首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M. Kuhle 《GeoJournal》1997,42(2-3):87-257
The results presented on the glacio-geomorphological reconstruction of a maximum Ice Age (LGM = Last Glacial Maximum) glaciation in High-Asia concern five test-areas in and around Tibet (Figure 1, Nos. 14, 6, 17, 2, 9, 18, 16). For the E-Pamir plateau and its mountains a covering ice cap is proved; a snow-line (ELA)-depression of 820–1250 m in relation to the present relief has been calculated. The Ice Age snow-line ran at 3750–3950 m asl. In the Nanga Parbat-massif a glacial (LGM) ice-stream network with a snow-line altitude (ELA) at c. 3400– 3600 m has been reconstructed. This corresponds to an ELA-depression of at least 1200 m. The lowest ice margin site of the connected 1800–1900 m-thick Indus glacier flowed down to c. 800 m asl. From N-Tibet the author introduces further observations of ground moraines and erratics from a high plateau area he had already investigated in 1981. They provide evidence of a complete inland ice sheet in Tibet. From the S edge of Tibet six large outlet glacier systems i.e. lowest High Glacial ice margin sites of the Himalaya ice-stream network are reconstructed. This is a continuation of the investigations in 1977, 1978, 1982, 1984, 1988 and 1989 between Kangchendzönga in the E and Nanda Devi in the W. In this place probably the lowest glacial glacier end of the Himalaya-S-slope was found at c. 460 m asl at the Dumre settlement, S of the Manaslu. C14-datings from the Tsangpo valley on the S edge of Central Tibet classify the reconstructed Tibetan ice as being from the Last Glacial Maximum (LGM) between older than 48580 ± 4660–2930 and 9820 ± 350 YBP. From this empirical findings and inductive results on the Ice Age Tibetan glaciation are derived deductive conclusions on the interaction of the relief and the snow-line altitude with concern to the ice cover. Modelling by means of those snow-line depressions and estimations of the precipitation provide ideas about surface heights, ice thicknesses and flow behaviour of the ice sheet. The hypothesis of a global triggering of the ice age by the uplift of the subtropical Tibet up to above the snow-line motivates the investigations presented here.  相似文献   

2.
Glaciations of the West Coast Range,Tasmania   总被引:1,自引:0,他引:1  
Geomorphic, stratigraphic, palynologic and 14C evidence indicates that the West Coast Range, Tasmania, was glaciated at least three times during the late Cenozoic. The last or Margaret Glaciation commenced after 30,000 yr B.P., culminated about 19,000 yr B.P., and ended by 10,000 yr B.P. During this period a small ice cap, ca. 250 m thick, and cirque and valley glaciers covered 108 km2. The glacial deposits show little chemical weathering or erosional dissection. The snow line ranged from 690 to 1000 m with an average of 830 m for the ice cap. Mean temperature was 6.5°C below the present temperature. During the preceding Henty Glaciation a 300- to 400-m-thick ice cap and outlet glaciers exceeded 1000 km2. The glacial deposits are beyond 14C assay. They are more weathered chemically and more dissected than Margaret age deposits, and the degree suggests a pre-last interglaciation age (> 130,000 yr B.P.). The snow line of the ice cap lay at 740 m, and annual temperature was reduced by 7°C. Ice of the earliest Linda Glaciation slightly exceeded that of the Henty Glaciation but had a similar distribution. The glacial deposits are intensely weathered, have reversed magnetization, and overlie a paleosol containing pollen of Tertiary type. An early Pleistocene or Tertiary age is indicated.  相似文献   

3.
Few well‐dated records of the deglacial dynamics of the large palaeo‐ice streams of the major Northern Hemisphere ice sheets are presently available, a prerequisite for an improved understanding of the ice‐sheet response to the climate warming of this period. Here we present a transect of gravity‐core samples through Trænadjupet and Vestfjorden, northern Norway, the location of the Trænadjupet – Vestfjorden palaeo‐ice stream of the NW sector of the Fennoscandian Ice Sheet. Initial ice recession from the shelf break to the coastal area (~400 km) occurred at an average rate of about 195 m a−1, followed by two ice re‐advances, at 16.6–16.4 ka BP (the Røst re‐advance) and at 15.8–15.6 ka BP (the Værøy re‐advance), the former at an estimated ice‐advance rate of 216 m a−1. The Røst re‐advance has been interpreted to be part of a climatically induced regional cold spell while the Værøy re‐advance was restricted to the Vestfjorden area and possibly formed as a consequence of internal ice‐sheet dynamics. Younger increases in IRD content have been correlated to the Skarpnes (Bølling – Older Dryas) and Tromsø – Lyngen (Younger Dryas) Events. Overall, the decaying Vestfjorden palaeo‐ice stream responded to the climatic fluctuations of this period but ice response due to internal reorganization is also suggested. Separating the two is important when evaluating the climatic response of the ice stream. As demonstrated here, the latter may be identified using a regional approach involving the study of several palaeo‐ice streams. The retreat rates reported here are of the same order of magnitude as rates reported for ice streams of the southern part of the Fennoscandian Ice Sheet, implying no latitudinal differences in ice response and retreat rate for this ~1000 km2 sector of the Fennoscandian Ice Sheet (~60–68°N) during the climate warming of this period.  相似文献   

4.
5.
唐古拉山地区第四纪冰川作用与冰川特征   总被引:4,自引:2,他引:2  
自中更新世以来,唐古拉山地区发生过3次更新世冰川作用(即昆仑冰期、倒数第二次冰期和末次错冰期)和2次全新世晚期冰进(即新冰期和小冰期冰进).昆仑冰期(最大冰期)发生在中更新世早期(0.80~0.60MaBP),不仅是本区最早的一次冰期,而且也是冰川规模最大的一次冰期,当时的冰川规模比现代冰川大16~18倍;倒数第二次冰期发生在中更新世晚期(0.30~0.135MaBP),比现代冰川大13~15倍;末次冰期发生在晚更新世晚期,应分为末次冰期早冰阶(75.0~58.0kaBP)和晚冰阶(32.0~15.0kaBP,23.0kaBP时达到极盛),但在唐古拉山地区截止目前还未找到早冰阶的冰川遗迹,因此,只对末次冰期的晚冰阶(LMG)进行了探讨.LMG时,冰川规模比现代冰川大10倍;新冰期发生在全新世高温期后,冰碛物的14C测年为(3540±160)aBP,冰川规模略大于现代冰川;小冰期发生在15~1世纪,冰川规模已接近于现代冰川.由于青藏高原的上升,对高原腹部地区引起的干旱化过程和水分严重不足,使唐古拉山地区的冰川自昆仑冰期以来,冰川规模一次比一次明显的减小.  相似文献   

6.
In this study, we present new information on the glacial history of the Greenland Ice Sheet (GrIS) and a local ice cap in Qaanaaq, northwest Greenland. We use geomorphological mapping, 10Be exposure dating of boulders, analysis of lake cores, and 14C dating of reworked marine molluscs and subfossil plants to constrain the glacial history. Our 14C ages of reworked marine molluscs reveal that the ice extent in the area was at or behind its present‐day position from 42.2 ± 0.4 to 30.6 ± 0.3k cal a BP after which the GrIS expanded to its maximum position during the Last Glacial Maximum. We find evidence of early ice retreat in the deep fjord (Inglefield Bredning) at 11.9 ± 0.6 ka whereas the Taserssuit Valley was deglaciated ~4 ka later at 7.8 ± 0.1k cal a BP. A proglacial lake record suggests that the local ice cap survived the Holocene Thermal Maximum but moss kill‐dates reveal that it was smaller than present for a period of time before 3.3 ± 0.1k until 0.9 ± 0.1k cal a BP, following which the ice in the area expanded towards its Little Ice Age extent. Copyright © 2019 John Wiley & Sons, Ltd.  相似文献   

7.
The sedimentary record from the Ugleelv Valley on central Jameson Land, East Greenland, adds new information about terrestrial palaeoenvironments and glaciations to the glacial history of the Scoresby Sund fjord area. A western extension of a coastal ice cap on Liverpool Land reached eastern Jameson Land during the early Scoresby Sund glaciation (≈the Saalian). During the following glacial maximum the Greenland Ice Sheet inundated the Jameson Land plateau from the west. The Weichselian also starts with an early phase of glacial advance from the Liverpool Land ice cap, while polar desert and ice‐free conditions characterised the subsequent part of the Weichselian on the Jameson Land plateau. The two glaciation cycles show a repeated pattern of interaction between the Greenland Ice Sheet in the west and an ice cap on Liverpool Land in the east. Each cycle starts with extensive glacier growth in the coastal mountains followed by a decline of the coastal glaciation, a change to cold and arid climate and a late stage of maximum extent of the Greenland Ice Sheet. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

8.
王宁练 《第四纪研究》2009,29(5):913-919
通过青藏高原可可西里马兰冰芯记录,重建了 1887~1998年时期的净积累量变化,揭示出在研究时段内其变化呈弱的上升趋势。谱分析结果表明,马兰冰芯净积累量变化存在10.8a的显著周期。这表明太阳黑子活动对马兰冰芯净积累量变化存在一定的影响。统计分析发现,在20世纪80年代中期之前马兰冰芯净积累量变化与太阳黑子相对数变化之间存在显著的负相关关系,而在20世纪80年代中期之后却呈正相关关系。  相似文献   

9.
Late Pleistocene glacial and lake history of northwestern Russia   总被引:1,自引:0,他引:1  
Five regionally significant Weichselian glacial events, each separated by terrestrial and marine interstadial conditions, are described from northwestern Russia. The first glacial event took place in the Early Weichselian. An ice sheet centred in the Kara Sea area dammed up a large lake in the Pechora lowland. Water was discharged across a threshold on the Timan Ridge and via an ice-free corridor between the Scandinavian Ice Sheet and the Kara Sea Ice Sheet to the west and north into the Barents Sea. The next glaciation occurred around 75-70 kyr BP after an interstadial episode that lasted c. 15 kyr. A local ice cap developed over the Timan Ridge at the transition to the Middle Weichselian. Shortly after deglaciation of the Timan ice cap, an ice sheet centred in the Barents Sea reached the area. The configuration of this ice sheet suggests that it was confluent with the Scandinavian Ice Sheet. Consequently, around 70-65 kyr BP a huge ice-dammed lake formed in the White Sea basin (the 'White Sea Lake'), only now the outlet across the Timan Ridge discharged water eastward into the Pechora area. The Barents Sea Ice Sheet likely suffered marine down-draw that led to its rapid collapse. The White Sea Lake drained into the Barents Sea, and marine inundation and interstadial conditions followed between 65 and 55 kyr BP. The glaciation that followed was centred in the Kara Sea area around 55-45 kyr BP. Northward directed fluvial runoff in the Arkhangelsk region indicates that the Kara Sea Ice Sheet was independent of the Scandinavian Ice Sheet and that the Barents Sea remained ice free. This glaciation was succeeded by a c. 20-kyr-long ice-free and periglacial period before the Scandinavian Ice Sheet invaded from the west, and joined with the Barents Sea Ice Sheet in the northernmost areas of northwestern Russia. The study area seems to be the only region that was invaded by all three ice sheets during the Weichselian. A general increase in ice-sheet size and the westwards migrating ice-sheet dominance with time was reversed in Middle Weichselian time to an easterly dominated ice-sheet configuration. This sequence of events resulted in a complex lake history with spillways being re-used and ice-dammed lakes appearing at different places along the ice margins at different times.  相似文献   

10.
Eyles, N., Eyles, C., Menzies, J. & Boyce, J. 2010: End moraine construction by incremental till deposition below the Laurentide Ice Sheet: Southern Ontario, Canada. Boreas, 10.1111/j.1502‐3885.2010.00171.x. ISSN 0300‐9483. Just after 13 300 14C a BP in central Canada, the retreating Ontario lobe of the Laurentide Ice Sheet briefly re‐advanced westwards through the Lake Ontario basin to build a large end moraine. The Trafalgar Moraine (27 km long, 4 km wide) is composed of a distinctly red‐coloured silt‐rich till (Wildfield Till, up to 16.5 m thick) formed by the reworking of proglacial lake deposits and soft shale bedrock. The moraine has a pronounced ramp‐like longitudinal form passing upglacier into fluted till resting on exposed shale. Analysis of water well stratigraphic data, drilled sediment cores, downhole gamma‐ray logs and exposures in deep test pits shows that within the moraine the Wildfield Till is built of superposed beds up to 7 m in thickness. These are inferred to result from the repeated incremental deposition of fine‐grained debris being moved towards the ice margin as a deforming bed such as identified at modern glaciers. A total till volume of 0.81 km3 was produced in a very brief time‐span along a transport path probably no greater than 10 km in length. Subglacial mixing of pre‐existing sediment and soft shale was clearly a very effective process for generating and moving large volumes of till to the ice margin. Similar till‐dominated end moraines occur widely around the margins of the Great Lake basins, where the markedly lobate margin of the retreating Laurentide Ice Sheet re‐advanced repeatedly into proglacial lakes and over fine‐grained sediment. This suggests the wider applicability of the till transport and incremental depositional model presented here.  相似文献   

11.
A vertically integrated ice-flow model suitable for use in climate studies is formulated. Large continental ice sheets may be characterized by two fundamental quantities: the height-to-width ratio, and the steepness of the edge. So it is natural to develop a model containing two parameters that can be chosen to give the right values of those characteristic quantities. The result is a model that is close to M. A. W. Mahaffy's (Journal of Geophysical Research, 81, 1059–1066 (1976)). The model is used to study glaciation in Europe. Dropping the level of zero mass balance creates small stable ice caps in the Alps and the Scandinavian mountains. If the drop exceeds 600 m (with respect to present-day conditions), the feedback between ice-sheet height and mass balance becomes dominating and the Fennoscandian Ice Sheet keeps growing. It does not reach an equilibrium state within 60,000 yr. An experiment simulating rapid onset of a glacial cycle shows that the growth of ice volume in Europe is smaller than that in northern America (J. T. Andrews and M. A. W. Mahaffy, Quaternary Research, 6, 167–183 (1976)). After 10,000 yr, the volume of the Fennoscandian Ice Sheet (2 × 1015 m3) is about half the volume of the Laurentide Ice Sheet. This leaves the “observed” sea-level lowering in the period 125,000–115,000 yr B.P. (estimates center around 50 m) unexplained.  相似文献   

12.
Pollen from the upper 90 m of core OL-92 from Owens Lake is a climatically sensitive record of vegetation change that indicates shifts in the plant associations representing warm and cold desertscrub, pinyon–juniper woodland, and pine–fir forest during the past 180,000 years. These changes are synchronized with glacial–interglacial cycles. During glacial and stadial climates, juniper woodland expanded downslope and replaced warm desert shrubs while upper montane and subalpine forests in the arid Inyo Mountains also expanded, and those in the Sierra Nevada were displaced by the ice cap and periglacial conditions. Conversely, during interglacial and interstadial climates, warm desert plants expanded their range in the lowlands, juniper and sagebrush retreated upslope, and montane and subalpine forests expanded in the Sierra Nevada. The reconstructed vegetation history demonstrates a regional climatic response, and the congruence of the pollen sequence with marine and ice cap oxygen isotope stratigraphies suggests a link between regional vegetation and global climate change at orbital scales.  相似文献   

13.
《Quaternary Science Reviews》2005,24(1-2):173-194
The climate history and dynamics of the Greenland Ice Sheet are studied using a coupled model of the depositional provenance and transport of glacier ice, allowing simultaneous prediction of the detailed isotopic stratigraphy of ice cores at all the major Greenland sites. Adopting a novel method for reconstructing the age–depth relationship, we greatly improve the accuracy of semi-Lagrangian tracer tracking schemes and can readily incorporate an age-dependent ice rheology. The larger aim of our study is to impose new constraints on the glacial history of the Greenland Ice Sheet. Leading sources of uncertainty in the climate and dynamic history are encapsulated in a small number of parameters: the temperature and elevation isotopic sensitivities, the glacial–interglacial precipitation contrast and the effective viscosity of ice in the flow law. Comparing predicted and observed ice layering at ice core sites, we establish plausible ranges for the key model parameters, identify climate and dynamic histories that are mutually consistent and recover the past depositional elevation of ice cores to ease interpretation of their climatic records. With the coupled three-dimensional model of ice dynamics and provenance transport we propose a method to place all the ice core records on a common time scale and use discrepancies to adjust the reconstructed climate history. Analysis of simulated GRIP ice layering and borehole temperature profiles confirms that the GRIP record is sensitive to the dynamic as well as to the climatic history, but not enough to strongly limit speculation on the state of the Greenland Ice Sheet during the Eemian. In contrast, our study indicates that the Dye 3 and Camp Century ice cores are extremely sensitive to ice dynamics and greatly constrain Eemian ice sheet reconstructions. We suggest that the maximum Eemian sea-level contribution of the ice sheet was in the range of 3.5–4.5 m.  相似文献   

14.
Radiocarbon dating of well-preserved, in-place vegetation exposed by the retreating Quelccaya Ice Cap of southeastern Peru constrains the last time the ice cap's extent was smaller than at present. Seventeen plant samples from two sites along the central western margin collectively date to 4700 and 5100 cal yr BP and strongly indicate that current ice cap retreat is unprecedented over the past ∼ 5 millennia. Seventeen vegetation samples interbedded in a nearby clastic sedimentary sequence suggest ice-free conditions at this site from ∼ 5200 to at least ∼ 7000 cal yr BP, and place minimum constraint on early- to mid-Holocene ice cap extent.  相似文献   

15.
黄茂桓 《冰川冻土》1997,19(3):202-206
在西昆仑山古里雅冰帽海拔6070m处钻孔,深309m,上部200m进行了温度测量。对实测资料作稳定态分析后,得出冰内温度梯度大,底部达融点的结果。算出地热通量为112mW/m^2,与青藏高原为高地热区的观点一致。  相似文献   

16.
In this paper we present geological evidence from the Larsemann Hills (Lambert Glacier – Amery Ice Shelf region, East Antarctica) of marine sediments at an altitude of c. 8 m a.s.l., as revealed by diatom, pigment and geochemical proxies in a lake sediment core. The sediments yielded radiocarbon dates between c. 26 650 and 28 750 14C yr BP (31 366–33 228 cal yr BP). This information can be used to constrain relative sea level adjacent to the Lambert Glacier at the end of Marine Isotope Stage 3. These data are compared with the age and altitude of Marine Isotope Stage 3 marine deposits elsewhere in East Antarctica and discussed with reference to late Quaternary ice sheet history and eustatic sea-level change.  相似文献   

17.
Two large ice fields between 46°30′ and 51°30′S cover the Patagonian Andes. The North and South Patagonian Ice Fields are separated by the transandine depth line at 47°45′ to 48°15′S. Canal and Río Baker run through this depression. The two ice fields are generally considered relics of a continuous ice cap, which covered the entire Patagonian Andes from 39° to 52°S and extended far into the eastern foreland of the Andes. This assumption is not correct for the 200-km-long section of the Andes between Lago Pueyrredón (Lago Cochrane in Chile) (47°15′S) and Lago San Martín (Lago O'Higgins in Chile) (48°45′S). The lack of a continuous ice cap extending far into the east is caused by the transandine depth line, playing a crucial role in the fluvial erosion and the glacial scouring of this tectonic zone. This depression formed a river system (e.g. Río Baker, Río Bravo and Río Mayer) that drains towards the west. Reconstruction of the maximum glacial advance of the last ice age shows that the eastern outlet glaciers of the two ice fields between Lago San Martín and Lago Pueyrredón did not drain towards the east, but rather followed the general gradient of the transandine depth line. In this area the eastern flank of the Andes between Monte San Lorenzo (3770 m) and Sa. de Sangra (2155 m) supported valley glaciers, which were independent of the expanding ice fields. Only a few valley glaciers advanced towards the Patagonian Meseta. The terminal moraines of these glaciers were erroneously interpreted as the eastern edge of a continuous ice cap. North of 47°30′S the outlet glaciers of the NPI advanced 200 km during the LGM and the late glacial advances nearly reached to 71°W. In contrast, south of 49°S glacier expansion was comparatively less: The LGM is situated only 85–115 km east of the present margins of the large outlet glaciers (O'Higgins, Viedma, and Upsala), and no late glacial advance reached 72°W. These considerable differences of glacier expansion were influenced by the northward migration of the westerly precipitation belt during glacial cycles. There is tentative evidence that the glaciers advanced three times in the period from 14 000 to 9 500 14C years BP.  相似文献   

18.
We describe a method for measuring the 40Ar/36Ar ratio and the 84Kr/36Ar ratio in air from bubbles trapped in ice cores. These ratios can provide constraints on the past thickness of the firn layer at the ice core site and on the magnitude of past rapid temperature variations when combined with measured 15N/14N. Both variables contribute to paleoclimatic studies and ultimately to the understanding of the controls on Earth’s climate. The overall precision of the 40Ar/36Ar method (1 standard error of the mean) is 0.012‰ for a sample analyzed in duplicate, corresponding to ±0.6 m in reconstructed firn thickness. We use conventional dynamic isotope ratio mass spectrometry with minor modifications and special gas handling techniques designed to avoid fractionation. About 100 g of ice is used for a duplicate pair of analyses. An example of the technique applied to the GISP2 ice core yields an estimate of 11 ± 3K of abrupt warming at the end of the last glacial period 15,000 years ago. The krypton/argon ratio can provide a diagnostic of argon leakage out of the bubbles, which may happen (naturally) during bubble close-off or (artifactually) if samples are warmed near the freezing point during core retrieval or storage. Argon leakage may fractionate the remaining 40Ar/36Ar ratio by +0.007‰ per ‰ change in 84Kr/36Ar, introducing a possible bias in reconstructed firn thickness of about +2 m if thermal diffusion is not accounted for or +6 m if thermal diffusion effects are quantified with measured 15N/14N. Reproducibility of 84Kr/36Ar measured in air is about ±0.2‰ (1 standard error of the mean) but is about ±1‰ for ice core samples. Ice core samples are systematically enriched in 84Kr/36Ar relative to atmosphere by ∼5‰, probably reflecting preferential size-dependent exclusion of the smaller argon atom during bubble entrapment. Recent results from the Siple Dome ice core reveal two climate events during the last deglaciation, including an 18-m reduction in firn thickness associated with an abrupt warming at sometime between 18 and 22 kyr BP and a partial or total removal of the firn during an ablation event at 15.3 kyr BP.  相似文献   

19.
Late Wisconsinan age glacial landforms and deposits indicate that an ice shelf of at least 60,000 km2 flowed northwestward into Viscount Melville Sound, probably from the M'Clintock Dome of the Laurentide Ice Sheet. The ice shelf overlapped coastal areas and laid Winter Harbour Till up to 125 m above present sea level on the southern coast of Melville Island, to 135 m on Byam Martin Island, to possibly 90 m on the northeast tip of Banks Island, and to 150 m on the north coast of Victoria Island. The contemporary sea level was 50 to 100 m higher than present (it now rises eastward). A maximum age of 10,340 ± 150 yr B.P. for the till, and thus the ice-shelf advance, is provided by shells in marine sediments which underlie it, whereas a minimum age of 9880 ± 150 yr B.P. is provided by overlying shells that postdate the ice advance. The major advance of shelf ice into Viscount Melville Sound may be the result of the rapid disintegration of the M'Clintock Dome while the climate ameliorated in the western Arctic.  相似文献   

20.
The Holocene sea-level high stand or “marine limit” in Wilkes Land, East Antarctica, reached 30 m above present sea level at a few dispersed sites. The most detailed marine limit data have been recorded for the Windmill Islands and Budd Coast at the margin of the Law Dome ice cap, a dome of the East Antarctic Ice Sheet (EAIS). Relative sea-level lowering of 30 m and the associated emergence of the Windmill Islands have occurred since 6900 14C (corr.) yr B.P. Numerical modeling of the Earth's rheology is used to determine the glacio-isostatic component of the observed relative sea-level lowering. Glaciological evidence suggests that most of EAIS thickening occurred around its margin, with expansion onto the continental shelf. Consequently, a regional ice history for the last glacial maximum (LGM) was applied in the glacio-isostatic modeling to test whether the observed relative sea-level lowering was primarily produced by regional ice-sheet changes. The results of the modeling indicate that the postglacial (13,000 to 8000 14C yr B.P) removal of an ice load of between 770 and 1000 m from around the margin of the Law Dome and adjacent EAIS have produced the observed relative sea-level lowering. Such an additional ice load would have been associated with a 40- to 65-km expansion of the Law Dome to near the continental shelf break, together with a few hundred meters of ice thickening on the adjoining coastal slope of the EAIS up to 2000 m elevation. Whereas the observed changes in relative sea level are shown to be strongly influenced by regional ice sheet changes, the glacio-isostatic response at the Windmill Islands results from a combination of regional and, to a lesser extent, Antarctic-wide effects. The correspondence between the Holocene relative sea-level lowering interpreted at the margin of the Law Dome and the lowering interpreted along the remainder of the Wilkes Land and Oates Land coasts (105°–160° E) suggests that a similar ice load of up to 1000 m existed along the EAIS margin between Wilkes Land and Oates Land.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号