations, microscopic thin-sections and laboratory data analysis of ten faults in Xuanhan County area, northeastern Sichuan Basin, central China, the internal and megascopic structures and tectonite development characteristics are mainly controlled by the geomechanical quality in brittle formation of the Changxing-Feixianguan Formation. The fluid transportation performance difference between the faults formed by different geomechanics or different structural parts of the same fault are controlled by the mcgascopic structure and tectonite development characteristics. For instance, the extension fault structure consists of a tectonite breccia zone and an extension fracture zone. Good fluid transportation performance zones are the extension fracture zone adjacent to the tectonite breccia zone and the breccia zone formed at the early evolutionary stage. The typical compression fault structure consists of a boulder-clay zone or zones of grinding gravel rock, compression foliation, tectonite lens, and dense fracture development. The dense fracture development zone is the best fluid transporting area at a certain scale of the compression fault, and then the lens, grinding gravel rock zone and compression foliation zones are the worst areas for hydrocarbon migration. The typical tensor-shear fault with a certain scale can be divided into boulder-clay or grinding gravel rock zones of the fault, as well as a pinnate fractures zone and a derivative fractures zone. The grinding gravel rock zone is the worst one for fluid transportation. Because of the fracture mesh connectivity and better penetration ability, the pinnate fractures zone provides the dominant pathway for hydrocarbon vertical migration along the tensor-shear fault.  相似文献   

5.
朱喜  张庆莲  侯贵廷 《地质学报》2017,91(6):1181-1191
构造裂缝发育程度是碳酸盐岩地区构造裂缝定量研究的重要方面,对碳酸盐岩裂缝油气藏的储层预测具有重要意义。论文基于野外地质实际考察,研究岩性、地层厚度、构造性质等因素对构造裂缝的影响,建立比较系统的构造裂缝发育分布规律,建立构造裂缝发育的地质模型。白云岩的裂缝密度明显大于灰岩类的裂缝密度。地层越厚裂缝密度越小,但裂缝规模较大。走滑断裂控制的构造裂缝的裂缝密度与距断裂的距离呈指数关系且存在"断裂控制的裂缝带","断裂控制裂缝带"与断裂的性质、规模和断距等因素密切相关。提出不同性质断裂"断裂控制裂缝带"宽度与断层破碎带宽度的比值K,这个比值的发现对断裂控制的裂缝油气勘探开发具有重要的应用价值。  相似文献   

6.
先前的研究多考虑断层封堵和开启的2种极端状态,近来的研究认为,在多数情况下断层处于2种之间的状态,只有在静止期具有封闭能力的断层,才有可能对油气起封堵作用。分析断层对流体运移的影响,需要分析断层在演化过程中的内部结构特征。断层可以划分出破碎带、诱导裂缝带和围岩3部分,断层岩和伴生裂缝构成破碎带的主体部分。常见的断层岩包括断层角砾岩、断层泥和部分碎裂岩,它们充填在断层裂缝空间中,断层内部结构受断层形成时的构造应力性质、断层活动强度和围岩岩性因素的控制。从动态角度看,随着断距增加,断层活动伴随着裂缝的发育和岩石的破碎混杂,可用泥质源岩层厚度和断距的比值来划分不同的发育阶段。断层活动期为油气运移通道,在静止时表现出差异性的封闭,通常用断层渗透率和排替压力2个参数来定量评价断层的封闭程度。断层岩渗透率主要受断距、泥质含量、埋深等因素的控制;断层排替压力的预测方法有2种:一种是从断层岩成岩角度分析的"等效埋深法",另一种是分析实测排替压力与主控地质因素的"拟合法"。通过简化的断层模型,建立了渗透率、排替压力与主控因素的预测关系。和储层类似,流体在断层中的运移遵循多孔介质的渗流特征。利用断层两侧的流体压力和油气柱高度并不能直接评价封闭性能,还必须考虑油气充注史和流体压力变化历史。  相似文献   

7.
Roosevelt Hot Springs geothermal area is located in the Mineral Mountains of southern Utah. The geothermal reservoir is formed by systems of faults and joints in Cenozoic plutonic and Precambrian metamorphic rocks. Low-angle denudation faults, dipping between 5° and 35° to the west, form an important component of the reservoir's structure. These faults developed simultaneously with steeply dipping faults that dissect the low-angle fault plates and merge into denudation faults at depth.Gently westward dipping joints provided planes of weakness along which the denudation faults nucleated. The average coefficient of sliding friction along the faults was less than 0.5 and probably ranged between 0.15 and 0.4. The maximum depth for formation of the denudation faults was estimated as 5 km. Hydrothermally altered cataclasite preserved in the fault zones indicates that faulting occurred under brittle conditions in the presence of chemically reactive fluids. The hydrothermal alteration may have significantly reduced friction in the fault zones.Hydrothermal alteration along fractures in the present geothermal reservoir is similar to that observed in the exhumed denudation faults, indicating that the frictional resistance along faults and joints in the reservoir could be significantly lower than along similar structures in unaltered granitic rock. Studies of the structural stability of the reservoir as a consequence of fluid withdrawal and reinjection should consider possible mechanical effects of this hydrothermal alteration.  相似文献   

8.
Permeable geologic faults in the coal seam can cause intermittent production problems or unexpected amounts of groundwater outburst from the underlying aquifers. With the acknowledgment of the basic mechanism for groundwater outbursts, the groundwater outburst along the fault zones in coal mines are numerically investigated using RFPA, a numerical code based on FEM. The fracture initiation, propagation, and coalescence in the stressed strata and the seepage field evolution in the stress field are represented visually during the whole process of groundwater outburst. The numerically obtained damage evolution shows that the floor strata could be classified as three zones, i.e. mining induced fracture zone, intact zone and fault reactivation zone, in which the intact zone is the key part for resisting groundwater outburst and directly determines the effective thickness of water-resisting rock layer. With understanding of the evolution of stress field and seepage flow in floor strata, the groundwater outburst pathway is calibrated and the transformation of floor rock mass from water-resisting strata to outburst pathway is clearly illuminated. Moreover, it is shown that geometrical configuration, including inclination angle of faults and seam drop along faults, have an important influence on groundwater outburst. Finally, based on geological, hydrogeology survey and numerical results, the mechanism analysis of groundwater outburst in an engineering case is studied, which can provide significantly meaningful guides for the investigation on mechanism and prevention of groundwater outburst induced by faults in practice.  相似文献   

9.
徐兴雨  王伟锋 《地球科学》2020,45(5):1754-1768
所谓隐性断裂带,是指在断裂发育早期,主断面形成之前的裂缝发育带或一系列地质体定向律排列所反映的弱变形断裂趋势带.为了研究鄂尔多斯盆地隐性断裂带的形成机制及其对油气运聚成藏的控制作用,在重、磁、区域地质等分析的基础上,充分应用油气勘探、野外考查等资料,在鄂尔多斯盆地分别识别出了盆地级、坳陷级、凹陷级和圈闭级的隐性断裂带,按走向可分为东西向、北西向和北东向等.研究表明:按照从隐性到显性的顺序,可将隐性断裂带的演化分为盖层密集裂缝发育期、雁列式断裂线性展布期、断裂面断续形成期、断裂面陆续连通期以及断裂面连通且产生断距的显性断裂期5个基本阶段.隐性断裂带调节了盆地的构造格局、分割凹陷、隆起、加速烃源岩的发育程度、控制沉积体系的展布、改善储集层和输导体系,对油气的生成和运聚成藏都有着重要影响,隐性断裂带的发育区,往往是油气聚集靶区.   相似文献   

10.
活动断裂带强烈复杂的构造运动会对地壳岩体产生不同程度的损伤,这些损伤能够显著影响地震破裂、地貌演化和地质灾害等地质过程,并对工程岩体稳定有较大影响,但目前鲜见对大型活动断裂地壳岩体构造损伤的深入研究。本文首次提出地壳岩体构造损伤的科学概念,揭示其具有不可逆性、累积性、非均匀性与愈合性。通过对青藏高原东缘鲜水河断裂带等6条主要活动断裂带大范围岩体露头的实测分析,采用构造结构面面密度作为表征构造损伤的定量指标,将断裂带地壳岩体划分为损伤带与围岩,测得最宽损伤带达3100 m。分析了地壳岩体损伤分布特征、变形破裂特征和损伤分布影响因素,取得如下认识:(1)损伤带主要沿活动性较强的主断裂分布,其内部具有高、低损伤区交替的分区损伤特征;(2)损伤带与围岩岩体分别表现为高应变速率与低应变速率状态下脆性损伤特征,损伤带的形成与断裂近期区域应力场密切相关;(3)表征断层发展阶段的累积位移量控制损伤带的总体规模,而其局部变化主要受控于断裂的几何展布与岩石性质;(4)提出了典型活动断裂带地壳岩体构造损伤模式。研究成果可为地震动力学、构造地貌、地质灾害和大型工程建设等提供约束地壳岩体结构的科学证据,有助于深化对活动断裂带地壳岩体力学环境的认识和理解。  相似文献   

11.
Pressure variations in a magma reservoir may cause deformation at the surface and a redistribution of the stress in the surrounding rock. In this study, we use two‐dimensional numerical models and elaborate how magma chamber inflation and deflation affect the stress field around and surface displacement. We test how a pre‐existing normal fault near the magma reservoir may influence the pattern of stress. We demonstrate the possibility of initiating both normal and reverse slip on faults during the inflation of the magma reservoir. The Coulomb failure stress changes are calculated during the periods of pressure variation. An increase of Coulomb failure stress can be predicted above and below the magma chamber during increasing magma chamber pressure that may encourage earthquakes. This process can produce cracks and fault growth encouraging magma propagation along the cracked zone. A different distribution of the stress change is expected in the case of subsequent deflation of the overpressured magma reservoir. In this case, seismicity is expected on a plane at equal depth than the magma chamber, laterally offset from the extent of the magma chamber. Magma could propagate laterally from the magma reservoir into zones where cracks have been generated, but only if the resolved shear stress on the fault is small compared with the excess magma pressure.  相似文献   

12.
塔里木盆地走滑带碳酸盐岩断裂相特征及其与油气关系   总被引:2,自引:0,他引:2  
通过露头与井下资料的综合分析,塔里木盆地奥陶系碳酸盐岩走滑断裂带断裂相具有多样性,根据内部构造发育程度可以分为断层核发育、断层核欠发育两类。露头走滑带断层核部以裂缝带、透镜体、滑动面等断裂相发育为特征,断裂边缘的破碎带发育裂缝带、变形带。裂缝带主要分布在断层核附近50m的破碎带内,裂缝多开启,渗流性好。断裂核部透镜体发育,在破碎带也有分布,破碎角砾组合的透镜体多致密。滑动面具有平直截切型、渐变条带型等两种类型,多为开启的半充填活动面。变形带多为方解石与碎裂岩充填,破碎带局部部位裂缝与溶蚀作用较发育。利用地震剖面、构造图、相干图等资料可以判识塔里木盆地内部奥陶系碳酸盐岩走滑断裂相的特征及其发育程度,沿走滑断裂带走向上断裂相具有分段性与差异性,根据渗流性可以定性区分高渗透相、致密相区。沿断裂带高渗透相区是碳酸盐岩缝洞体储层发育的有利部位。断裂相的横向变化造成油气分布的区段性,形成高渗透相输导模式、致密相遮挡模式等两类成藏模式。走滑断裂带碳酸盐岩断裂相的特征及其控藏作用对油气勘探开发储层建模具有重要意义。  相似文献   

13.
Fault zone structure and lithology affect permeability of Triassic Muschelkalk limestone-marl-alternations in Southwest Germany, a region characterized by a complex tectonic history. Field studies of eight fault zones provide insights into fracture system parameters (orientation, density, aperture, connectivity, vertical extension) within fault zone units (fault core, damage zone). Results show decreasing fracture lengths with distances to the fault cores in well-developed damage zones. Fracture connectivity at fracture tips is enhanced in proximity to the slip surfaces, particularly caused by shorter fractures. Different mechanical properties of limestone and marl layers obviously affect fracture propagation and thus fracture system connectivity and permeability. Fracture apertures are largest parallel and subparallel to fault zones and prominent regional structures (e.g., Upper Rhine Graben) leading to enhanced fracture-induced permeabilities. Mineralized fractures and mineralizations in fault cores indicate past fluid flow. Permeability is increased by the development of hydraulically active pathways across several beds (non-stratabound fractures) to a higher degree than by the formation of fractures interconnected at fracture tips. We conclude that there is an increase of interconnected fractures and fracture densities in proximity to the fault cores. This is particularly clear in more homogenous rocks. The results help to better understand permeability in Muschelkalk rocks.  相似文献   

14.
松辽盆地深层是由30多个孤立的断陷组成的断陷群,火山岩气藏是深层勘探的主要气藏类型。以断陷盆地火山岩大气田形成条件为主线,从深层断陷形成的特征分析着手,通过剖析控源及控藏因素,总结断陷盆地大气田形成条件。指出NNE-NE和NNW-NW两组控陷断裂体系共同控制深层断陷群的形成和展布,断陷沿控陷断裂方向呈带状展布。断陷内火山机构具有明显受断裂控制的不对称特征,沿断裂走向呈条带状分布。每个断陷通常由一个或多个断槽组成,断槽控制烃源岩的分布并自成含气系统,生烃断槽和火山岩在空间的有利配置是形成气藏的关键。环槽富集是深层断陷火山岩气藏最基本的规律,由于断裂控制了断陷、断槽、火山岩的形成分布,改善了油气运聚的通道条件,紧邻生烃断槽的断裂构造带是断陷内天然气有利富集区带;因此深部断裂控制了断陷火山岩气田的区域分布。勘探实践更进一步证明:对于断陷湖盆油气勘探,生烃主断槽是评价和勘探的关键单元;只要生烃断槽优质烃源岩发育,烃源岩与火山岩空间配置关系有利,对于“小而富”的中小型断陷(面积小于3 000 km2),也可以形成火山岩大气田(探明地质储量大于300×108 m3),这些认识推进了勘探思路由寻找大湖盆大断陷到寻找生烃主断槽的转变。  相似文献   

15.
断层对页岩气储层压裂改造有重要影响,甚至诱发深部地震事件和近地表环境问题。本文采用多物理场耦合方法,基于渗流和应力耦合理论,研究储层水力压裂过程中断层以及封闭顶板中水力破坏区域的产生与演化机理,并分析讨论流体沿高渗通道运移扩散机理,研究结果表明:(1)断层改变储层水力破坏区域形态并且扩展了水力压裂破坏空间。较高注水压力使储层水力破坏区域扩大到封闭顶板和底板,水力破坏区域受断层影响而沿着断层带快速发育延伸。高注水压力导致断层水力压裂破坏高度急剧增加,储层封闭性发生改变。(2)在页岩储层高风险地质构造和较高注水压力条件下,水力压裂作业产生岩石破裂和裂缝局部活化诱发的微地震事件,但难以导致破坏性地震事件,多属于断层或较大断裂局部区域产生的水力耦合破坏及可能诱发的较小地震事件。(3)水力破坏区域贯通到断层带内诱发流体沿断层带迁移,断层带的渗透率较高,水力破坏区域与上部高渗透岩层贯通会加快流体的逃逸速度,增大压裂液污染上部地层的风险,导致压裂效率降低,影响储层压裂改造,降低了页岩气开发价值。  相似文献   

16.
张性断裂带内部结构特征及油气运移和保存研究   总被引:1,自引:0,他引:1       下载免费PDF全文
断裂带是一个宽度、长度和高度均与断距呈正比关系的三维地质体,具有典型的二分结构:即断层核和破碎带。断层核由多种类型的断层岩和后期胶结物组成,具有分选差,粘土含量高,颗粒粒径小等特征,表现为具有比围岩更低的孔渗性。破碎带同围岩相比发育大量的裂缝,裂缝的密度随着离断层核距离的增大而逐渐减小,孔渗性较高。断层岩类型取决于断移地层的岩性、成岩程度和断裂变形时期。对于同生断层而言,泥岩和不纯净的砂岩主要发生泥岩涂抹作用;纯净砂岩发生解聚作用,形成颗粒重排的变形带。中成岩阶段发生断裂变形,泥岩发生泥岩涂抹作用,不纯净的砂岩发生碎裂作用和层状硅酸盐涂抹作用,形成碎裂岩和层状硅酸盐 框架断层岩;纯净砂岩主要发生碎裂作用,形成碎裂岩。晚成岩阶段发生断裂变形,碎裂作用成为主要的变形机制,泥岩破碎形成大量断层泥,不纯净的砂岩和纯净的砂岩均形成碎裂岩,其中纯净砂岩形成的碎裂岩由于石英的压溶胶结变得更致密。因此不同成岩阶段、不同岩性形成的断层岩类型不同,泥岩涂抹的排替压力高于层状硅酸盐 框架断层岩和碎裂岩,即使都是碎裂岩,其渗透率相差7个数量级。从断裂带结构看油气运移和保存,断层垂向封闭主要靠剪切型泥岩涂抹的连续性,侧向封闭能力取决于断层岩物性,物性很高的碎裂岩自身封闭能力很差,依靠两盘岩性对接封闭油气,最小断距决定油水界面位置。物性很低的断层岩一般能封住一定高度的油气柱,其是断裂带中泥质含量的函数。断层在储盖层段变形机制差异,决定了断裂输导与封闭油气的耦合,即破碎带双向输导充注,盖层段剪切型泥岩涂抹顶部封闭,断层核遮挡成藏。  相似文献   

17.
Systematic field mapping of fracture lineaments observed on aerial photographs shows that almost all of these structures are positively correlated with zones of high macroscopic and mesoscopic fracture frequencies compared with the surroundings. The lineaments are subdivided into zones with different characteristics: (1) a central zone with fault rocks, high fracture frequency and connectivity but commonly with mineral sealed fractures, and (2) a damage zone divided into a proximal zone with a high fracture frequency of lineament parallel, non-mineralized and interconnected fractures, grading into a distal zone with lower fracture frequencies and which is transitional to the surrounding areas with general background fracturing. To examine the possible relations between lineament architecture and in-situ rock stress on groundwater flow, the geological fieldwork was followed up by in-situ stress measurements and test boreholes at selected sites. Geophysical well logging added valuable information about fracture distribution and fracture flow at depths. Based on the studies of in-situ stresses as well as the lineaments and associated fracture systems presented above, two working hypotheses for groundwater flow were formulated: (i) In areas with a general background fracturing and in the distal zone of lineaments, groundwater flow will mainly occur along fractures parallel with the largest in-situ rock stress, unless fractures are critically loaded or reactivated as shear fractures at angles around 30° to σH; (ii) In the influence area of lineaments, the largest potential for groundwater abstraction is in the proximal zone, where there is a high fracture frequency and connectivity with negligible fracture fillings. The testing of the two hypotheses does not give a clear and unequivocal answer in support of the two assumptions about groundwater flow in the study area. But most of the observed data are in agreement with the predictions from the models, and can be explained by the action of the present stress field on pre-existing fractures.  相似文献   

18.
19.
松辽盆地徐家围子断陷火山岩裂缝形成机理   总被引:1,自引:0,他引:1  
松辽盆地徐家围子断陷是位于松辽盆地北部深层的半地堑型晚侏罗世-早白垩世伸展断陷,火山岩发育。在已有研究成果的基础上,结合野外露头和岩心观测及镜下研究发现:本区火山岩构造裂缝和溶蚀裂缝都比较发育,具有明显的规律性,多数原生缝被后期的构造应力或溶蚀作用改造成次生缝。本区裂缝形成的控制因素较多,主要有应力、构造、岩性和岩相、溶蚀作用、风化淋滤、构造应力场演化等,其中构造应力场演化、岩性和岩相及风化溶蚀作用是控制裂缝形成的主要因素。构造裂缝以高角度的张扭性和张性缝为主,多为半充填和无充填,具有多期、多方向、组合复杂等特点,是晚侏罗世至新近纪各种地质作用相互叠加的结果。构造通过控制不同构造部位的局部应力场分布来控制裂缝发育程度,沿断裂带存在明显的应力集中,形成裂缝发育带,特别在正断层上升盘、断层端部、背斜轴部等应力集中部位容易形成构造裂缝。有效火山岩油气储层为各类原生孔隙与裂缝的有效组合。由于火山喷发多个旋回叠加,加之风化剥蚀及不整合面的存在,造成裂缝在纵向上发育具有旋回性,溶蚀裂缝主要在不整合面附近发育。在平面上,裂缝主要发育在断裂密集区、断裂交汇部位和背形或向形构造发育的地区。本区处于爆发相和溢流相火山岩的发育区,气孔和裂缝最发育,特别是溢流相的流纹岩中,裂缝和气孔均较为发育,是本区的优质储层最发育区,也是天然气富集区。  相似文献   

20.
以野外观察描述为手段,系统研究了碳酸盐岩断裂变形机制的影响因素及断裂带结构演化过程,剖析了碳酸盐岩地层中断裂带结构与流体运移的关系。研究表明,影响碳酸盐岩内断裂变形机制的因素包括岩性、孔隙度、变形深度、温度、胶结作用、先存裂缝等,控制断裂带结构形成的因素包括滑动位移和破裂模式等。低孔隙度碳酸盐岩以裂缝发育为主,高孔隙度碳酸盐岩变形早期产生变形带,带内裂缝联接逐渐发育成断层带。随着埋藏深度的增加,断裂带结构不同:埋藏深度小于3 km,断层核主要发育无内聚力的断层角砾岩和断层泥;埋藏深度大于3 km,断层核普遍发育有内聚力的断层角砾岩和碎裂岩,破碎带发育多种成因的裂缝。随着位移的增加,破裂模式从早期的破裂作用变为后期的碎裂作用,最终形成碎裂流。断裂带演化是一个四维过程,断层核和破碎带发育情况直接影响断层对油气的运移和封闭的作用。断裂变形机制、断裂带内部结构以及与流体运移关系的研究,都可为封闭性提供重要的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号