首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this work was to study sorption–desorption and/or precipitation–dissolution processes of Hg(II) compounds considering an eventual contact of soils with Hg-bearing wastes. In addition, this study contributes new data about Hg(II) chemistry in alkaline systems. Saline and alkaline soils with low organic matter (<1 %) and high clay content (60–70 %) were obtained near a chlor-alkali plant. Batch techniques were used to perform the experiments using 0.1 M NaNO3 solutions. Total Hg(II) concentrations ranged from 6.2 × 10?8 to 6.3 × 10?3 M. Sorption of Hg(II) was evaluated at two concentration ranges: (a) 6.2 × 10?8 to 1.1 × 10?4 M, and (b) 6.4 × 10?4 to 6.3 × 10?3 M. At low Hg(II) concentrations, adsorption occurred with a maximum sorption capacity ranging from 4 to 5 mmol/kg. At high Hg(II) concentrations, sorption–precipitation reactions occurred and maximum sorption capacity ranged from 17 to 31 mmol/kg. The distribution of Hg(II) hydrolysis products showed that Hg(OH)2 was the predominant species under soil conditions. According to sorption experiments, X-ray diffraction and chemical speciation modelling, the presence of Hg(OH)2 in the interlayer of the interstratified clay minerals can be proposed. Hg(OH)2 was partially desorbed by repeated equilibrations in 0.1 M NaNO3 solution. Desorption ranged from 0.1 to 0.9 mmol/kg for soils treated with 5.8 × 10?5 M Hg(II), whereas 2.1–3.8 mmol/kg was desorbed from soils treated with 6.3 × 10?3 M Hg(II). Formation of soluble Hg(II) complexes was limited by low organic matter content, whereas neutral Hg(OH)2 was retained by adsorption on clay mineral surfaces.  相似文献   

2.
Ambient air and coarse, fine and particulate-bound mercury (Hg(p)) pollutants were collected and analyzed from March 17 to May 22 and September 3, 2009 to March 5, 2010 at a highway traffic site located in Sha-Lu, central Taiwan. This study has the following objectives: (1) to measure the coarse and fine particulates concentrations and the particulate-bound mercury Hg(p) which was attached to these particulate; (2) to determine the average Hg(p) compositions in coarse and fine particulates and (3) to compare the Hg(p) concentrations and compositions particulate in this study to the those obtained in other studies. The results obtained in this study indicated that the average ambient air PM2.5, PM2.5–10 and PM10 were 18.79 ± 6.71, 11.22 ± 4.93 and 30.01 ± 10.27 μg/m3, respectively. The ranges of concentrations for Hg(p) in PM2.5 were from 0.0016 to 0.0557 ng/m3, from 0.0006 to 0.0364 ng/m3 in PM2.5–10 and from 0.0022 to 0.0862 ng/m3 in PM10. In addition, the highest particle-bound mercury compositions in PM2.5 were 16.85 ng/g and the lowest particle-bound mercury concentrations were 0.55 ng/g. The highest particle-bound mercury compositions in PM2.5–10 were 13.88 ng/g and the lowest particle-bound mercury in PM2.5–10 were 0.22 ng/g.  相似文献   

3.
Concentrations of total Hg in sediments near six drilling sites in the Gulf of Mexico were elevated well above average background values of 40–80 ng/g. The excess Hg was associated with barite from discharged drilling mud. In contrast with total Hg, concentrations of methylmercury (MeHg) in these sediments did not vary significantly at nearfield (<100 m) versus farfield (>3 km) distances from the drilling sites. Observed variability in concentrations of MeHg were related to local differences in redox state in the top 10 cm of sediment. Low to non-detectable concentrations of MeHg were found in nearfield sediments that were anoxic, highly reducing and contained abundant H2S. At most drilling sites, nearfield samples with high concentrations of total Hg (>200 ng/g) had similar or lower amounts of MeHg than found at background (farfield) stations. Higher values of MeHg were found in a few nearfield sediments at one site where concentrations of TOC were higher and where sediments were anoxic and moderately reducing. Overall, results from this study support the conclusion that elevated concentrations of MeHg in sediments around drilling sites are not a common phenomenon in the Gulf of Mexico.  相似文献   

4.
The aim of this study was to evaluate Hg distribution in mangrove plants and changes of Hg content during leaf aging; the contribution of litterfall to Hg enrichment in mangrove ecosystems is also discussed. Contents of total Hg (THg) and methylmercury (MeHg) in mangrove plants and sediments were determined. Contents of THg and MeHg in the sediments were 225 ± 157 ng/g and 0.800 ± 0.600 ng/g. Concentrations of THg and MeHg in the mangrove plants were 1760 ± 1885 ng/g and 0.721 ± 0.470 ng/g (dry weight), respectively, which were much higher than those in terrestrial plants. Enrichment of THg in mangrove plants was different, following the order Rhizophra apiculata > Rhizophora stylosa > Kandelia candel > Aegiceras corniculatum Avicennia marina; while MeHg contents in mangrove plants decreased in the order of R. stylosa > K. candel > A. corniculatum > R. apiculata > A. marina. There were obvious interspecies differences, regional differences, individual differences and tissue differences between THg and MeHg contents of mangrove plants, all of which were closely related to the environmental and the physiological characteristics of mangrove plants. In juvenile leaves, mature leaves and leaf litter, THg contents ranged 55.3-1760 ng/g, 204-1800 ng/g, and 385-2130 ng/g (dry weight), respectively; MeHg contents ranged 0.17-2.39 ng/g, 0.01-1.28 ng/g, and 0.13-1.47 ng/g (dry weight), respectively. Except for A. corniculatum and Bruguier gymnorrhiza, THg content of mature leaves was always higher than that in juvenile leaves, but MeHg showed a contrasting trend. THg content of litter leaves was between that of juvenile leaves and mature leaves, while MeHg content was generally lower than that of juvenile leaves and mature leaves. In the mangrove ecosystem, Hg enrichment contributed by the litterfall decreased in the order of K. candel > A. corniculatum > A. marina.  相似文献   

5.
In order to examine the fluxes of methane (CH4) from the Indian estuaries, measurements were carried out by collecting samples from 26 estuaries along the Indian coast during high discharge (wet) and low water discharge (dry) periods. The CH4 concentrations in the estuaries located along the west coast of India were significantly higher (113?±?40 nM) compared to the east coast of India (27?±?6 nM) during wet and dry periods (88?±?15 and 63?±?12 nM, respectively). Supersaturation of CH4 was observed in the Indian estuaries during both periods ((0.18 to 22.3?×?103 %). The concentrations of CH4 showed inverse relation with salinity indicating that freshwater is a significant source. Spatial variations in CH4 saturation were associated with the organic matter load suggesting that its decomposition may be another source in the Indian estuaries. Fluxes of CH4 ranged from 0.01 to 298 μmol m?2 day?1 (mean 13.4?±?5 μmol m?2 day?1) which is ~30 times lower compared to European estuaries (414 μmol m?2 day?1). The annual emission from Indian estuaries, including Pulicat and Adyar, amounted to 0.39?×?1010 g CH4?year?1 with the surface area of 0.027?×?106 km2 which is significantly lower than that in European estuaries (2.7?±?6.8?×?1010 g CH4?year?1 with the surface area of 0.03?×?106 km2). This study suggests that Indian estuaries are a weak source for atmospheric CH4 than European estuaries and such low fluxes were attributed to low residence time of water and low decomposition of organic matter within the estuary. The CH4 fluxes from the Indian estuaries are higher than those from Indian mangroves (0.01?×?1010 g CH4?year?1) but lower than those from Indian inland waters (210?×?1010 g CH4?year?1).  相似文献   

6.
The concentrations of total mercury and methylmercury in sediments were determined at the dam of the Wujiangdu Reservoir in different seasons. Total mercury (HgT) levels in the whole sediment profile were 254.2±47.0 ng/g in winter, 254.2±31.6 ng/g in spring, and 256.7±60.8 ng/g in summer, without significant variations in different seasons or at different depths. In contrast, the methylmercury (MeHg) compounds were most abundant at the sediment-water interface and decreased progressively with depth. MeHg contents of the sediments during different seasons are highly dependent on microbial activity, and seem to be higher when Hg (II)-methylating microorganisms are active. Thus, MeHg levels tend to rise in the loci where nutrient supplies and biological productivity are favorable. The percentage of HgT that is present as MeHg in the sediments increased gradually from December 2003 to April 2004 and to July 2004.  相似文献   

7.
铁矿石中Cr、As、Cd、Hg和Pb不仅影响冶炼设备和产品性能,同时污染环境。文章以铁矿石标准物质为研究对象,对电感耦合等离子体质谱法(ICP-MS)测定铁矿石中Cd、As、Cr、Hg和Pb等5种元素进行了适用性探讨。结果表明,与常规的单元素原子吸收光谱法或多元素同步分析电感耦合等离子体发射光谱法相比,用微波消解方法处理铁矿石,具有样品消耗量少(0.1000±0.0200)g、消解用酸少(2.5 mL HCl+0.5 mL HF+1.0 mL HNO3)、排放降低、节约成本等优点,且无需配制铁底液,无需添加任何掩蔽剂,质谱干扰小,适用于分析Cr含量为5.5×10-10~2.5×10-4,As含量为7.6×10-10~1.9×10-4,Cd含量为4.5×10-11~5.5×10-6,Hg含量为1.88×10-9~1.9×10-7,Pb含量为1.2×10-10~3.2×10-5的铁矿石样品。优化后的前处理方法节约了能源、试剂和样品消耗,降低了二次污染和有效损失。  相似文献   

8.
The first advisory to limit consumption of Florida Bay fish due to mercury was issued in 1995. Studies done by others in the late 1990s found elevated water column concentrations of both total Hg (THg) and methylmercury (MeHg) in creeks discharging from the Everglades, which had its own recognized mercury problem. To investigate the significance of allochthonous MeHg discharging from the upstream freshwater Everglades, we collected surface water and sediment along two transects from 2000 to 2002. Concentrations of THg and MeHg, ranging from 0.36 ng THg/L to 5.98 ng THg/L and from <0.02 ng MeHg/L to 1.79 ng MeHg/L, were elevated in the mangrove transition zone when compared both to upstream canals and the open waters of Florida Bay. Sediment concentrations ranged from 5.8 ng THg/g to 145.6 ng THg/g and from 0.05 ng MeHg/g to 5.4 ng MeHg/g, with MeHg as a percentage of THg occasionally elevated in the open bay. Methylation assays indicated that sediments from Florida Bay have the potential to methylate Hg. Assessment of mass loading suggests that canals delivering stormwater from the northern Everglades are not as large a source as direct atmospheric deposition and in situ methylation, especially within the mangrove transition zone.  相似文献   

9.
The characteristics of mercury in the aquatic environment have been intensively studied in mining areas with heavy mercury pollution but little work has been conducted in urban areas, with no significant Hg source. This paper presents a study of the Haihe River, which flows through an urban area in North China. The concentrations of total mercury (THg) and methylmercury (MeHg) in the river water were 3.6–31.2 and 0.12–3.21 ng/l, and the corresponding values in river sediment were 22.9–374.8 and 0.03–0.46 μg/kg. These values are lower than the reported values from mining areas. The THg concentration in sediment samples collected from the urban areas was higher than that from the rural areas and the global background levels, indicating the influence of urbanization on mercury contamination. Samples of typical riparian and floating plants, reed and hornwort, were collected. Correlation analysis showed that sediment is the major source of THg and MeHg in reed and water is the major source of MeHg in hornwort. The higher bioaccumulation factor of reed indicates its higher potential to accumulate MeHg from the environment.  相似文献   

10.
This study investigated the contamination levels and profiles of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), organochlorine pesticides (OCPs) including dichlorodiphenyltrichloroethane and its metabolites (DDTs), hexachlorocyclohexanes (HCHs) and hexachlorobenzene (HCB) in fish from the Niyang River, Tibetan Plateau. The total concentrations of ∑PCB, ∑PBDE and ∑OCP were in the range of 0.246–1.056 ng/g (mean 0.540 ± 0.289 ng/g), 0.280–2.220 ng/g (mean 0.914 ± 0.643 ng/g) and 7.24–13.80 ng/g (mean 10.70 ± 2.31 ng/g), respectively. The total mercury concentration (HgT) in fish ranged from 85 to 217 ng/g dw with an average of 129 ng/g dw, and the concentrations of methyl mercury (MeHg) ranged from 61 to 160 ng/g dw with an average of 102 ng/g dw. The proportion of MeHg contributed to 66–91 % (average 80 %) of HgT for all samples, indicating that organic mercury was the predominant form of mercury in fish muscle. The results revealed that the fish from the Niyang River were contaminated with various persistent toxic pollutants and the potential influencing factors on the bioaccumulation concentration in fish were analyzed using Pearson’s correlation analysis.  相似文献   

11.
San Pablo Bay is an estuary, within northern San Francisco Bay, containing elevated sediment mercury (Hg) levels because of historic loading of hydraulic mining debris during the California gold-rush of the late 1800s. A preliminary investigation of benthic microbial Hg cycling was conducted in surface sediment (0-4 cm) collected from one salt-marsh and three open-water sites. A deeper profile (0-26 cm) was evaluated at one of the open-water locations. Radiolabeled model Hg-compounds were used to measure rates of both methylmercury (MeHg) production and degradation by bacteria. While all sites and depths had similar total-Hg concentrations (0.3-0.6 ppm), and geochemical signatures of mining debris (as )Nd, range: -3.08 to -4.37), in-situ MeHg was highest in the marsh (5.4Dž.5 ppb) and А.7 ppb in all open-water sites. Microbial MeHg production (potential rate) in 0-4 surface sediments was also highest in the marsh (3.1 ng g-1 wet sediment day-1) and below detection (<0.06 ng g-1 wet sediment day-1) in open-water locations. The marsh exhibited a methylation/demethylation (M/D) ratio more than 252 that of all open-water locations. Only below the surface 0-4-cm horizon was significant MeHg production potential evident in the open-water sediment profile (0.2-1.1 ng g-1 wet sediment day-1). In-situ Hg methylation rates, calculated from radiotracer rate constants, and in-situ inorganic Hg(II) concentrations compared well with potential rates. However, similarly calculated in-situ rates of MeHg degradation were much lower than potential rates. These preliminary data indicate that wetlands surrounding San Pablo Bay represent important zones of MeHg production, more so than similarly Hg-contaminated adjacent open-water areas. This has significant implications for this and other Hg-impacted systems, where wetland expansion is currently planned.  相似文献   

12.
We estimated CO2 and CH4 emissions from mangrove-associated waters of the Andaman Islands by sampling hourly over 24 h in two tidal mangrove creeks (Wright Myo; Kalighat) and during transects in contiguous shallow inshore waters, immediately following the northeast monsoons (dry season) and during the peak of the southwest monsoons (wet season) of 2005 and 2006. Tidal height correlated positively with dissolved O2 and negatively with pCO2, CH4, total alkalinity (TAlk) and dissolved inorganic carbon (DIC), and pCO2 and CH4 were always highly supersaturated (330–1,627 % CO2; 339–26,930 % CH4). These data are consistent with a tidal pumping response to hydrostatic pressure change. There were no seasonal trends in dissolved CH4 but pCO2 was around twice as high during the 2005 wet season than at other times, in both the tidal surveys and the inshore transects. Fourfold higher turbidity during the wet season is consistent with elevated net benthic and/or water column heterotrophy via enhanced organic matter inputs from adjacent mangrove forest and/or the flushing of CO2-enriched soil waters, which may explain these CO2 data. TAlk/DIC relationships in the tidally pumped waters were most consistent with a diagenetic origin of CO2 primarily via sulphate reduction, with additional inputs via aerobic respiration. A decrease with salinity for pCO2, CH4, TAlk and DIC during the inshore transects reflected offshore transport of tidally pumped waters. Estimated mean tidal creek emissions were ~23–173 mmol m?2 day?1 CO2 and ~0.11–0.47 mmol m?2 day?1 CH4. The CO2 emissions are typical of mangrove-associated waters globally, while the CH4 emissions fall at the low end of the published range. Scaling to the creek open water area (2,700 km2) gave total annual creek water emissions ~3.6–9.2?×?1010 mol CO2 and 3.7–34?×?107 mol CH4. We estimated emissions from contiguous inshore waters at ~1.5?×?1011 mol CO2?year?1 and 2.6?×?108 mol CH4?year?1, giving total emissions of ~1.9?×?1011 mol CO2?year?1 and ~3.0?×?108 mol CH4?year?1 from a total area of mangrove-influenced water of ~3?×?104 km2. Evaluating such emissions in a range of mangrove environments is important to resolving the greenhouse gas balance of mangrove ecosystems globally. Future such studies should be integral to wider quantitative process studies of the mangrove carbon balance.  相似文献   

13.
《Applied Geochemistry》2006,21(11):1924-1939
The Idrija Mine, the second largest Hg mine in the world, ceased operation in 1995, but still delivers large quantities of Hg downstream including into the northern Adriatic Sea, 100 km away. Transformation of Hg species in sediment in sites over 60 km from the mine, including marine sites in the Adriatic Sea, was measured to determine the ability of the system to transform and mobilize Hg and to produce methylmercury (MeHg). Cores from a freshwater impoundment, a brackish estuarine site, and three marine sites in the Gulf of Trieste were sectioned anaerobically, and Hg methylation and MeHg demethylation activities determined using radio-techniques (203Hg for methylation and 14C-MeHg for demethylation). Total and dissolved Hg and MeHg were determined as were other geochemical parameters. In addition, rates of SO4 reduction were determined in marine sediment using a 35S technique. Mercury was readily methylated and demethylated at all sites. Marine sediment was investigated in winter and summer with rates of Hg transformation and SO4 reduction corresponding only in winter. Methylation of Hg in summer displayed subsurface peaks that may have been influenced by bioturbation. Total Hg and MeHg were most abundant in the freshwater, estuarine, and near-shore marine sites, but dissolved pore water Hg and MeHg were highest in the estuarine region where S cycling appeared ideal for the mobilization of Hg. The impoundment sediment also seemed to be a ‘hotspot’ of Hg transformations. MeHg demethylation occurred via the oxidative demethylation pathway (CO2 produced from MeHg), except in surficial sediment offshore in the Gulf during winter, where sediment was more oxidizing and significant amounts of CH4 were liberated during MeHg degradation via reductive demethylation. The CH4 formation was likely due to an increased influence from the expression of MeHg degradative enzymes encoded by the mer detoxification bacterial genetic system. The freshwater site also liberated CH4 from MeHg, but it appeared to be due to oxidative demethylation by methanogenic bacteria.  相似文献   

14.
Estuaries are important subcomponents of the coastal ocean, but knowledge about the temporal and spatial variability of their carbonate chemistry, as well as their contribution to coastal and global carbon fluxes, are limited. In the present study, we measured the temporal and spatial variability of biogeochemical parameters in a saltmarsh estuary in Southern California, the San Dieguito Lagoon (SDL). We also estimated the flux of dissolved inorganic carbon (DIC) and total organic carbon (TOC) to the adjacent coastal ocean over diel and seasonal timescales. The combined net flux of DIC and TOC (FDIC?+?TOC) to the ocean during outgoing tides ranged from ??1.8±0.5?×?103 to 9.5±0.7?×?103?mol C h?1 during baseline conditions. Based on these fluxes, a rough estimate of the net annual export of DIC and TOC totaled 10±4?×?106?mol C year?1. Following a major rain event (36 mm rain in 3 days), FDIC?+?TOC increased and reached values as high as 29.0 ±?0.7?×?103?mol C h?1. Assuming a hypothetical scenario of three similar storm events in a year, our annual net flux estimate more than doubled to 25 ±?4?×?106?mol C year?1. These findings highlight the importance of assessing coastal carbon fluxes on different timescales and incorporating event scale variations in these assessments. Furthermore, for most of the observations elevated levels of total alkalinity (TA) and pH were observed at the estuary mouth relative to the coastal ocean. This suggests that SDL partly buffers against acidification of adjacent coastal surface waters, although the spatial extent of this buffering is likely small.  相似文献   

15.
The Khor Arbaat basin is the main source of potable water supply for the more than 750,000 inhabitants of Port Sudan, eastern Sudan. The variation in hydraulic conductivity and storage capacity is due to the heterogeneity of the sediments, which range from clay and silt to gravely sand and boulders. The water table rises during the summer and winter rainy seasons; it reaches its lowest level in the dry season. The storage capacity of the Khor Arbaat aquifer is estimated to be 21.75?×?106 m3. The annual recharge through the infiltration of flood water is about 1.93?×?106 m3. The groundwater recharge, calculated as underground inflow at the ‘upper gate’, is 1.33?×?105 m3/year. The total annual groundwater recharge is 2.06?×?106 m3. The annual discharge through underground outflow at the ‘lower gate’ (through which groundwater flows onto the coastal plain) is 3.29?×?105 m3/year. Groundwater discharge due to pumping from Khor Arbaat basin is 4.38?×?106 m3/year on average. The total annual groundwater discharge is about 4.7?×?106 m3. A deficit of 2.6?×?106 m3/year is calculated. Although the total annual discharge is twice the estimated annual recharge, additional groundwater flow from the fractured basement probably balances the annual groundwater budget since no decline is observed in the piezometric levels.  相似文献   

16.
This study aims to investigate the effect of microalgae and their carbonic anhydrase (CAex) on limestone dissolution. The dynamics of Ca2+ and Mg2+ release, the model for the amount of Mg2+ released and biological cumulative effect time by the microalgae Chlamydomonas reinhardtii (CR) and Chlorella pyrenoedosa (CP), and the algal stable carbon isotopic composition (δ13C) in the presence and absence of the membrane-impermeable CAex inhibitor acetazolamide (AZ) were compared in a medium containing limestone. The amount of Mg2+ released from the limestone in the treatment without AZ was more than that with AZ during the logarithmic phase. The amounts of Mg2+ release unit algal biomass and unit time in CR and CP were 3.37 × 10?4 and 2.44 × 10?4 mg/μg days in the treatment without AZ, respectively, and only 1.99 × 10?4 and 2.19 × 10?4 mg/μg days in the treatment with AZ, respectively. The biological dissolution of the algae increased with increasing algal CAex activity. The variation of Ca2+ was influenced by reprecipitation, and the algal limestone dissolution cannot be shown distinctly. The CAex of the microalgae may be beneficial for CaCO3 reprecipitation, and the δ13C values of the algal cells with AZ were lower than those without AZ. Therefore, AZ not only can inhibit limestone dissolution by inhibiting microalgal growth, but also can reduce limestone dissolution by decreasing CAex catalysis. The results suggest the important influence of microalgae and their CAex on the biokarst process.  相似文献   

17.
Low-flow indices have been determined from long-term daily streamflow data for 13 catchments in Dongjiang Basin in southern China. The Brutsaert-Nieber method was applied to estimate catchment-scale effective groundwater parameters; representative values were 4.5?×?10?4 ms?1 for the hydraulic diffusivity; 3.19?×?10?5 m2 s?1/2 for the hydraulic desorptivity; 2.27?×?10?4 m s?1 for the hydraulic conductivity; and 0.2617 for the drainable porosity. The response constants correlate well with the total stream length and catchment area. Solutions of the linearised Boussinesq equation were used to guide the development of regional multivariate regression models for estimating low-flow indices from the catchment-scale effective parameters. Results showed that these catchments exhibit similar low-flow characteristics. The 7-day lowest average streamflows with return periods of 10 and 2 years (7Q10 and 7Q2) are highly correlated with the catchment-scale response constants. The low-flow ratio Q95/Q50 (ratio of daily streamflow exceeded 95 and 50% of the time, respectively) varied between 0.3 and 0.5, indicating a high proportion of groundwater in the streamflow. The advantage of the regional regression model is its conceptual basis and use of the catchment-scale effective parameters. The method has the potential to be applied to ungauged catchments for estimating low-flow statistics from stream length and catchment area.  相似文献   

18.
We present new helium isotope data from the Macdonald seamount (Austral chain). The helium isotopic ratio varies from 4He/3He=45 000 (R/Ra=16.0) to 200 170 (R/Ra=3.6). The helium content is between 1.5×10?8 and 1.1×10?5 ccSTP/g. These helium results show clearly the presence of primitive mantle material in the source of the Austral chain. Macdonald has the lowest 4He/3He ratio among the Polynesian submarine volcanoes, except Hawaii (Loihi). The simplest explanation for the primitive helium signature is the presence under Macdonald of a mantle plume that derives either from the 670 km or 2900 km boundary layers, or, eventually, from the top of a large mantle dome resulting from a stratified two-layer convection. This plume contains less-degassed material with low 4He/3He ratio. To cite this article: M. Moreira, C. Allègre, C. R. Geoscience 336 (2004).  相似文献   

19.
We have investigated the effect of undercooling and deformation on the evolution of the texture and the crystallization kinetics of remelted basaltic material from Stromboli (pumice from the March 15, 2007 paroxysmal eruption) and Etna (1992 lava flow). Isothermal crystallization experiments were conducted at different degrees of undercooling and different applied strain rate (T = 1,157–1,187 °C and $ \dot{\gamma }_{i} $ γ · i  = 4.26 s?1 for Stromboli; T = 1,131–1,182 °C and $ \dot{\gamma }_{i} $ γ · i  = 0.53 s?1 for Etna). Melt viscosity increased due to the decrease in temperature and the increase in crystal content. The mineralogical assemblage comprises Sp + Plg (dominant) ± Cpx with an overall crystal fraction (?) between 0.06 and 0.27, increasing with undercooling and flow conditions. Both degree of undercooling and deformation rate deeply affect the kinetics of the crystallization process. Plagioclase nucleation incubation time strongly decreases with increasing ΔT and flow, while slow diffusion-limited growth characterizes low ΔT—low deformation rate experiments. Both Stromboli (high strain rate) and Etna (low strain rate) plagioclase growth rates (G) display relative small variations with Stromboli showing higher values (4.8 ± 1.9 × 10?9 m s?1) compared to Etna (2.1 ± 1.6 × 10?9 m s?1). Plagioclase average nucleation rates J continuously increase with undercooling from 1.4 × 106 to 6.7 × 106 m?3 s?1 for Stromboli and from 3.6 × 104 to 4.0 × 106 m?3 s?1 for Etna. The extremely low value of 3.6 × 104 m?3 s?1 recorded at the lowest undercooling experiment for Etna (ΔT = 20 °C) indicates that the crystallization process is growth-dominated and that possible effects of textural coarsening occur. G values obtained in this paper are generally one or two orders of magnitude higher compared to those obtained in the literature for equivalent undercooling conditions. Stirring of the melt, simulating magma flow or convective conditions, facilitates nucleation and growth of crystals via mechanical transportation of matter, resulting in the higher J and G observed. Any modeling pertaining to magma dynamics in the conduit (e.g., ascent rate) and lava flow emplacement (e.g., flow rate, pāhoehoe–‘a‘ā transition) should therefore take the effects of dynamic crystallization into account.  相似文献   

20.
A new classification of coastal wetlands along the coast of China has been generated that is compatible with the Ramsar Convention of 1971. The coastal wetlands have been divided into two broad categories with overall nine subcategories. On this basis, a series of coastal wetland maps, together covering the coast of mainland China, have been produced based on topographic maps acquired in the 1970s and satellite images acquired in 2007. These document substantial wetland losses over this period. In the 1970s, the total coastal wetland area in China was 5.76?×?104?km2, whereas in 2007, it was 5.36?×?104?km2, indicating a loss of 7 %. Over this approximately 40-year period, the area of natural coastal wetlands decreased from 5.74?×?104 to 5.09?×?104?km2, while that of artificial coastal wetlands increased from 240 to 2,740 km2. Due to shoreline and sea-level changes, newly formed coastal wetlands amounted to 2,460 km2, while coastal wetland loss amounted to 6,310 km2 in the period from the 1970s to 2007. When excluding shallow coastal waters (depths between 0 and ?5 m), nearly 16 % of Chinese coastal wetlands have been lost between the 1970s and 2007.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号