首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
长江上游是整个长江经济带的重要生态屏障。以长江上游攀西大梁子铅锌矿区水系沉积物为研究对象,查明了重金属元素含量的空间分布特征,分析了重金属来源,探讨了在不同pH条件下重金属的淋滤规律,并进行了生态风险评估。研究结果显示:攀西大桥河流域水系沉积物中重金属的空间分布极不均匀,其含量明显要高于长江水系沉积物中重金属的平均含量;重金属生态风险属于很强风险,Hg和Cd呈高度富集、严重污染;Pb和Zn呈中度富集、中等污染。淋滤实验结果表明Pb、Zn、Cd在酸性和中性条件下淋滤浓度先快速下降,后逐渐趋于平衡,而As在快速下降后又有缓慢升高的趋势。大桥河流域水系沉积物中As、Cd、Pb、Zn主要来源于大梁子铅锌矿的采选活动,Hg为岩石风化和土壤剥蚀来源,而Cu和Cr主要为农业和工业活动来源。综合对比发现,攀西成矿带铅锌矿周边土壤富Cd而贫Cr,此外Cd、Pb、Zn、Hg是主要潜在污染物,且生态风险程度较高。  相似文献   

2.
辽宁省浑河流域底质中重金属元素地球化学特征   总被引:6,自引:0,他引:6  
通过对浑河流域内底质采样,系统分析As、Cd、Cr、Cu、Hg、Ni、Pb和Zn等8种重金属元素,了解其含量和空间分布等特征。研究证实,冶炼和化工生产等对浑河底质的地球化学特征带来极大影响,造成细河等区域内的底质中Cd等重金属元素含量升高。对浑河底的系统分析工作,为深入研究流域环境质量和农业规划等提供借鉴方法和基础数据。  相似文献   

3.
A sediment core collected from coastal zone near the Qiao Island in the Pearl River Estuary was analyzed for total metal concentrations, chemical partitioning, and physico-chemical properties. Three vertical distribution patterns of the heavy metals in the sediment core were identified, respectively. The dominant binding phases for Cu, Pb, Cr, and Zn were the residual and Fe/Mn oxides fractions. Cd in all sediments was mainly associated with exchangeable fraction. Influences of total organic carbon content and cation exchange capacity on the total concentrations and fractions of almost all the metals were not evident, whereas sand content might play an important role in the distributions of residual phases of Cr, Cu, Pb, and Zn. In addition, sediment pH had also an important influence on the Fe/Mn oxides, organic/sulfide and residual fractions of Cr, Cu, and Zn. Contamination assessment on the heavy metals in the sediment core adopting Index of Geoaccumulation showed that Cr, V, Be, Se, Sn, and Tl were unpolluted, while Cu, Ni, Pb, Zn, Cd, and Co were polluted in different degrees throughout the core. It was remarkable that the various pollution levels of the metals from moderate (for Cu, Pb, and Zn) to strong (for Cd) were observed in the top 45 cm of the profiles. The relative decrease of the residual fraction in the upper 45 cm of the core is striking, especially for Zn and Cu, and, also for Pb, and Cr. The change in fraction distribution in the upper 45 cm, which is very much contrasting to the one at larger depths, confirms that the residual fraction is related to the natural origin of these metals, whereas in the upper part, the non-residual fractions (mainly the Fe/Mn oxides fraction) are increased due to pollution in the last decade. The possible sources for Cu, Pb, Zn, and Cd contaminations were attributed to the increasing municipal and industrial wastewater discharges, agricultural runoff, atmospheric inputs, and runoff from upstream mining or smelting activities, which may be associated with an accelerating growth of economy in the Pearl River Delta region in the past decade.  相似文献   

4.
An eco-environmental geochemical investigation was carried out in and around the Dexing mining area to determine the concentrations of heavy metals in the surface water, sediments, soils and plants. The main objective of this study is to assess the environmental situation and evaluate the transferring of heavy metals from mining activities into the food chain. Some samples of water, sediment, topsoil and plant were collected along the Lean River in the Dexing mining area. The total concentrations of Cu, Pb, Zn, Cd, and As were determined by AAS, and Hg was analyzed by cold-vapor AAS. Some indices such as ‘contamination degree‘ , ‘geoaccumulation index‘ , and ‘biological absorption coefficient‘ were used to assess eco-environmental quality. The investigation indicated a highly localized distribution pattern closely associated with the two pollution sources along the Le‘an River bank: one is strong acidity and a large amount of Cu in the drainage from the Dexing Cu mining area; and the other is the high concentrations of Pb and Zn in the effluents released from many smelters and mining, processing and extracting activities in the riparian zone. Results from the investigated localities indicated, at least in part, that some problems associated with environmental quality deterioration should be solved in the future.  相似文献   

5.
武水河上游区域土壤重金属污染风险及来源分析   总被引:1,自引:0,他引:1  
生态功能区在涵养水源、保持水土、维系生物多样性等方面具有重要的作用。本文以位于南岭生态功能区的流域——武水流域为研究对象,采集流域上游交通运输用地、采矿用地、工业用地、耕地及林地5种土地利用类型土壤样品,分析7种重金属Cd、As、Cu、Hg、Ni、Pb、Zn的含量特征,采用内梅罗综合污染指数评价重金属污染的程度,Hakanson潜在生态风险指数法评价土壤重金属潜在生态风险,并应用主成分分析法探究重金属污染的来源。研究结果显示,武水河上游地区土壤重金属Cd、As、Cu、Hg、Ni、Pb、Zn平均含量分别为1.28、72.44、54.62、0.27、68.32、72.29和158.42mg/kg,均高于土壤背景值,其中采矿用地土壤重金含量除Hg外均高于其他类型土壤。均值状态下土壤中Cd和As单因子污染指数分别为5.07、3.25,其中采矿用地中Cd单因子污染指数可达13.59;土壤重金属综合污染指数表明,采矿用地污染最为严重,其次是工业用地,林地呈安全状态。潜在生态危害指数评价结果显示,采矿用地和工业用地达到了强生态危害,其他类型土壤为轻微生态危害,而采矿用地土壤中Cd达到极强生态危害,As为强生态危害。土壤重金属来源研究结果表明,As、Cd、Cu和Zn来源于矿山开采及工业活动,Ni和Hg主要来源于成土母质,Pb则来源于交通运输。研究认为:武水流域上游区土壤重金属污染情况较为严重,Cd和As是区内主要的风险因子,主要来源于矿山开采以及工业活动。  相似文献   

6.
Heavy metal levels in surface sediments from Tamaki Estuary demonstrate significant up estuary increases in Cu, Pb, Zn, Cd and mud concentrations. Increased metal levels towards the head of the estuary are linked to local catchment sources reflecting the historical development, industrialisation and urbanisation of catchment areas surrounding the upper estuary. The relatively narrow constriction in the middle estuary (Panmure area), makes it susceptible to accumulation of upper estuary pollutants, since the constriction reduces circulation and extends the time required for fine waterborne sediments in the upper estuary to exchange with fresh coastal water. As a result fine fraction sediments trapped in the upper estuary facilitate capture and retention of pollutants at the head of the estuary. The increase in sandy mud poor sediments towards the mouth of the estuary is associated with generally low metal concentrations. The estuary’s geomorphic shape with a mid estuary constriction, sediment texture and mineralogy and catchment history are significant factors in understanding the overall spatial distribution of contaminants in the estuary. Bulk concentration values for Cu, Pb, Zn, and Cd in all the studied surface samples occur below ANZECC ISQG-H toxicity values. Cd and Cu concentrations are also below the ISQG-L toxicity levels for these elements. However, Pb and Zn concentrations do exceed the ISQG-L values in some of the surface bulk samples in the upper estuary proximal to long established sources of catchment pollution.  相似文献   

7.
《Applied Geochemistry》2004,19(5):769-786
Heavy metal (Zn, Cd, Cu and Pb) mass balances in the Lot-Garonne fluvial system have been established for 1999 and 2000. The mean annual discharges of these years are close to the mean discharge of the previous decade. The estimated annual dissolved and particulate fluxes in this model watershed integrate daily input from diffuse and point sources, diffusive fluxes at the water/sediment interface, changes in the dissolved-particulate partition and changes in sediment stock. Cadmium, Zn, Cu and Pb entering the Gironde estuary via the Garonne River (11–14 t a−1 of Cd; 1330–1450 t a−1 of Zn; 126–214 t a−1 of Cu and 127–155 t a−1 of Pb) are mainly transported in the particulate phase and the major part (i.e. ∼74 to 96% for Cd, ∼60% for Zn, ∼50 to 60% for Cu and ∼80% for Pb) is transported by the Lot River. The main anthropogenic heavy metal point source is located in a small upstream watershed (Riou-Mort River) accounting for at least 47% (Cd), ∼20% (Zn), ∼4% (Cu) and ∼7 to 9% (Pb) of the total heavy metal inputs into the Garonne River, although it contributes only 1% of the discharge. Mass balances for 1999 suggest that under mean annual hydrologic conditions on the basin scale, the heavy metal budget of the Lot-Garonne fluvial system is balanced and that the stocks of Cd [200 t; Environ. Tech. 16 (1995) 1145] and Zn in the Lot River sediment are constant under mean discharge conditions. Heavy metal input by molecular diffusion at the sediment surface represents an important component of dissolved metal inputs into the system (e.g. 30% for Cu). Except for Cu, these dissolved inputs are totally removed from solution by SPM. Based on the generally constant Zn/Cd (∼50) concentration ratio in sediment cores from the polluted Lot River reaches and the sediment stock of Cd [200 t; Environ. Tech. 16 (1995) 1145], the present day Zn stock in the Lot River sediments has been estimated at about 10,000 t. In addition to the mobilization of river-bed sediment and associated heavy metals by intense floods, local human activities, including river-bed dredging, may strongly modify the heavy metal budget of the river system. In 2000, the dredging-related remobilization of polluted Lot River sediment released 2–6 t Cd. This additional Cd point source was estimated to account for 15–43% of the gross inputs into the Gironde Estuary.  相似文献   

8.
以金矿开发影响的黄河二级支流太峪水系沉积物为研究对象,沿河采集16个表层沉积物样品,分层采集垂向剖面10件水库沉积物样品,测定了样品中重金属元素Hg、Pb、Cd、Cr、As、Cu和Zn的含量,采用Hakanson潜在生态指数法和Tomlinson污染负荷指数法评价重金属元素污染程度和潜在生态风险。结果表明,矿业活动是太峪水系沉积物重金属元素污染的主要因素;变异系数、富集系数和最高污染系数均反映Hg、Pb、Cd是太峪水系沉积物的特征污染重金属元素,Cr和As的质量分数接近地区背景值;太峪水系表层沉积物受到重金属元素的极强污染,山区段污染较山外更严重;整个流域的Hg、Pb、Cd具有很强的潜在生态危害,Cr、As、Zn的潜在生态危害轻微;太峪水系沉积物垂向各层沉积物都受到重金属元素的极强污染,生态问题以Hg、Pb、Cd的潜在生态危害为主,其污染和生态危害程度都高于流向上的沉积物。潜在生态危害指数评价突出了不同元素的毒性和危害程度,而污染负荷指数法侧重于样本空间上的污染程度,二者互补使用有利于实际问题的全面评价。  相似文献   

9.
江西德兴矿集区水系沉积物重金属污染的时空对比   总被引:5,自引:0,他引:5  
对比研究矿山开采一定时段内区域环境污染的时空变化特征,对于动态监测矿山开采对区域环境质量的影响情况、污染趋势等,具有重要的科学意义和实际价值。本文在利用2004年野外采集与测试分析的330个水系沉积物样品重金属含量数据基础上,充分利用矿山开采早期(1989)的1:20万乐平幅(As、Hg、Cd、Cr、Zn、Cu、Pb)水系沉积物地球化学图,通过数据预处理,分别对样品采集点重金属元素含量的统计分析和地质累积指数法评价的基础上,采用GIS的三维空间分析功能,对比研究德兴地区水系沉积物重金属污染时空变化。研究结果表明,十几年来,矿山开采对区域水系沉积物已造成了严重的污染,主要集中分布在是德兴铅锌和铜钼矿区德兴河与大坞河流域及其周边地区、乐安河下游沿岸局部地区、西北煤矿区以及乐安河下游乐平附近的煤矿区。  相似文献   

10.
通过长江河口地区水下表层沉积物样品多种化学元素的赋存形态分析测试数据,综合分析重金属元素的赋存形态特征。研究结果显示:镉、汞、铅残渣态所占比例均小于50%,锌、砷、铬、铜、镍残渣态占比均大于50%;8个元素的残渣态与全量呈显著正相关关系。沉积环境和沉积物粒径对重金属元素赋存形态具有重要影响。沉积物的物质来源、矿物组成特征、水动力作用与沉积物粒度和物理化学条件等是长江口地区表层沉积物重金属元素赋存形态的主要控制因素。  相似文献   

11.
In order to assess the pollution levels of selected heavy metals, 45 bottom sediment samples were collected from Al-Kharrar lagoon in central western Saudi Arabia. The concentrations of the heavy metals were recorded using inductively coupled plasma-mass spectrometer (ICP-MS). The results showed that the concentrations of Pb and Cd exceeded the environmental background values. However, the heavy metal contents were less than the threshold effect level (TEL) limit. The concentrations of heavy metals in lagoon bottom sediments varied spatially, but their variations showed similar trends. Elevated levels of metals were observed in the northern and southern parts of the lagoon. Evaluation of contamination levels by the sediment quality guidelines (SQG) of the US-EPA revealed that sediments were non-polluted-moderately to heavily polluted with Pb; non-polluted to moderately polluted with Cu; and non-polluted with Mn, Zn, Cd, and Cr. The geoaccumulation index showed that lagoon sediments were unpolluted with Cd, Mn, Fe, Hg, Mo, and Se; unpolluted to moderately polluted with Zn and Co; and moderately polluted with Pb, Cr, Cu, and As. The high enrichment factor values for Pb, As, Cu, Cr, Co, and Zn (>2) indicate their anthropogenic sources, whereas the remaining elements were of natural origins consistent with their low enrichment levels. The values of CF indicate that the bottom sediments of Al-Kharrar lagoon are moderately contaminated with Mn and Pb.  相似文献   

12.
Damming of the North Anna River in 1972 created Lake Anna, a cooling water source for the Dominion nuclear power plant as well as a popular recreation site in Spotsylvania and Orange counties, Virginia, USA. Previously dated (210-Pb) sediment cores from seven locations within the lake and three locations in the adjoining Waste Heat Treatment Facilities (WHTF) were analyzed for trace metals (Al, Ba, Zn, Cd, Cu, Fe, Mn and Pb) and polychlorinated biphenyls (PCBs) to examine the environmental evolution of the reservoir system. The reservoir has a history of mining activities in its watershed and unusually elevated concentrations of PCBs were found in fish tissues from previous studies. Therefore, dated sediment cores provided the framework for both the temporal and spatial analysis of possible sources and flux histories for both trace metals and PCBs. The trace metals results suggest that, though the upper reaches are relatively less impacted, the old mine tailings from the now ceased mining activities in the watershed of Contrary Creek tributary continue to dominate the sediment chemistry of the lower portion of the lake basin, signified by sediment enrichment of Pb, Cd, Cu, and Zn. Lagoon-2 of the WHTF also seems to be receiving unusually high loadings of Cd (12.5 ± 1.07 μg/g) that is probably associated with waste materials from the nuclear power plant that maintains the lagoons. PCB sediment concentrations were relatively low in the lower sections of the basins with values typically being <3.5 ng/g. The upper reaches of the basin had several PCB hotspots, with the surface sediments of Terry’s Run tributary having values as high as 53.13 ng/g. The spatial distribution of PCBs seems to suggest the upper reaches of the basin as the probable source, with the unusually high concentrations near bridges suggesting a possible link between the PCBs and old bridge fill materials. The oldest lacustrine sediments also had relatively high trace metals and PCB values signifying a probable role of soil disruption and sediment reconcentration during reservoir construction.  相似文献   

13.
《Applied Geochemistry》2003,18(3):409-421
This study provides a geochemical partitioning pattern of Fe, Mn and potentially toxic trace elements (As, Cd, Cr, Cu, Ni, Pb, Zn) in sediments historically contaminated with acid mine drainage, as determined by using a 4-step sequential extraction scheme. At the upperstream, the sediments occur as ochreous precipitates consisting of amorphous or poorly crystalline oxy-hydroxides of Fe, and locally jarosite, whereas the estuarine sediments are composed mainly of detrital quartz, illite, kaolinite, feldspars, carbonates and heavy minerals, with minor authigenic phases (gypsum, vivianite, halite, pyrite). The sediments are severely contaminated with As, Cd, Cu, Pb and Zn, especially in the vicinity of the mining pollution sources and some sites of the estuary, where the metal concentrations are several orders of magnitude above background levels. Although a significant proportion of Zn, Cd and Cu is present in a readily soluble form, the majority of heavy metals are bonded to reducible phases, suggesting that Fe oxy-hydroxides have a dominant role in the metal accumulation. In the estuary, the sediments are potentially less reactive than in the riverine environment, because relevant concentrations of heavy metals are immobilised in the crystalline structure of minerals.  相似文献   

14.
A study of agricultural lands around an abandoned Pb–Zn mine in a karst region was undertaken to (1) assess the distribution of heavy metals in the agricultural environment, in both dry land and paddy field; (2) discriminate between natural and anthropogenic contributions; and (3) identify possible sources of any pollution discovered. Ninety-two samples of cultivated soils were collected around the mine and analyzed for eight heavy metals, pH, fluoride (F?), cation exchange capacity, organic matter, and grain size. The eight heavy metals included Cd, Cr, Cu, Ni, Pb, Zn, As, and Hg. The average concentrations (mg/kg) obtained were as follows: Cd 16.76 ± 24.49, Cr 151.5 ± 18.24, Cu 54.28 ± 18.99, Ni 57.5 ± 14.43, Pb 2,576.2 ± 1,096, Zn 548.7 ± 4,112, As 29.1 ± 6.36, and Hg 1.586 ± 1.46. In a site where no impact from mining activities was detected, the mean and median of Cd, Cu, Ni, Pb, Zn, As, and Hg concentrations in investigated topsoils were higher than the mean and median of heavy metal concentrations in reference soils. An ensemble of basic and multivariate statistical analyses was performed to reduce the multidimensional space of variables and samples. Two main sets of heavy metals were revealed as indicators of natural and anthropogenic influences. The results of principal component analysis (PCA) and categorical PCA demonstrated that Cd, Cu, Pb, Zn, and Hg are indicators of anthropogenic pollution, whereas Cr, As and Ni concentrations are mainly associated with natural sources in the environment. The contamination from Pb–Zn mining operations, coupled with the special karst environment, was a key contributing factor to the spatial distribution of the eight heavy metals in the surrounding soil. The values of heavy metals in the soil samples suggested the necessity of conducting a rigorous assessment of the health and environmental risks posed by these residues and taking suitable remedial action as necessary.  相似文献   

15.
湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪   总被引:12,自引:0,他引:12  
湘江是我国重金属污染最严重的河流之一.本次工作利用等离子质谱(ICP-MS)和多接收同位素质谱(MC-ICP-MS)等技术,对湘江入湖河段沉积物进行了系统的重金属微量元素和Pb同位素分析.结果表明,湘江河床沉积物明显富集Bi、Sc、V、Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb等多种重金属微量元素,而湖盆沉积物重金...  相似文献   

16.
Samples were collected at 71 sites in the Yellow River Delta Natural Reserve in December 2010 to represent soil conditions before and after the Yellow River (YR) diversion. The As, Cd, Cu, Pb, Zn, and Ni concentrations were measured to determine metal contamination levels. Results suggest that Cd concentrations were significantly higher after the YR diversion than before. The As, Cd, Cr, Cu, Ni, Pb, and Zn soil contamination indices did not exceed contamination levels, although the heavy metal content increased after the YR diversion. The mean concentrations of these heavy metals were lower than the Class I criteria. Correlation analysis shows significant correlations between As and Cr, Cu, Ni, Pb, and Zn concentrations both before and after the YR diversion. However, no significant correlations were observed between heavy metal concentration and pH before the diversion, and no heavy metal concentration was correlated with salinity. The principal component analysis indicates that these trace elements, including As, were closely correlated with each other and therefore likely originated from shared pollution sources before the diversion. These results are useful for assessing the heavy metal contamination and proposing feasible suggestions to improve soil quality.  相似文献   

17.
Core and surface sediments from the Tonalli River, a tributary of the artificial lake, Lake Burragorang, in the Blue Mountains National Park, New South Wales, Australia, were studied to evaluate the spatio-temporal distribution of pollutants from the Yerranderie silver-lead-zinc mine site, abandoned in the late 1920s. A sediment core was collected in the mouth of the Tonalli River, at its junction with Lake Burragorang, and surface sediment samples were collected in the Tonalli River and its tributaries. The concentrations of Pb, As, Zn, Cu, Cd, Hg and Ag in the sediments were determined by ICP-MS and ICP-AES techniques. Temporal variability of metal concentrations was established through 210Pb dating of the core sediments and compared with published historical records, rainfall records and bushfire data. Metal concentrations in core sediments showed an overall increase around the year 1950 as well as increases coincident with heavy rainfall. Spatially, metal concentrations were up to 400 times the guideline limit around mine sites but decreased rapidly with distance downstream of the mines.  相似文献   

18.
2010年和2011年在鸭绿江西水道和西岸潮间带共采集4根柱状样,通过对2mPb测年、粒度、总有机碳、重金属元素等多指标综合分析,探讨了:(1)鸭绿江河口西水道和西岸潮间带柱状沉积物中重金属的垂向分布及其来源:(2)重金属分布的粒度控制作用:(3)不同时期的粒度和重金属分布变化及其对流域变化的响应。结果表明:f1)Cu和zn可能来源于有机质降解的内源释放:Cr和Ni表征了岩石风化剥蚀形成陆源碎屑的自然来源:Cd和Pb反映了人类活动的影响。(2)除西岸潮间带的Cd和Pb含量可能部分受来源影响外,研究区的粒度效应是控制鸭绿江地区重金属含量分布的最主要因素。(3)粒度变化与流域演变密切相关,重金属含量对流域变化和人类活动响应明显,大致以1940年、1970年、1995年为界分为四个沉积阶段:1940年以前,自然演变对鸭绿江河口西岸潮间带的重金属分布控制明显,而1940年来至今,人类活动的控制作用日益凸显。  相似文献   

19.
 The Yamuna River sediments, collected from Delhi and Agra urban centres, were analysed for concentration and distribution of nine heavy metals by means of atomic adsorption spectrometry. Total metal contents varied in the following ranges (in mg/kg): Cr (157–817), Mn (515–1015), Fe (28,700–45,300), Co(11.7–28.4), Ni (40–538), Cu (40–1204), Zn (107–1974), Pb (22–856) and Cd (0.50–114.8). The degree of metal enrichment was compared with the average shale concentration and shows exceptionally high values for Cr, Ni, Cu, Zn, Pb and Cd in both urban centres. In the total heavy metal concentration, anthropogenic input contains 70% Cr, 74% Cu, 59% Zn, 46% Pb, 90% Cd in Delhi and 61% Cr, 23% Ni, 71% Cu, 72% Zn, 63% Pb, 94% Cd in Agra. A significant correlation was observed between increasing Cr, Ni, Zn, and Cu concentrations with increasing total sediment carbon and total sediment sulfur content. Based on the Müller's geoaccumulation index, the quality of the river sediments can be regarded as being moderately polluted to very highly polluted with Cr, Ni, Cu, Zn, Pb and Cd in the Delhi and Agra urban centres. The present sediment analysis, therefore, plays an important role in environmental measures for the Yamuna River and the planning of these city centres. Received: 21 June 1999 · Accepted: 1 October 1999  相似文献   

20.
This study concerns the mineralogy, spatial distribution and sources of nine heavy metals in surface sediments of the Maharlou saline lake, close to the Shiraz metropolis in southern Iran. The sources for these sediments were studied by comparing the mineralogy and the distribution of heavy metals, using multivariate statistical analysis (correlation analysis and principal component analysis). The geochemical indices, including geo-accumulation index (Igeo), contamination factor (CF) and pollution load index (PLI), were used to assess the degree of heavy metal contamination in surface sediments. Sediment quality guidelines (SQGs) have also been applied to assess its toxicity. The XRD analysis shows that the main minerals of the surface sediments are aragonite, calcite, halite and quartz, with small amounts of montmorillonite, dolomite and sepiolite. The total heavy metal contents in surface sediments decrease in order of Sr?>?Ni?>?Cr?>?Zn?>?Cu?>?Co?>?Pb?>?As >?Cd and the average concentrations of Sr, Ni and As exceeded more than 10, 5 and 3 times, respectively, by comparing with the normalized upper continental crust (UCC) values. The results of pollution indices (Igeo, CF and PLI) revealed that strontium (Sr), nickel (Ni) and arsenic (As) were significantly enriched in those sediments. Based on the sediment quality guidelines (SQGs), Ni would infrequently cause toxicity. Multivariate statistical analysis indicated that the Ni, Co and Cr came mainly from natural geological background sources, while Cd, Cu, Pb, and Zn were derived from urban effluents (especially traffic emissions) and As originated from agriculture activities. Significant relationships of Sr with S, CaO and MgO in sediments suggest that Sr was derived from carbonate- and gypsum-bearing catchment source host rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号