首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A monolith representing 5420 14C yr of peat accumulation was collected from a blanket bog at Myrarnar, Faroe Islands. The maximum Hg concentration (498 ng/g at a depth of 4.5 cm) coincides with the maximum concentration of anthropogenic Pb (111 μg/g). Age dating of recent peat accumulation using 210Pb (CRS model) shows that the maxima in Hg and Pb concentrations occur at AD 1954 ± 2. These results, combined with the isotopic composition of Pb in that sample (206Pb/207Pb = 1.1720 ± 0.0017), suggest that coal burning was the dominant source of both elements. From the onset of peat accumulation (ca. 4286 BC) until AD 1385, the ratios Hg/Br and Hg/Se were constant (2.2 ± 0.5 × 10-4 and 8.5 ± 1.8 × 10-3, respectively). Since then, Hg/Br and Hg/Se values have increased, also reaching their maxima in AD 1954. The age date of the maximum concentrations of anthropogenic Hg and Pb in the Faroe Islands is consistent with a previous study of peat cores from Greenland and Denmark (dated using the atmospheric bomb pulse curve of 14C), which showed maximum concentrations in AD 1953.The average rate of atmospheric Hg accumulation from 1520 BC to AD 1385 was 1.27 ± 0.38 μg/m2/yr. The Br and Se concentrations and the background Hg/Br and Hg/Se ratios were used to calculate the average rate of natural Hg accumulation for the same period, 1.32 ± 0.36 μg/m2/yr and 1.34 ± 0.29 μg/m2/yr, respectively. These fluxes are similar to the preanthropogenic rates obtained using peat cores from Switzerland, southern Greenland, southern Ontario, Canada, and the northeastern United States. Episodic volcanic emissions and the continual supply of marine aerosols to the Faroe Islands, therefore, have not contributed significantly to the Hg inventory or the Hg accumulation rates, relative to these other areas. The maximum rate of Hg accumulation was 34 μg/m2/yr. The greatest fluxes of anthropogenic Hg accumulation calculated using Br and Se, respectively, were 26 and 31 μg/m2/yr. The rate of atmospheric Hg accumulation in 1998 (16 μg/m2/yr) is comparable to the values recently obtained by atmospheric transport modeling for Denmark, the Faroe Islands, and Greenland.  相似文献   

2.
Analysis of a well-dated peat core from Blue Cypress Marsh (BCM) provides a detailed record of natural and anthropogenic factors that controlled the geochemical cycles of a number of trace elements in Florida over the last five centuries. The trace elements were divided into “natural” and “anthropogenic” groups using concentration trends from the bottom to the top of the core. The “natural” group includes Li, Sc, Cr, Co, Ga, Ge, Zr, Nb, Cs, Ba, Hf, Y, Ta, Th, and REE (Rare Earth Elements). These elements show similar concentrations throughout the core, indicating that changes in human activities after European arrival in the “New World” did not affect their geochemical cycles. The “anthropogenic” group includes Pb, Cu, Zn, V, Sb, Sn, Bi, and Cd. Upcore enrichment of these elements indicates enhancement by anthropogenic activities. From the early 1500s to present, fluxes of the “anthropogenic” metals to the marsh increased significantly, with modern accumulation rates several-fold (e.g., V) to hundreds of times (e.g., Zn) greater than pre-colonial rates. The dominant input mechanism for trace elements from both groups to the marsh has been atmospheric deposition. Atmospheric input of a number of the elements, including the anthropogenic metals, was dominated by local sources during the last century. For several elements, long-distant transport may be important. For instance, REE and Nd isotopes provide evidence for long-range atmospheric transport dominated by Saharan dust.The greatest increase in flux of the “anthropogenic” metals occurred during the 20th century and was caused by changes in the chemical composition of atmospheric deposition entering the marsh. Increased atmospheric inputs were a consequence of several anthropogenic activities, including fossil fuel combustion (coal and oil), agricultural activities, and quarrying and mining operations. Pb and V exhibit similar trends, with peak accumulation rates in 1970. The principal anthropogenic source of V is oil combustion. The decline in V accumulation after 1970 in the BCM peat corresponds to the introduction of low-sulfur fuels and the change from heavy to distilled oils since the 1970s. After the 1920s, Pb distribution in the peat follows closely the history of alkyl lead consumption in the US, which peaked in the 1970s. Pb isotopes support this inference and furthermore, record changes in the ore sources used to produce leaded gasoline. Idaho ores dominated the peat Pb isotope record until the 1960s, followed by Pb from Mississippi Valley Type deposits from the 1960s to the 1980s. Enhanced fluxes of Cu, Zn, Cd, Sn, Sb, Bi, and to some extent Ni during the last century are likely also related to fossil fuel combustion. Local agricultural activities may also have influenced the geochemical cycles of Cu and Zn. The peat record shows enhanced U accumulation during the last century, possibly related to phosphate mining in western Florida. Sr isotopes in the peat core also reflect anthropogenic influence. The 87Sr/86Sr ratio decreases from natural background values in the basal part of the core to lower values in the upper part of the core. The Sr isotope shift is probably related to quarrying operations in Florida, and marks the first time an anthropogenic signal has been detected using the Sr isotope record in a peat core.  相似文献   

3.
A peat core from an ombrotrophic bog documents the isotopic evolution of atmospheric Pb in central Ontario since AD 1804 ± 53 (210Pb dating). Despite the introduction of unleaded gasoline in the mid-1970’s, the ratio 206Pb/207Pb in atmospheric deposition has not increased as expected, but rather continues to decline. In fact, snowpack sampling (2005 and 2009) and rainwater samples (2008) show that the isotopic composition of atmospheric Pb today is often far less radiogenic than the gasoline lead that had been used in Canada in the past. The peat, snow, and rainwater data presented here are consistent with the Pb isotope data for aerosols collected in Dorset in 1984 and 1986 which were traced by Sturges and Barrie (1989) to emissions from the Noranda smelter in northern Quèbec, Canada’s largest single source of atmospheric Pb. Understanding atmospheric Pb deposition in central Ontario, therefore, requires not only consideration of natural sources and past contributions from leaded gasoline, but also emissions from metal smelting and refining.Lead in the streams which enter Kawagama Lake today (206Pb/207Pb = 1.16 − 1.19) represents a mixture between the natural values (1.191 − 1.201 estimated using pre-industrial lake sediments) and the values found in the humus layer of the surrounding forest soils (206Pb/207Pb = 1.15 − 1.19). In the lake itself, however, Pb is much less radiogenic (206Pb/207Pb as low as 1.09) than in the streams, with the dissolved fraction less radiogenic than particulate material. The evolution of Pb isotope ratios within the watershed apparently reflects preferential removal by sedimentation of comparatively dense, radiogenic, terrestrial particles (derived from the mineral fraction of soils) from the humus particles with lower ratios of 206Pb/207Pb (because of atmospheric Pb contamination). Despite the contemporary enrichments of Pb in rain and snow, concentrations of dissolved Pb in the lake are extremely low (sometimes below 10 ng/l), with Pb concentrations and Pb/Sc ratios approaching “natural” values because of efficient binding to particles, and their subsequent removal in the watershed.  相似文献   

4.
Recent Lake Tanganyika Hg deposition records were derived using 14C and excess 210Pb geochronometers in sediment cores collected from two contrasting depositional environments: the Kalya Platform, located mid-lake and more removed from watershed impacts, and the Nyasanga/Kahama River delta region, located close to the lake’s shoreline north of Kigoma. At the Kalya Platform area, pre-industrial Hg concentrations are 23 ± 0.2 ng/g, increasing to 74 ng/g in modern surface sediment, and the Hg accumulation rate has increased from 1.0 to 7.2 μg/m2/a from pre-industrial to present, which overall represents a 6-fold increase in Hg concentration and accumulation. At the Nyasanga/Kahama delta region, pre-industrial Hg concentrations are 20 ± 3 ng/g, increasing to 46 ng/g in surface sediment. Mercury accumulation rate has increased from 30 to 70 μg/m2/a at this site, representing a 2–3-fold increase in Hg concentration and accumulation. There is a lack of correlation between charcoal abundance and Hg accumulation rate in the sediment cores, demonstrating that local biomass burning has little relationship with the observed Hg concentration or Hg accumulation rates. Examined using a sediment focusing-corrected mass accumulation rate approach, the cores have similar anthropogenic atmospheric Hg deposition profiles, suggesting that after accounting for background sediment concentrations the source of accumulating Hg is predominantly atmospheric in origin. In summary, the data document an increase of Hg flux to the Lake Tanganyika ecosystem that is consistent with increasing watershed sediment delivery with background-level Hg contamination, and regional as well as global increases in atmospheric Hg deposition.  相似文献   

5.
Although recent studies have recognized peatlands as a sink for atmospheric CO2, little is known about the role of Siberian peatlands in the global carbon cycle. We have estimated the Holocene peat and carbon accumulation rate in the peatlands of the southern taiga and subtaiga zones of western Siberia. We explain the accumulation rates by calculating the average peat accumulation rate and the long-term apparent rate of carbon accumulation (LORCA) and by using the model of Clymo (1984, Philosophical Transactions of the Royal Society of London Series B 303, 605-654). At three key areas in the southern taiga and subtaiga zones we studied eight sites, at which the dry bulk density, ash content, and carbon content were measured every 10 cm. Age was established by radiocarbon dating. The average peat accumulation rate at the eight sites varied from 0.35 ± 0.03 to 1.13 ± 0.02 mm yr−1 and the LORCA values of bogs and fens varied from 19.0 ± 1.1 to 69.0 ± 4.4 g C m−2 yr−1. The accumulation rates had different trends especially during the early Holocene, caused by variations in vegetation succession resulting in differences in peat and carbon accumulation rates. The indirect effects of climate change through local hydrology appeared to be more important than direct influences of changes in precipitation and temperature. River valley fens were more drained during wetter periods as a result of deeper river incision, while bogs became wetter. From our dry bulk density results and our age-depth profiles we conclude that compaction is negligible and decay was not a relevant factor for undrained peatlands. These results contribute to our understanding of the influence of peatlands on the global carbon cycle and their potential impact on global change.  相似文献   

6.
Multiple proxies from a 319-cm peat core collected from the Hudson Bay Lowlands, northern Ontario, Canada were analyzed to determine how carbon accumulation has varied as a function of paleohydrology and paleoclimate. Testate amoeba assemblages, analysis of peat composition and humification, and a pollen record from a nearby lake suggest that isostatic rebound and climate may have influenced peatland growth and carbon dynamics over the past 6700 cal yr BP. Long-term apparent rates of carbon accumulation ranged between 8.1 and 36.7 g C m? 2 yr? 1 (average = 18.9 g C m? 2 yr? 1). The highest carbon accumulation estimates were recorded prior to 5400 cal yr BP when a fen existed at this site, however following the fen-to-bog transition carbon accumulation stabilized. Carbon accumulation remained relatively constant through the Neoglacial period after 2400 cal yr BP when pollen-based paleoclimate reconstructions from a nearby lake (McAndrews et al., 1982) and reconstructions of the depth to the water table derived from testate amoeba data suggest a wetter climate. More carbon accumulated per unit time between 1000 and 600 cal yr BP, coinciding in part with the Medieval Climate Anomaly.  相似文献   

7.
Pollen evidence from sediment cores at Hurleg and Toson lakes in the Qaidam Basin was obtained to examine vegetation and climatic change in the northeastern Qinghai-Tibetan Plateau. The chronologies were controlled by 210Pb and 137Cs analysis and AMS 14C dating. Pollen assemblages from both lakes are dominated by Chenopodiaceae (∼ 40%), Artemisia (∼ 30-35%) and Poaceae (∼ 20-25%), with continued occurrence but low abundance of Nitraria, Ephedra, and Cyperaceae. Artemisia/Chenopodiaceae (A/C) pollen ratios from two lakes show coherent large oscillations at centennial timescale during the last 1000 yr. A/C ratios were high around AD 1170, 1270, 1450, 1700 and 1920, suggesting that the vegetation was more “steppe-like” under a relatively moist climate than that during the intervening periods. Wet-dry climate shifts at the two lakes (2800 m asl) are in opposite phases to precipitation changes derived from tree-ring records in the surrounding mountains (> 3700 m asl) and to pollen and snow accumulation records from Dunde ice core (5300 m asl), showing that a dry climate in the basin corresponds with a wet interval in the mountains, especially around AD 1600. This contrasting pattern implies that topography might have played an important role in mediating moisture changes at regional scale in this topographically complex region.  相似文献   

8.
Sediments of the Lagoa Vermelha (Red Lake), situated in the Ribeira Valley, southeastern Brazil, are made of a homogeneous, organic-rich, black clay with no visible sedimentary structures. The inorganic geochemical record (Al, As, Ba, Br, Co,Cs, Cr, Fe, Mn, Ni, Rb, Sc, Sb, V, Zn, Hg and Pb) of the lake sediments was analyzed in a core spanning 2430 years. The largest temporal changes in trace metal contents occurred approximately within the last 180 years. Recent sediments were found to be enriched in Pb, Zn, Hg, Ni, Mn, Br and Sb (more than 2-fold increase with respect to the “natural background level”). The enhanced accumulation of Br, Sb, and Mn was attributed to biogeochemical processes and diagenesis. On the other hand, the anomalous concentrations of Pb, Zn, Hg and Ni were attributed to pollution. As Lagoa Vermelha is located in a relatively pristine area, far removed from direct contamination sources, the increased metal contents of surface sediments most likely resulted from atmospheric fallout. Stable Pb isotopes provided additional evidence for anthropogenic contamination. The shift of 206Pb/207Pb ratios toward decreasing values in the increasingly younger sediments is consistent with an increasing contribution of airborne anthropogenic lead. In the uppermost sediments (0-10 cm), the lowest values of the 206Pb/207Pb ratios may reflect the influence of the less radiogenic Pb from the Ribeira Valley District ores (206Pb/207Pb between 1.04 and 1.10), emitted during the last 50 years.  相似文献   

9.
As a consequence of deposition of atmospheric pollution, the lead concentration in the mor layer (the organic horizon) of remote boreal forest soils in Sweden is raised far above natural levels. How the mor will respond to decreased atmospheric pollution is not well known and is dependent on future deposition rates, downward migration losses and upward fluxes in the soil profile. Plants may contribute to the upward flux of lead by ‘pumping’ lead back to the mor surface through root uptake and subsequent litter fall. We use lead concentration and stable isotope (206Pb, 207Pb and 208Pb) measurements of forest vegetation to quantify plant uptake rates from the soil and direct from the atmosphere at two sites in northern Sweden; an undisturbed mature forest and a disturbed site with Scots pine (Pinus sylvestris) growing on a recently exposed mineral soil (C-horizon) containing a minimum of atmospherically derived pollution lead. Analyses of forest mosses from a herbarium collection (spanning the last ∼100 yr) and soil matrix samples suggest that the atmospheric lead deposited on plants and soil has an average 206Pb/207Pb ratio of 1.15, while lead derived from local soil minerals has an average ratio of ∼1.47. Since the biomass of trees and field layer shrubs has an average 206Pb/207Pb ratio of ∼1.25, this indicates that 70% ± 10% of the inventory of 1 ± 0.8 mg Pb m−2 stored in plants in the mature forest originates from pollution. Needles, bark and apical stemwood of the pine growing on the disturbed soil, show lower 206Pb/207Pb ratios (as low as 1.21) than the roots and basal stemwood (having ratios > 1.36), which indicate that plants are able to incorporate lead directly from the atmosphere (∼50% of the total tree uptake). By partitioning the total uptake of lead into uptake from the atmosphere and different soil layers using an isotopic mixing model, we estimate that ∼0.03 ± 0.01, 0.02 ± 0.01 and 0.05 ± 0.01 mg Pb m−2 yr−1 (mean ± SD), is taken up from the mor layer, the mineral soil and the atmosphere, respectively, by plants in the undisturbed mature forest. These small fluxes, which are at least a magnitude lower than reported downward migration losses, suggest that plant uptake will not strongly prolong the self-cleaning rate of the mor layer.  相似文献   

10.
Two 14C accelerator mass spectrometry (AMS) wiggle‐match dated peat sequences from Denmark and northern England record changes in mire surface wetness reconstructed using plant macrofossil and testate amoebae analyses. A number of significant mid–late Holocene climatic deteriorations (wet shifts) associated with declines in solar activity were recorded (at ca. 2150 cal. yr BC, 740 cal. yr BC, cal. yr AD 930, cal. yr AD 1020, cal. yr AD 1280–1300, cal. yr AD 1640 and cal. yr AD 1790–1830). The wet shifts identified from ca. cal. yr AD 930 are concurrent with or lag decreases in solar activity by 10–50 years. These changes are replicated by previous records from these and other sites in the region and the new records provide improved precision for the ages of these changes. The rapidly accumulating (up to 2–3 yr cm?1, ~1310 yr old, 34 14C dates) Danish profile offers an unprecedented high‐resolution record of climate change from a peat bog, and has effectively recorded a number of significant but short‐lived climate change events since ca. cal. yr AD 690. The longer time intervals between samples and the greater length of time resolved by each sample in the British site due to slower peat accumulation rates (up to 11 yr cm?1, ~5250 yr old, 42 14C dates) acted as a natural smoothing filter preventing the clear registration of some of the rapid climate change events. Not all the significant rises in water table registered in the peat bog archives of the British and Danish sites have been caused by solar forcing, and may be the result of other processes such as changes in other external forcing factors, the internal variability of the climate system or raised bog ecosystem. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
Biogeochemical processes in a forested tropical peat deposit and its record of past atmospheric dust deposition were assessed using the vertical distribution of lithophilic and plant essential elements in a dated core profile from Borneo, SE Asia. Peat formation started ∼22,120 14C yr before present (BP), and Ca/Mg mass ratios of the solid peat and very low ash contents indicate a strongly ombrotrophic character throughout the deposit, implying that most of the inorganic fraction has been supplied exclusively by atmospheric inputs. Concentration profiles of Mn, Sr, and Ca suggest a very minor influence of chemical diagenesis in the underlying sediments. Silicon, Ca, Mg, P, S, and K show a strong and extended zone of enrichment in the top 200 cm of the profile, indicating that biological accumulation mechanisms are much more extensive than in temperate peat bogs.In the lower core sections, where the element distribution is dominated solely by past atmospheric deposition, average Al/Ti ratios are similar to the upper continental crust (UCC), whereas Fe is slightly enriched and Si is strongly depleted: this condition favors highly weathered tropical soil dust as the main inorganic mineral source. Significant correlation of Al, Fe, Si, S, Ca, and Ti with the lithophilic elements Y and Zr suggests that the distribution of these elements is controlled by sources of atmospheric mineral dust. The Ca/Mg, Ca/K, and Mg/K ratios of the collected rainwater samples are similar to the global average of continental rainwater and suggest a continental character for the site. This is supported by the similarity of the average concentration of Br, Mg, Ca, and S to that in temperate continental and maritime bogs in Switzerland and Scotland.The concentration profiles of Si, Fe, Al, and Ti show distinct peaks within the profile, implying enhanced dust deposition, reduced rates of peat accumulation, or possibly both owing to climatic changes during the Holocene. Enhanced dust deposition between ∼10,830 and 9060 14C yr BP is tentatively interpreted as a Younger Dryas-like event with dust fluxes of ∼10.8 mg/m2/yr. The variations in Al/Ti and Fe/Ti profiles suggest that mineral dust sources have been changing constantly during the Holocene, with local sources being dominant between ∼7820 and 9500 14C yr BP and long-range transport (derived most likely from China) being important during the late Pleistocene and early Holocene and from ∼7820 14C yr BP to the present.  相似文献   

12.
Mid-latitude ice caves are assumed to be highly sensitive to climatic changes and thus represent a potentially interesting environmental archive. Establishing a precise chronology is, however, a prerequisite for the understanding of processes driving the cave-ice mass balance and thus allows a paleoenvironmental interpretation. At St. Livres ice cave (Jura Mountains, Switzerland), subfossil trees and organic material are abundant in the cave-ice deposit, therefore allowing the dating of individual ice layers. The dendrochronological analysis of 45 subfossil samples of Norway spruce (Picea abies (L.) Karst.) from the overhanging front of the ice outcrop as well as the dating of seven wood samples with 14C dating allowed for a reconstruction of the St. Livres cave-ice sequence and for the determination of periods of ice accumulation and ablation. Results suggest a maximal age of 1200 ± 50 14C yr BP for the observed ice sequence and indicate the presence of four major deposition gaps dated to the 14th, 15th, mid-19th and late 19th century, which can be related with periods of positive North Atlantic Oscillation anomalies (NAO+) over the winter half-year and/or anthropogenic cave-ice abstraction. Similarly, there is evidence that periods of cave-ice accumulation as observed between AD 1877-1900 and AD 1393-1415 would correspond with phases of negative NAO indices. Cave ice represents therefore an original climate archive for the winter half-year and is complementary to other continental proxies recording preferentially summer conditions (e.g., tree rings, varves).  相似文献   

13.
Atmospheric mercury (Hg) is delivered to ecosystems via rain, snow, cloud/fog, and dry deposition. The importance of snow, especially snow that has passed through the forest canopy (throughfall), in delivering Hg to terrestrial ecosystems has received little attention in the literature. The snowpack is a dynamic system that links atmospheric deposition and ecosystem cycling through deposition and emission of deposited Hg. To examine the magnitude of Hg delivery via snowfall, and to illuminate processes affecting Hg flux to catchments during winter (cold season), Hg in snow in no-canopy areas and under forest canopies measured with four collection methods were compared: (1) Hg in wet precipitation as measured by the Mercury Deposition Network (MDN) for the site in Acadia National Park, Maine, USA, (2) event throughfall (collected after snowfall cessation for accumulations of >8 cm), (3) season-long throughfall collected using the same apparatus for event sampling but deployed for the entire cold season, and (4) snowpack sampling. Estimates (mean ± SE) of Hg deposition using these methods during the 91-day cold season in 2004–2005 at conifer sites showed that season-long throughfall Hg flux (1.80 μg/m2) < snowpack Hg (2.38 ± 0.68 μg/m2) < event throughfall flux (5.63 ± 0.38 μg/m2). Mercury deposition at the MDN site (0.91 μg/m2) was similar to that measured at other no-canopy sites in the area using the other methods, but was 3.4 times less than was measured under conifer canopies using the event sampling regime. This indicates that snow accumulated under the forest canopy received Hg from the overstory or exhibited less re-emission of Hg deposited in snow relative to open areas. The soil surface of field-scale plots were sprayed with a natural rain water sample that contained an Hg tracer (202Hg) just prior to the first snowfall to explore whether some snowpack Hg might be explained from soil emissions. The appearance of the 202Hg tracer in the snowpack (0–64% of the total Hg mass in the snowpack) suggests that movement of Hg from the soil into the snowpack is possible. However, as with any tracer study the 202Hg tracer may not precisely represent the reactivity and mobility of natural Hg in soils.  相似文献   

14.
In total 27 short and one long sediment core, and 278 surface sediment samples from the Baltic Sea were analyzed for mercury (Hg), and organic carbon contents. Thirteen short cores and the long core were dated by radionuclide methods (210Pb, 137Cs, AMS14C). The dataset allows discriminating between natural and human induced changes on the Hg levels in Baltic Sea sediments. Preindustrial Holocene background concentrations vary between 20 and 50 μg Hg per kg dry sediment and are positively correlated with organic carbon changes. Strong human induced pollution is recorded for the second half of the past century and caused high Hg concentrations of up to several hundred μg Hg per kg dry sediment even in Baltic Sea basins. Maximum concentrations are found at industrial and war waste dumping sites (local hot spots). An Hg concentration decreasing trend toward the present day is observed at most coring sites, a result of environmental measures undertaken during the last two decades. At sites where it is possible to calculate Hg fluxes, the natural accumulation rates vary between 2.1 and 5.4 μg Hg per m2 per year. Anthropogenically sourced Hg accumulation rates vary in a wide range of 30 and 300 μg Hg per m2 per year for the time span of maximum pollution. In areas characterized by discontinuous sedimentation only “inventories” of human sourced Hg expressed as the total amount of deposited Hg (above the natural background) per m2 can be calculated. The inventories of the investigated cores vary in the range of 1 and 8 mg Hg per m2. Additionally, influences of sediment dynamics on spatial distribution pattern of Hg concentrations in surface and subsurface sediments are discussed.  相似文献   

15.
Over 100 whole-rock amino acid racemization (AAR) ratios from outcrops around Rottnest Island (32.0° S Latitude near Perth) indicate distinct pulses of eolian deposition during the late Quaternary. Whole-rock d-alloisoleucine/l-isoleucine (A/I) ratios from bioclastic carbonate deposits fall into three distinct modal classes or “aminozones.” The oldest, Aminozone E, averages 0.33 ± 0.04 (n = 21). Red palaeosol and thick calcrete generally cap the Aminozone E deposits. A younger Aminozone C averages 0.22 ± 0.03 (n = 63); comprising two submodes at 0.26 ± 0.01 (n = 14) and 0.21 ± 0.02 (n = 49). Multiple dune sets of this interval are interrupted by relatively weak, brown to tan “protosols.” A dense, dark brown rendzina palaeosol caps the Aminozone C succession. Ratios from Holocene dune and marine deposits (“Aminozone A”) center on 0.11 ± 0.02 (n = 15), comprising submodes of 0.13 ± 0.01 (9) and 0.09 ± 0.01 (6). Calibration of A/I averages from Aminozones E and A are provided by U/Th and 14C radiometric ages of 125,000 yr (marine oxygen isotope stage (MIS) 5e and 2000-6000 14C yr B.P. (MIS 1), respectively. The whole-rock A/I results support periodic deposition initiated during MIS 5e, continuing through MIS 5c, and then peaking at the end of MIS 5a, about 70,000-80,000 yr ago. Oceanographic evidence indicates the area was subjected to much colder conditions during MIS 2-4 (10,000 to 70,000 yr ago), greatly slowing the epimerization rate. Eolianite deposition resumed in the mid Holocene (∼6000 yr ago) up to the present. The A/I epimerization pathway constructed from Rottnest Island shows remarkable similarity to that of Bermuda in the North Atlantic (32° N Latitude). These findings suggest that, like Bermuda, the eolian activity on Rottnest occurred primarily during or shortly after interglacial highstands when the shoreline was near the present datum, rather than during glacial lowstands when the coastline was positioned 10-20 km to the west.  相似文献   

16.
Models of factors controlling late Pleistocene pluvial lake-level fluctuations in the Great Basin are evaluated by dating lake levels in Jakes Valley. “Jakes Lake” rose to a highstand at 13,870 ± 50 14C Yr B.P., receded to a stillstand at 12,440 ± 50 14C yr B.P., and receded steadily to desiccation thereafter. The Jakes Lake highstand is roughly coincident with highstands of lakes Bonneville, Lahontan and Russell. The rise to highstand and recession of Jakes Lake were most likely controlled by a storm track steered by the polar jet stream. The final stillstand of Jakes Lake helps constrain timing of northward retreat of the polar jet stream during the Pleistocene-Holocene transition.  相似文献   

17.
The organic horizon (the mor layer) of podzolized boreal forest soils has accumulated atmospheric fallout of mercury and lead over centuries, resulting in current concentrations close to levels where negative effects on soil biota are thought to occur. To what extent the pollution history is preserved in the stratigraphy of this horizon is not well known. In this study we asses whether the chronology of a large historic pulse of atmospheric pollution emitted from the Rönnskär smelter in northern Sweden, particularly between 1950 and 1980, is preserved within the stratigraphy of the mor layer, which is typically 5-cm thick. Vertical sub-sampling (?5 mm) of five mor profiles sampled along a 100-km pollution gradient away from the smelter are analyzed for mercury and lead concentrations, spheroidal carbonaceous particles from fossil fuel combustion (SCPs) and stable lead isotopes (206Pb/207Pb and 208Pb/207Pb). Their vertical distribution is compared with the temporal variations in atmospheric inputs reconstructed for the last ∼100 years from analyses of an ombrotrophic peat core and a varved lake sediment core sampled within a distance of 50 km of the smelter. The mor profiles situated ?12 km from the smelter record the pollution history of the smelter. There is a 20 to 40-times enrichment of Hg, Pb and SCP at the transition in the O-horizon from the F- to H-layer compared to the basal part and a distinct peak in the 206Pb/207Pb ratio (∼1.22) in the F-layer. The mor profiles situated outside the historical contamination range of the smelter (80 and 100 km away) record no obvious influence from the Rönnskär smelter, instead their vertical 206Pb/207Pb profiles follow the general regional pollution history in northern Sweden. We conclude that the mor layer preserves a record of atmospheric Hg, Pb and SCP inputs and due to low leaching rates this organic horizon serves as a semi-archive of atmospheric Hg and Pb pollution. We stress the need of including this property in the existing ‘black-box’ models predicting the fate of Hg and Pb within contaminated boreal forest soils.  相似文献   

18.
A proxy climate record from a raised bog in County Fermanagh, Northern Ireland, is presented. The record spans the interval between 2850 cal. yr BC and cal. yr AD 1000 and chronological control is achieved through the use of tephrochronology and 14C dating, including a wiggle‐match on one section of the record. Palaeoclimatic inferences are based on a combination of a testate amoebae‐derived water table reconstruction, peat humification and plant macrofossil analyses. This multiproxy approach enables proxy‐specific effects to be identified. Major wet shifts are registered in the proxies at ca. 1510 cal. yr BC, 750 cal. yr BC and cal. yr AD 470. Smaller magnitude shifts to wetter conditions are also recorded at ca. 380 cal. yr BC, 150 cal. yr BC, cal. yr AD 180, and cal. yr AD 690. It is hypothesised that the wet shifts are not merely local events as they appear to be linked to wider climate deteriorations in northwest Europe. Harmonic analysis of the proxies illustrates statistically significant periodicities of 580, 423–373, 307 and 265 years that may be related to wider Holocene climate cycles. This paper illustrates how the timing of climate changes registered in peat profiles records can be precisely constrained using tephrochronology to examine possible climatic responses to solar forcing. Relying on interpolated chronologies with considerable dating uncertainty must be avoided if the climatic responses to forcing mechanisms are to be fully understood. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
We present here the first mercury speciation study in the water column of the Southern Ocean, using a high-resolution south-to-north section (27 stations from 65.50°S to 44.00°S) with up to 15 depths (0-4440 m) between Antarctica and Tasmania (Australia) along the 140°E meridian. In addition, in order to explore the role of sea ice in Hg cycling, a study of mercury speciation in the “snow-sea ice-seawater” continuum was conducted at a coastal site, near the Australian Casey station (66.40°S; 101.14°E). In the open ocean waters, total Hg (HgT) concentrations varied from 0.63 to 2.76 pmol L−1 with “transient-type” vertical profiles and a latitudinal distribution suggesting an atmospheric mercury source south of the Southern Polar Front (SPF) and a surface removal north of the Subantartic Front (SAF). Slightly higher mean HgT concentrations (1.35 ± 0.39 pmol L−1) were measured in Antarctic Bottom Water (AABW) compared to Antarctic Intermediate water (AAIW) (1.15 ± 0.22 pmol L−1). Labile Hg (HgR) concentrations varied from 0.01 to 2.28 pmol L−1, with a distribution showing that the HgT enrichment south of the SPF consisted mainly of HgR (67 ± 23%), whereas, in contrast, the percentage was half that in surface waters north of PFZ (33 ± 23%). Methylated mercury species (MeHgT) concentrations ranged from 0.02 to 0.86 pmol L−1. All vertical MeHgT profiles exhibited roughly the same pattern, with low concentrations observed in the surface layer and increasing concentrations with depth up to an intermediate depth maximum. As for HgT, low mean MeHgT concentrations were associated with AAIW, and higher ones with AABW. The maximum of MeHgT concentration at each station was systematically observed within the oxygen minimum zone, with a statistically significant MeHgTvs Apparent Oxygen Utilization (AOU) relationship (p < 0.001). The proportion of HgT as methylated species was lower than 5% in the surface waters, around 50% in deep waters below 1000 m, reaching a maximum of 78% south of the SPF. At Casey coastal station HgT and HgR concentrations found in the “snow-sea ice-seawater” continuum were one order of magnitude higher than those measured in open ocean waters. The distribution of HgT there suggests an atmospheric Hg deposition with snow and a fractionation process during sea ice formation, which excludes Hg from the ice with a parallel Hg enrichment of brine, probably concurring with the Hg enrichment of AABW observed in the open ocean waters. Contrastingly, MeHgT concentrations in the sea ice environment were in the same range as in the open ocean waters, remaining below 0.45 pmol L−1. The MeHgT vertical profile through the continuum suggests different sources, including atmosphere, seawater and methylation in basal ice. Whereas HgT concentrations in the water samples collected between the Antarctic continent and Tasmania are comparable to recent measurements made in the other parts of the World Ocean (e.g., Soerensen et al., 2010), the Hg species distribution suggests distinct features in the Southern Ocean Hg cycle: (i) a net atmospheric Hg deposition on surface water near the ice edge, (ii) the Hg enrichment in brine during sea ice formation, and (iii) a net methylation of Hg south of the SPF.  相似文献   

20.
Forests play a primary role in the cycling and storage of mercury (Hg) in terrestrial ecosystems. This study aimed to assess differences in Hg cycling and storage resulting from different vegetation at two adjacent forest stands - beech and spruce. The study site Načetín in the Czech Republic's Black Triangle received high atmospheric loadings of Hg from coal combustion in the second half of the 20th century as documented by peat accumulation rates reaching 100 μg m−2 y−1. In 2004, the annual litterfall Hg flux was 22.5 μg m−2 y−1 in the beech stand and 14.5 μg m−2 y−1 in the spruce stand. Soil concentrations and pools of Hg had a strong positive relation to soil organic matter and concentrations of soil sulfur (S) and nitrogen (N). O-horizon Hg concentrations ranged from 245 to 495 μg kg−1 and were greater in the spruce stand soil, probably as a result of greater dry Hg deposition. Mineral soil Hg concentrations ranged from 51 to 163 μg kg−1 and were greater in the beech stand soil due to its greater capacity to store organic carbon (C). The Hg/C ratio increased with depth from 0.3 in the O-horizon to 3.8 μg g−1 in the C horizon of spruce soil and from 0.7 to 2.7 μg g−1 in beech soil. The Hg/C ratio was greater at all mineral soil depths in the spruce stand. The organic soil Hg pools in beech and spruce stands (6.4 and 5.7 mg m−2, respectively) were considerably lower than corresponding mineral soil Hg pools (39.1 and 25.8 mg m−2). Despite the important role of S in Hg cycling, differences in soil Hg distribution at both stands could not be attributed to differences in soil sulfur speciation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号