首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 218 毫秒
1.
滑坡灾害空间智能预测展望   总被引:3,自引:0,他引:3  
滑坡灾害危险性区划是在滑坡编录和灾害敏感性分析结果的基础上,应用定性分析和定量分析、确定性模型和随机性模型相结合对滑坡灾害易发程度进行分区表示.随着地理信息系统和人工智能技术在滑坡灾害区划中的广泛应用,JP2]灾害危险性的定量研究得到进一步的深化和发展.在评述了滑坡灾害危险性区划主要定量模型的基础上,分析了未来滑坡灾害区划的发展趋势,并提出了基于空间数据挖掘的滑坡灾害空间智能预测框架.  相似文献   

2.
浙江省滑坡灾害预警预报的降雨阀值研究   总被引:28,自引:0,他引:28  
根据浙江省降雨的特点,将降雨分为台风降雨和非台风降雨,采用统计方法研究了区域性滑坡灾害与台风区和非台风区降雨量及降雨强度的相关性,通过相关性分析确定了有效降雨量模型;得到了浙江省区域性滑坡发生的临界降雨量和降雨强度阀值,为实时时间预警提供了定量依据;将滑坡灾害的空间易发性与降雨量和降雨强度相结合确定了滑坡灾害的空间预警区划指标和等级;最后初步研究了滑坡发生的滞后时间。  相似文献   

3.
基于聚类分析的滑坡灾害危险性区划研究   总被引:1,自引:1,他引:0       下载免费PDF全文
滑坡灾害危险性区划研究在城市规划决策方面具有重要的现实意义。聚类分析以统计学的形式将具有相似特征的数据进行归类,能够实现滑坡灾害危险性空间分布情况的定量评价。根据湖北省巴东县滑坡灾害统计资料,选择具有代表性的滑坡灾害影响因素作为危险性区划评价指标,采用熵权法和层次分析法相结合,综合评判各指标权重。并在此基础上,以MapGIS为操作平台,以C#语言编程实现了快速聚类算法,对研究区86216个单元进行了滑坡灾害属性分类及危险性等级自动识别,预测结果较好。本研究将综合权重评判方法与聚类模型结合,同时克服了聚类结果不能自动排序的困难,对处理大批量,多属性数据具有一定的创新性和实用价值。  相似文献   

4.
滑坡灾害空间预测研究   总被引:14,自引:2,他引:14  
介绍了滑坡灾害空间预测的常用理论和方法、研究特点和适用范围,指出了区域滑坡空间预测、单体斜坡稳定性预测和滑坡灾害风险研究的发展趋势;以三峡库区巴东县黄土坡区斜坡稳定性区划为例,用神经网络模型和信息量模型两种方法进行了斜坡稳定性预测,取得了满意的效果。  相似文献   

5.
滑坡灾害区划系统研究   总被引:13,自引:1,他引:13  
本文系统地介绍了滑坡灾害区划研究的国内外研究现状,提出减灾的关键在于从区域上做好预防研究的观点,并阐述了滑坡灾害与风险术语统一化的重要性,由此提出滑坡灾害区划的核心是灾害、易损性和风险三要素的综合分析。文章进一步提出了灾害区划研究的两种基本途径,破坏概率法和信息分析法,把传统的滑坡单体稳定性分析延伸到以Monte-  相似文献   

6.
降雨与滑坡灾害相关性分析及预警预报阀值之探讨   总被引:34,自引:3,他引:31  
高华喜  殷坤龙 《岩土力学》2007,28(5):1055-1060
详细研究了深圳市降雨与滑坡的历史资料,对区域性滑坡与降雨量进行偏相关分析,与降雨强度进行相关分析以及与降雨时间进行了系统地统计分析。研究结果表明,(1)滑坡的活动1~4日的降雨量及一次降雨过程的降雨量偏相关系数较大,表明一次性降雨量达到或超过某一数值时区域性滑坡就可以出现;(2)暴雨尤其是大暴雨及特大暴雨与滑坡的关系非常密切,相关系数达0.8以上,大暴雨或特大暴雨具有直接触发滑坡的作用;(3)滑坡活动时间与季节性降雨相对应,季节雨量越多,滑坡亦越多;另外滑坡活动时间与暴雨、大暴雨相吻合或略滞后,滞后时间一般不超过4 d,暴雨的当天及次日发生滑坡的可能性最大。在此基础上,探讨了区域性滑坡发生的临界降雨量和降雨强度阀值。最后将滑坡灾害的地质模型与降雨模型耦合建立了滑坡灾害的空间预警预报区划指标和等级系统,为区域滑坡灾害发生的时间与空间预报预警提供了科学依据。  相似文献   

7.
滑坡灾害预测预报分类   总被引:21,自引:2,他引:19  
有人主张滑坡灾害的空间和时间预测预报应是并存的,即脱离时间预测预报的空间预测是不可取的。但也有人认为两者可以相互独立而又互为补充。事实上,空间预测是时间预测预报的先决条件,只有在明确了预测的对象之后,方可有目的地开展滑坡灾害的时间预测预报。因而,一般地讲,滑坡灾害空间和时间预测具有先后序次关系。但从减灾的角度考虑,二者又具有相对的独立性。即可以在时间预测之外进行空间预测。目前对滑坡灾害预测预报分类的系统研究不多,所开展的预测预报事例报导基本上属于个例研究。论文将滑坡灾害预测预报分为空间和时间2大类,并进一步将空间预测划分成区域空间预测、地段空间预测和场地空间预测;将时间预测预报划分成长期时间预测、短期时间预测和临滑时间预测预报。文章针对滑坡灾害时间预测预报的特点,对预测预报的信息源进行了分析和分类。并对不同的工程阶段所要预测的滑坡灾害问题进行了分类归纳。  相似文献   

8.
基于有效降雨强度的滑坡灾害危险性预警   总被引:1,自引:0,他引:1  
选取湖北省恩施地区1 000 km2区域作为典型研究区, 在全面分析该区域历史滑坡资料的基础上, 根据该区滑坡生成与地层岩性之间的关系, 将研究区地层划分为高、中、低3类易发性岩组.分岩组统计降雨监测数据与历史滑坡信息, 得出有效降雨强度与关键降雨持续时间的散点图, 由此确定不同滑坡发生概率的有效降雨强度阈值, 提出该区的滑坡灾害危险性预警判别模型.基于样本区统计数据建立滑坡预测指标体系, 运用GIS得出研究区域的滑坡空间易发性区划结果, 并根据不同易发岩组-有效降雨强度模型, 叠加滑坡灾害易发性分区结果与降雨危险性预警等级分级结果, 对研究区的滑坡灾害危险性进行了预测预警.结果表明: 不同易发岩组-有效降雨强度模型所得预警结果与实际情况吻合, 预警模型具有考虑全面和预警精度高的特点, 在实际预警中切实可用.   相似文献   

9.
基于GIS的滑坡、泥石流灾害危险性区划关键问题研究   总被引:20,自引:3,他引:20  
随着GIS技术的引入,滑坡、泥石流灾害危险性区划的效率和准确性得以大大提高。依据工程地质类比原则,在灾害学理论指导下,结合专家打分、层次分析、人工神经网络、信息量、Logistic回归、统计量等模型方法,以MAPGIS软件为平台,利用C++语言开发了滑坡、泥石流灾害危险性区划评价分析系统;并重点探讨了GIS支持下的滑坡、泥石流灾害危险性区划过程中的因子分析、模型选取、模型复合、单元划分、系统集成、结果评价等关键问题,建立了一整套基于GIS的滑坡、泥石流灾害评价方法体系。应用该系统对长江三峡库区和辽宁省鞍山市分别开展了滑坡、泥石流灾害危险性区划研究,取得了较好的效果。  相似文献   

10.
西北黄土高原区面积广,滑坡数量众多,利用遥感技术加快减灾、防灾,开展编目、区划研究,具有重要的研究意义.目前,利用人机交互解译、计算机分类,滑坡灾害解译和识别已取得许多成功的经验.受数据源、数据处理和解译等交叉学科发展的影响,应用多侧重影像预处理、解译标志建立和技术方法研究,滑坡灾害遥感解译不确定性等关键问题研究较少,解译标志也过分关注色和形描述,与滑坡发育规律密切的地形地貌等重要解译标志尚需完善.本文以西北黄土高原陕西延安、宁夏彭阳等地为研究区,从尺度效应、波段组合、数据融合等方面分析滑坡灾害遥感解译的不确定性,结果表明地貌、滑坡和承灾体、岩土体变化呈等级结构,与之对应遥感数据的时空尺度不同,利用ETM+,Spot 5和QuickBird等不同分辨率数据进行识别分类,能减少解译的不确定性;波段组合能有效反映地层岩性时,更适合滑坡识别和分类;高空间分辨率数据的融合算法以主成分或HIS较佳.基于分析结果,采用Spot 5经自然彩色变换主成分融合,依据研究区黄土滑坡的典型特征及影像表现,利用人机交互解译技术建立滑坡解译标志,为编目和区划、滑坡灾害计算机解译等提供依据.  相似文献   

11.
BP模型在区域滑坡灾害风险预测中的应用   总被引:6,自引:0,他引:6  
吴益平  唐辉明  葛修润 《岩土力学》2005,26(9):1409-1413
滑坡灾害具有整体性、动态性、开放性和随机性的特点,而人工神经网络属于非线性动态系统,具有符合区域滑坡灾害风险预测的研究特点。应用BP模型,建立了区域滑坡灾害风险的预测流程,并与GIS技术相结合,对三峡水库蓄水条件下巴东新县城的滑坡灾害进行了危险性、易损性、风险性综合预测研究,证明了BP模型在区域滑坡灾害风险预测中的应用可行性,同时指出了所存在的问题及可能解决的途径。  相似文献   

12.
Landslide zonation studies emphasize on preparation of landslide hazard zonation maps considering major instability factors contributing to occurrence of landslides. This paper deals with geographic information system-based landslide hazard zonation in mid Himalayas of Himachal Pradesh from Mandi to Kullu by considering nine relevant instability factors to develop the hazard zonation map. Analytical hierarchy process was applied to assign relative weightages over all ranges of instability factors of the slopes in study area. To generate landslide hazard zonation map, layers in geographic information system were created corresponding to each instability factor. An inventory of existing major landslides in the study area was prepared and combined with the landslide hazard zonation map for validation purpose. The validation of the model was made using area under curve technique and reveals good agreement between the produced hazard map and previous landslide inventory with prediction accuracy of 79.08%. The landslide hazard zonation map was classified by natural break classifier into very low hazard, low hazard, moderate hazard, high hazard and very high landslide hazard classes in geographic information system depending upon the frequency of occurrence of landslides in each class. The resultant hazard zonation map shows that 14.30% of the area lies in very high hazard zone followed by 15.97% in high hazard zone. The proposed model provides the best-fit classification using hierarchical approach for the causative factors of landslides having complex structure. The developed hazard zonation map is useful for landslide preparedness, land-use planning, and social-economic and sustainable development of the region.  相似文献   

13.
Landslide hazard zonation is essential for planning future developmental activities. At the present study, after the preparation of a landslide inventory of the study area, nine factors as well as sub-data layers of factor class weights were tested for an integrated analysis of landslide hazard in the region. The produced factor maps were weighted with the analytic hierarchy process method and then classified into four classes—negligible, low, moderate, and high. The final produced map for landslide hazard zonation in Golestan watershed revealed that: (1) about 53.85 % of the basin is prone to moderate and high threats of landslides. (2) Landslide events at the Golestan watershed were strongly correlated to the slope angle of the basin. It was observed that the active landslide zones, including moderate to high landslide hazard classes, have a high correlation to slope classes over 30° (R 2?=?0.769). (3) The regions most susceptible to landslide hazard are those located south and southwest of the watershed, which included rock topples, falls, and debris landslides.  相似文献   

14.
Landslide hazard evaluation and zonation mapping in mountainous terrain   总被引:33,自引:0,他引:33  
Landslide hazard zonation (LHZ) maps are of great help to planners and field engineers for selecting suitable locations to implement development schemes in mountainous terrain, as well as, for adopting appropriate mitigation measures in unstable hazard-prone areas. A new quantitative approach has been evolved, based on major causative factors of slope instability. A case study of landslide hazard zonation in the Himalaya, adopting a landslide- hazard evaluation factor (LHEF) rating scheme, has been presented.  相似文献   

15.
The constant threat from landslides in the northeastern part of Istria, Croatia, calls for the need to apply accurate and reliable methods in landslide hazard assessment in order to prevent landslide damage and to set an early warning system if necessary. Furthermore, landslide susceptibility and hazard assessment enable optimal area management and regional urban planning. The study area is in the northeastern and central part of the Istrian Peninsula, well known as an area of frequent, small and shallow slope instability phenomena. Landslide susceptibility assessment in the area around the city of Buzet was performed using a deterministic landslide susceptibility model in the LS-RAPID software. LS-RAPID was developed to analyze stability at one single location, but the performed analysis has shown that LS-RAPID can be used as a powerful tool in landslide susceptibility and hazard assessment on regional scale. The objective of this paper is to establish the influence of the runout potential on the enlargement of the landslide-susceptible zones, due to expansion of the failure area around the initial failure zone. Performed analysis of rainfall return periods shows the frequency of landslide occurrence and provides the possible correlation with the time component of landslide hazard in the area.  相似文献   

16.
Landslide hazard and risk assessment on the northern slope of Mt. Changbai, a well-known tourist attraction near the North Korean-Chinese border, are assessed. This study is divided into two parts, namely, landslide hazard zonation and risk assessment. The 1992 Anbalagan and Singh method of landslide hazard zonation (LHZ) was modified and used in this area. In this way, an Associative Analysis Method was used in representative areas to get a measure for controlling factors (slope gradient, relative relief, vegetation, geology, discontinuity development, weak layer thickness and ground water). For the membership degree of factor to slope failure, the middle range of limited values was used to calculate LHZ. Based on an estimation of the potential damage from slope failure, a reasonable risk assessment map was obtained using the relationship of potential damage and probable hazard to aid future planning and prediction and to avert loss of life.  相似文献   

17.
Rainfall-induced landslide susceptibility zonation of Puerto Rico   总被引:9,自引:4,他引:5  
Landslides are a major geologic hazard with estimated tens of deaths and $1–2 billion in economic losses per year in the US alone. The island of Puerto Rico experiences one or two large events per year, often triggered in steeply sloped areas by prolonged and heavy rainfall. Identifying areas susceptible to landslides thus has great potential value for Puerto Rico and would allow better management of its territory. Landslide susceptibility zonation (LSZ) procedures identify areas prone to failure based on the characteristics of past events. LSZs are here developed based on two widely applied methodologies: bivariate frequency ratio (FR method) and logistic regression (LR method). With these methodologies, the correlations among eight possible landslide-inducing factors over the island have been investigated in detail. Both methodologies indicate aspect, slope, elevation, geological discontinuities, and geology as highly significant landslide-inducing factors, together with land-cover for the FR method and distance from road for the LR method. The LR method is grounded in rigorous statistical testing and model building but did not improve results over the simpler FR method. Accordingly, the FR method has been selected to generate a landslide susceptibility map for Puerto Rico. The landslide susceptibility predictions were tested against previous landslide analyses and other landslide inventories. This independent evaluation demonstrated that the two methods are consistent with landslide susceptibility zonation from those earlier studies and showed this analysis to have resulted in a robust and verifiable landslide susceptibility zonation map for the whole island of Puerto Rico.  相似文献   

18.
Landslide is one of the natural disasters which causes a lot of annual damage directly or indirectly in the world. Many planned areas, especially in hilly regions, are prone to different types of landslides; therefore, landslide susceptibility maps become an urgent issue, so that landslide damages and impact can be minimized. The best method for studying landslides, which has long been of interest to researchers, is hazard zonation. In this method, due to the affecting factors in landslide occurrence, study areas are classified into areas with low to very high risk. Different methods have been developed for this purpose. In this paper, the four bivariate statistical methods namely information value, density area, LNRF, and frequency ratio are used to investigate the hazard zonation of landslide in Miandarband located north of the Kermanshah Province. The density ratio (D r) and Qs values for information value, density area, frequency ratio, and LNRF methods used in this study were calculated to be 2.245312, 0.98146; 2.857816, 1.071185; 2.858085, 0.783945; and 2.418375, 1.070928, respectively. The results indicate that although there are minor differences, the frequency ratio method compared to the density area method that was used for the study of landslide zonation presents better results.  相似文献   

19.
Landslide susceptibility assessment is a major research topic in geo-disaster management. In recent days, various landslide susceptibility and landslide hazard assessment methodologies have been introduced with diverse thoughts of assessment and validation method. Fundamentally, in landslide susceptibility zonation mapping, the susceptibility predictions are generally made in terms of likelihoods and probabilities. An overview of landslide susceptibility zoning practices in the last few years reveals that susceptibility maps have been prepared to have different accuracies and reliabilities. To address this issue, the work in this paper focuses on extreme event-based landslide susceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku, Japan, was selected in this study for modeling and event-based landslide susceptibility mapping. Both bivariate and multivariate approaches were considered for the zonation mapping. Two event-based landslide databases were used for the susceptibility analysis, while a relatively new third event landslide database was used in validation. Different event-based susceptibility zonation maps were merged and rectified to prepare a final susceptibility zonation map, which was found to have an accuracy of more than 77 %. The multivariate approach was ascertained to yield a better prediction rate. From this study, it is understood that rectification of susceptibility zonation map is appropriate and reliable when multiple event-based landslide database is available for the same area. The analytical results lead to a significant understanding of improvement in bivariate and multivariate approaches as well as the success rate and prediction rate of the susceptibility maps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号