首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
  国内免费   1篇
地质学   6篇
海洋学   1篇
  2021年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有7条查询结果,搜索用时 156 毫秒
1
1.
储层岩体中的天然结构面对水力压裂缝网改造具有重要的影响。本文采用真实破裂过程分析软件RFPA2D-Flow,在考虑岩体非均质性和岩体渗流-应力-损伤破裂特性的基础上,对不同尺度天然结构面影响的水力压裂裂缝扩展与演化行为进行了模拟分析和讨论,研究结果表明:(1)当水力裂缝遇天然非闭合裂隙时,在水力裂缝靠近非闭合裂隙区间形成拉张应力区,水力裂缝与区间非闭合裂隙间微元体累进性张拉破坏是导致水力裂缝与非闭合裂隙贯通的主要机制;(2)层理等优势结构对水力压裂裂缝扩展及缝网形态影响十分显著,当最大主应力方向与层理面走向小角度相交时,层理结构面对水力裂隙的扩展起主要作用,当最大主应力方向与层理面走向大角度相交时,最大主压应力与层理面共同对缝网扩展起主导作用,随着优势结构面的增多和差应力的增大,水力压裂形成的缝网范围和复杂性程度随之增大;(3)储层水力压裂是一种局部范围内的短暂动力扰动过程,尽管断层的存在可以极大地影响水力裂缝的扩展模式,增大水力裂隙扩展高度,但相比于储层埋深,水力压裂对断层封闭性的破坏范围和断层活动性的扰动程度十分有限。  相似文献   
2.
半潜式平台垂向运动对气隙影响的概率统计分析   总被引:1,自引:1,他引:0  
应用矩和L矩方法以及二次转换方程,基于模型试验数据的概率统计分析,研究半潜式平台在作业工况和生存工况下的气隙响应,以及平台垂向运动对立柱周围不同位置处的波浪升高和气隙的影响。结果表明,垂向运动总体上能够增加气隙,海况越恶劣,增加程度越明显;在不同浪向下对不同位置的气隙影响有差别,后立柱周围的波浪升高和气隙受平台运动的影响相比前立柱更为显著;同时,平台垂向运动会引起立柱周围波浪升高的非线性增强。  相似文献   
3.
地下工程岩体渗流-损伤-应力耦合问题的研究对于巷道围岩的稳定性分析具有重要意义。本文在总结分析了巷道变形破坏类型影响因素的基础上,基于弹塑性力学、渗流力学以及损伤理论建立了岩体渗流-损伤-应力耦合模型。该模型充分考虑了多物理场耦合过程中,工程岩体的非均质性,岩体力学参数发生的动态弱化过程,围岩塑性屈服的峰后特性以及渗透系数在损伤过程中的突变性。基于多物理场耦合软件,数值模拟结果分析得到,使用该模型能更好地反映巷道围岩的屈服破坏程度和渐进破坏过程。应用该模型分析不同深度下的巷道围岩渐进性破坏过程可以得出:水平地应力为主导的地层中的巷道,屈服破坏主要发生在顶拱和底板,竖直地应力为主导的地层中的巷道,屈服破坏主要发生在两侧边墙,水平地应力和竖直地应力相近的地层中,巷道四周均发生不同程度的破坏,这与工程实际有很好的符合。  相似文献   
4.
岩体内裂隙等非连续结构面对岩体的强度及变形等力学特性有着显著的影响,研究岩体裂隙起裂、扩展、相互作用和贯通机制,对工程岩体力学行为的表征和工程性能的评价十分重要。本文基于连续介质力学模型的离散元方法,通过考虑裂隙分布、模型加载条件及其与裂隙产状的关系,建立了一系列裂隙力学计算模型,研究了不同模型裂隙扩展演化特征和岩体破裂机制,分析了岩体裂隙扩展规律及其对岩体破坏路径和强度的影响,研究结果表明:(1)裂隙岩体模型加载条件下的破坏起裂点、最终贯通破坏特征及损伤分布受控于裂隙的产状及其与最大主压应力取向角度大小及围压大小。(2)裂隙弱面走向与最大主压应力取向斜交时,裂隙弱面在加载条件下其端部裂隙扩展、贯通破坏表现比较明显,反之,当裂隙弱面走向与最大主压应力取向一致时,裂隙弱面被动影响裂隙模型内新生裂隙的萌生、扩展和贯通模式,自身未出现新的扩展破坏。(3)裂隙数目的增多和围压的增大会显著增加模型内部剪切裂缝的数量和模型破坏后的破碎程度,模型内部的损伤区域主要围绕破裂面呈滑移线型交叉分布,非破裂面区域损伤呈条带状X型分布。(4)裂隙弱面走向与最大主压应力取向斜交时,裂隙对岩体模型强度的弱化程度高于裂隙弱面走向与最大主压应力取向一致的情况,而裂隙模型破坏后的残余强度则正好相反。  相似文献   
5.
断层对页岩气储层压裂改造有重要影响,甚至诱发深部地震事件和近地表环境问题。本文采用多物理场耦合方法,基于渗流和应力耦合理论,研究储层水力压裂过程中断层以及封闭顶板中水力破坏区域的产生与演化机理,并分析讨论流体沿高渗通道运移扩散机理,研究结果表明:(1)断层改变储层水力破坏区域形态并且扩展了水力压裂破坏空间。较高注水压力使储层水力破坏区域扩大到封闭顶板和底板,水力破坏区域受断层影响而沿着断层带快速发育延伸。高注水压力导致断层水力压裂破坏高度急剧增加,储层封闭性发生改变。(2)在页岩储层高风险地质构造和较高注水压力条件下,水力压裂作业产生岩石破裂和裂缝局部活化诱发的微地震事件,但难以导致破坏性地震事件,多属于断层或较大断裂局部区域产生的水力耦合破坏及可能诱发的较小地震事件。(3)水力破坏区域贯通到断层带内诱发流体沿断层带迁移,断层带的渗透率较高,水力破坏区域与上部高渗透岩层贯通会加快流体的逃逸速度,增大压裂液污染上部地层的风险,导致压裂效率降低,影响储层压裂改造,降低了页岩气开发价值。  相似文献   
6.
拉剪应力状态极易导致岩体破坏乃至失稳,为研究节理岩体拉剪破坏规律,开展了拉剪荷载下共面非贯通节理岩体变形破坏的理论与数值计算研究。通过自定义考虑岩石统计损伤演化的Mohr-Coulomb和最大拉应力准则模型,编写力学参数服从Weibull分布的fish函数,研究了拉剪条件下非均质节理岩体的破坏模式及破坏规律,讨论了岩石均质度、法向拉应力及剪切速率对岩体破坏模式及其力学性质的影响。结果表明,(1) 拉剪应力状态下节理岩体的破坏模式以张拉破坏为主,加载初期破坏位置分布散乱,随着加载和损伤演化逐渐形成带状破裂面,岩体宏观力学性质明显降低;(2) 非均质性对岩体破坏影响显著,主要表现为均质度的增加,岩体由弥散型破坏向集中型破坏转变,破裂面起伏度增大,同时岩体的宏观力学性质增强并最终趋向于均质岩体;(3) 低应力水平下拉应力增大不改变节理岩体以拉张破坏为主的破裂模式,但剪切破坏比例明显减少,同时岩体抗剪强度降低,破裂面的粗糙度增大;(4) 剪切速率对岩体力学性质的影响显著,静态加载范围内岩体抗剪强度随剪切速率的增大而增大,且增幅越来越小。  相似文献   
7.
水力压裂可显著提高页岩气等致密储层岩体的渗透性以增加油气产量,然而受多因素影响,水力压裂形成缝网结构的机理和压裂优化设计一直是研究的焦点和难点。本研究基于渗流-应力-破坏耦合计算模拟方法,对不同水力加载条件下的非均质储层水力压裂过程进行了模拟和对比研究。研究结果表明:水力压裂过程中起始注水压力和增量大小对水力压裂缝网扩展和改造区域形态有着显著的影响。当起始注水压力小于等于模型材料体抗拉强度,并缓慢增压致裂时,压裂过程可近似视为稳态应力-破坏-渗流耦合作用过程的不同阶段,这种情况下仅在压裂井孔周围形成两组对称式的伞状水力裂缝带。当对模型体施加高于模型材料体破裂压力的注水压力时,相当于对压裂孔快速施加高动水压力,水力裂缝沿压裂孔全方位迅速萌生并快速扩展,当注水压力值高于破裂压力一定幅值时,压裂改造可形成围绕压裂井全方位的放射状裂缝网络,使压裂储层得以最大范围改造。在拟静力和拟动力两种加载条件下,不同水岩相互作用机理是造成不同水力加载条件出现不同缝网结构的力学机制,而对于实际的页岩气储层改造,压裂产生围绕压裂井全方位放射状的缝网结构则是一种最优的体积压裂改造。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号