首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
橄榄石是基性岩浆中最早期结晶的硅酸盐矿物之一,其主量、微量元素特征可以反映出岩浆演化环境、岩浆源区岩性和再循环组分性质等重要信息.本次研究通过对峨眉山大火成岩省平川苦橄岩中橄榄石主量和微量元素分析,以及橄榄石内尖晶石包裹体分析,并与大理苦橄岩中橄榄石和尖晶石成分进行对比,来探讨不同苦橄岩母岩浆氧逸度及源区性质的异同.橄...  相似文献   

2.
The Mikabu and Sorachi–Yezo belts comprise Jurassic ophiolitic complexes in Japan, where abundant basaltic to picritic rocks occur as lavas and hyaloclastite blocks. In the studied northern Hamamatsu and Dodaira areas of the Mikabu belt, these rocks are divided into two geochemical types, namely depleted (D-) and enriched (E-) types. In addition, highly enriched (HE-) type has been reported from other areas in literature. The D-type picrites contain highly magnesian relic olivine phenocrysts up to Fo93.5, and their Fo–NiO trend indicates fractional crystallization from a high-MgO primary magma. The MgO content is calculated as high as 25 wt%, indicating mantle melting at unusually high potential temperature (T p) up to 1,650 °C. The E-type rocks represent the enrichment in Fe and LREE and the depletion in Mg, Al and HREE relative to the D-type rocks. These chemical characteristics are in good accordance with those of melts from garnet pyroxenite melting. Volcanics in the Sorachi–Yezo belts can be divided into the same types as the Mikabu belt, and the D-type picrites with magnesian olivines also show lines of evidence for production from high T p mantle. Evidence for the high T p mantle and geochemical similarities with high-Mg picrites and komatiites from oceanic and continental large igneous provinces (LIPs) indicate that the Mikabu and Sorachi–Yezo belts are accreted oceanic LIPs that were formed from hot large mantle plumes in the Late Jurassic Pacific Ocean. The E- and D-type rocks were formed as magmas generated by garnet pyroxenite melting at an early stage of LIP magmatism and by depleted peridotite melting at the later stage, respectively. The Mikabu belt characteristically bears abundant ultramafic cumulates, which could have been formed by crystal accumulation from a primary magma generated from Fe-rich peridotite mantle source, and the HE-type magma were produced by low degrees partial melting of garnet pyroxenite source. They should have been formed later and in lower temperatures than the E- and D-type rocks. The Mikabu and Sorachi Plateaus were formed in a low-latitude region of the Late Jurassic Pacific Ocean possibly near a subduction zone, partially experienced high P/T metamorphism during subduction, and then uplifted in association with (or without, in case of Mikabu) the supra-subduction zone ophiolite. The Mikabu and Sorachi Plateaus may be the Late Jurassic oceanic LIPs that could have been formed in brotherhood with the Shatsky Rise.  相似文献   

3.
Based on the compositions of melt inclusions and coexisting minerals from meymechites and alkali picrites, the temperatures and pressures of the ascending material of the Siberian plume were estimated at the level of the lithosphere-asthenosphere boundary. The melts trapped in olivine show high contents of titanium and other incompatible elements. The rocks crystallized under high oxygen fugacity conditions. The calculated compositions of primary magmas are similar to the compositions of near-solidus melts derived from a dry fertile lherzolite at 7 GPa. The estimated potential temperature is close to 1650°C, which is much higher than the potential temperature of plumes that generate the primary basaltic magmas of mid-ocean ridges. The obtained data show that, during the activity of the giant magma-generating system of the Siberian trap province, hot peridotite masses ascended probably from the core-mantle boundary up to the base of the continental lithosphere. Our results are at odds with the suggestion that the basalt flows of the Siberian and other large igneous provinces are not related to mantle plumes.  相似文献   

4.
We present a comprehensive mineral chemical dataset (~400 analyses) on subalkaline meimechitic (Mg-number?=?74–80) and ferropicritic (Mg-number?=?67–69) dike samples from the Antarctic extension of the Karoo large igneous province (LIP) in Vestfjella, western Dronning Maud Land. Some of the meimechites, previously considered to be cumulates from ferropicritic magmas, are characterized by forsteritic olivine (with core composition up to Fo92) that is in, or close to Fe-Mg equilibrium with the host rock. The olivines are subhedral to euhedral, contain Ti-rich (volcanic) spinel inclusions, have a high CaO content (≥0.19 wt. %), and are thus unlikely to represent xenocrysts from mantle peridotite. Igneous amphibole is found in olivine-hosted, crystallized melt inclusions, indicating that the parental magmas had a H2O content of 1–2 wt. %. The olivine data suggests generation of extremely MgO-rich (up to 25 wt. %) melts during the Karoo magmatism. Based on our petrogenetic modeling, such melts are likely to have originated from the partial melting of garnet peridotite at high pressures (5–6 GPa) and mantle potential temperatures (>1,600°C) that are compatible with the involvement of a mantle plume in the generation of the Karoo LIP. A geochemical comparison of the Vestfjella meimechites with meimechites from the Siberian Traps LIP and the assumed komatiitic parental melts of the Horingbai picrites (Paraná-Etendeka LIP) reveals key similarities, suggesting that all these suites were generated from broadly similar sources and/or by similar melting processes in anomalously hot subcontinental mantle.  相似文献   

5.
Here we combine petrological-geochemical and thermomechanical modeling techniques to explain origin of primary magmas of both Maimecha–Kotui meimechites and the Gudchikhinskaya basalts of Norilsk region, which represent, respectively, the end and the beginning of flood magmatism in the Siberian Trap Province.We have analyzed the least altered samples of meimechites, their olivine phenocrysts, and melt inclusions in olivines, as well as samples of dunites and their olivines, from boreholes G-1 and G-3 within the Guli volcanoplutonic complex in the Maimecha–Kotui igneous province of the northern Siberian platform. The Mn/Fe and Ni/MgO ratios in olivines indicate a mantle peridotite source of meimechites. Meimechite parental magma that rose to shallow depths was rich in alkalis and highly magnesian (24 wt.% MgO), largely degassed, undersaturated by sulfide liquid and oxidized. At greater depths, it was, likely, high in CO2 (6 wt.%) and H2O (2 wt.%) and resulted from partial melting of initially highly depleted and later metasomatized harzburgite some 200 km below the surface. Trace-element abundances in primary meimechite magma suggest presence of garnet and K-clinopyroxene, in the mantle source and imply for genetic link to the sources of the early Siberian flood basalts (Gudchikhinskaya suite) and kimberlites. The analyzed dunite samples from the Guli complex have chemistry and mineralogy indicating their close relation to meimechites.We have also computed thermomechanical model of interaction of a hot mantle plume with the shield lithosphere of variable thickness, using realistic temperature- and stress-dependent visco-elasto-plastic rocks rheology and advanced finite element solution technique.Based on our experimental and modeling results we propose that a Permian–Triassic plume, with potential temperature of about 1650 °C transported a large amount of recycled ancient oceanic crust (up to 15%) as SiO2-supersaturated carbonated eclogite. Low-degree partial melting of eclogite at depths of 250–300 km produced carbonate-silicate melt that metasomatized the lithospheric roots of the Siberian shield. Further rise of the plume under relatively attenuated lithosphere (Norilsk area) led to progressive melting of eclogite and formation of reaction pyroxenite, which then melted at depths of 130–180 km. Consequantly, a large volume of melt (Gudchikhinskaya suite) penetrated into the lithosphere and caused its destabilization and delamination. Delaminated lithosphere that included fragments of locally metasomatized depleted harzburgite subsided into the plume and was heated to the temperatures of the plume interior with subsequent generation of meimechite magma. Meimechites showed up at the surface only under thicker part of the lithosphere aside from major melting zone above because otherwise they were mixed up in more voluminous flood basalts. We further suggest that meimechites, uncontaminated Siberian flood basalts and kimberlites all shear the same source of strongly incompatible elements, the carbonated recycled oceanic crust carried up by hot mantle plume.  相似文献   

6.
Based on new data on the age, mineralogy, and geochemistry of ultramafic–mafic complexes in the Precambrian structures of the southern periphery of the Siberian Platform, the East Siberian metallogenic (PGE–Cu–Ni) province is recognized. It includes the Yenisei Ridge, Precambrian Kan uplift, Alkhadyr terrane with the adjacent structures of the Biryusa block, and northern Baikal region (Yoko-Dovyren and other massifs of the Baikal–Patom basin). We have established that the U–Pb and Ar–Ar ages of ore-bearing complexes of dunite–peridotite– pyroxenite–gabbro association correspond to the Late Riphean (728–710 Ma). The mineralogical and geochemical similarity of ore-bearing complexes in different areas testifies to their genetic entity. All parental melts were similar in composition to picrites. The calculation results and the PGE enrichment of rocks and ores show high degrees of melting of the mantle source, which agrees with the plume model of formation of the ore-magmatic system. The recognized province is similar in the type of magmatism and time of its occurrence to the Franklin LIP in northern Canada. It is one of the highly promising ore districts of East Siberia.  相似文献   

7.
The investigation of rocks, minerals, and melt inclusions showed that porphyritic alkaline picrites and meimechites crystallized from different parental magmas. At a similar ultrabasic composition, the alkaline picrite melts were enriched in K2O relative to Na2O, and contained up to 0.12–0.13 wt % F and less Cr, Ni, and H2O (only 0.01–0.16 wt % H2O, versus 0.6–1.6 wt % in the meimechite melts) compared with the meimechite magmas. The crystallization of alkaline picrite melts occurred under stable conditions at relatively low temperatures without abrupt changes: olivine and clinopyroxene crystallized at 1340–1285 and 1230–1200°C, respectively, as compared with 1600–1450 and 1230–1200°C in the meimechites. The alkaline picrite melts evolved toward melanephelinite, nephelinite, tephrite, and trachydolerite; whereas the meimechite magmas gave rise to subalkaline picritic rocks. The partitioning of vanadium between olivine and melt suggests that the meimechite magma crystallized under more oxidizing conditions compared with the alkaline picrite melts: the KDV values for the meimechite melts (0.011–0.016) were three times lower than those for the alkaline picrite melts (0.045–0.052). The parental magmas of the alkaline picrites and meimechites were enriched in trace elements relative to mantle levels by factors of tens to hundreds. The alkaline picrite magma showed lower LILE and LREE contents compared with the meimechite magma. The magmas had also different indicator ratios of incompatible elements, including those immobile in aqueous fluids. It was concluded that the meimechite and alkaline picrite melts were derived from different mantle sources. The former were generated at lower degrees of melting of an undepleted mantle source, and the meimechite melts were produced by high-degree melting of a probably lherzolite-harzburgite source.  相似文献   

8.
The geochemical characteristics of melt inclusions and their host olivines provide important information on the processes that create magmas and the nature of their mantle and crustal source regions. We report chemical compositions of melt inclusions, their host olivines and bulk rocks of Xindian basalts in Chifeng area, North China Craton. Compositions of both bulk rocks and melt inclusions are tholeiitic. Based on petrographic observations and compositional variation of melt inclusions, the crystallizing sequence of Xindian basalts is as follows: olivine (at MgO > ~5.5 wt%), plagioclase (beginning at MgO = ~5.5 wt%), clinopyroxene and ilmenite (at MgO < 5.0 wt%). High Ni contents and Fe/Mn ratios, and low Ca and Mn contents in olivine phenocrysts, combining with low CaO contents of relatively high MgO melt inclusions (MgO > 6 wt%), indicate that Xindian basalts are possibly derived from a pyroxenite source rather than a peridotite source. In the CS-MS-A diagram, all the high MgO melt inclusions (MgO > 6.0 wt%) project in the field between garnet + clinopyroxene + liquid and garnet + clinopyroxene + orthopyroxene + liquid near 3.0 GPa, further suggesting that residual minerals are mainly garnet and clinopyroxene, with possible presence of orthopyroxene, but without olivine. Modeling calculations using MELTS show that the water content of Xindian basalts is 0.3–0.7 wt% at MgO = 8.13 wt%. Using 20–25 % of partial melting estimated by moderately incompatible element ratios, the water content in the source of Xindian basalts is inferred to be ≥450 ppm, much higher than 6–85 ppm in dry lithospheric mantle. The melting depth is inferred to be ~3.0 GPa, much deeper than that of tholeiitic lavas (<2.0 GPa), assuming a peridotite source with a normal mantle potential temperature. Such melting depth is virtually equal to the thickness of lithosphere beneath Chifeng area (~100 km), suggesting that Xindian basalts are derived from the asthenospheric mantle, if the lithospheric lid effect model is assumed.  相似文献   

9.
We present data on volatile (S, F and Cl) and major element contents in olivine-hosted melt inclusions (MIs) from alkaline basaltic tephras along the Quaternary Payenia backarc volcanic province (~34°S–38°S) of the Andean Southern Volcanic Zone (SVZ). The composition of Cr-spinel inclusions and host olivines in Payenia are also included to constrain any variations in oxygen fugacity. The variation of potassium, fluorine and chlorine in MIs in Payenia can be modelled by partial melting (1–10%) of a variously metasomatised mantle. The high chlorine contents in MIs (up to 3200 ppm) from Northern Payenia require addition of subduction-related fluids to a mantle wedge, whereas volatile signatures in the southern Payenia are consistent with derivation from an enriched OIB source. Cl and Cl/K ratios define positive correlations with host olivine fosterite content (Fo80-90) that cannot be explained by olivine fractionation, degassing and/or degree of mantle melting. Neither can the correlation between SiO2 and TiO2 in the MIs and host olivine Fo-content be explained by magmatic differentiation processes. Instead these correlations essentially require a south to north mantle source transition from a low Mg# pyroxenite (from recycled eclogite) to a high Mg# fluid metasomatised peridotite. The Cl/K and S/K ratios in Payenia MIs extend from enriched OIB-like signatures (south) to Andean SVZ arc like signatures (north). We show that the northward increase in S, Cl and S/K is coupled to a northward increase in melt oxidation states and thus in Fe3+/Fetot ratios in the magmas. The increase in oxidation state also correlates with an increase of Mn/Fe (olivine) ratios. We calculate that 25% of the apparent north–south pyroxenite–peridotite source variation in Payenia (based on olivine Mn/Fe ratios) can be explained by the south to north variation in melt oxidation states.  相似文献   

10.
INTRODUCTION Inrecentyears,greatprogressonthegeologic tec tonicevolutionandmineralresourcesofXinjianghas beenachieved.However,manyissuesarestilldebated, suchasancienttectonicpatternsandtheclosuretimeof theancientoceanicbasin(LiandXu,2004).Theseis sueshavelimitedourknowledgeoftheformationande volutionofAsiancontinents,aswellastheexploration anddevelopmentofmineralresources. Recently,theHilaketehalasuporphyrycopperde positwasdiscoveredinthestrataoftheMiddleDevoni anBeitashanFormatio…  相似文献   

11.
Continental intraplate basalts (15.42–0.16 Ma) from Abaga–Dalinuoer volcanic field (ADVF) in central Inner Mongolia of eastern China, as a part of Cenozoic volcanic province along eastern margin of the Eurasian continent, provide a good opportunity to explore potential links between deep subduction of the Pacific slab and continental intraplate volcanism. In this study, we report an integrated dataset of whole-rock K–Ar ages, major and trace elements and Sr–Nd–Pb isotopes, and olivine major and minor elements for the Abaga–Dalinuoer basalts (ADBs), and propose that mantle source lithology of the ADB magmas may consist of both pyroxenite and peridotite. The ADBs display low SiO2 (42.3–50.2 wt.%), high MgO (7.3–11.4 wt.%) and moderate K2O + Na2O (3.8–6.4 wt.%), and can be subdivided into basanites, alkali basalts and tholeiitic basalts that are all characterized by ocean island basalt (OIB)-like rare earth elements (REE) and enrichment in both large ion lithosphile elements (LILE) and high field strength elements (HFSE). Olivine phenocrysts have higher Ni and Fe/Mn and lower Mn, Ca and Ca/Fe relative to those from peridotite melts, but exhibit clearly lower Ni contents (< 2500 ppm) compared with expected Ni range (> 3000 ppm) for olivines crystallized from olivine-free pyroxenite melts. Estimated compositions of the ADB primary magmas, together with olivine compositions, suggest an iron-rich mantle source related with silica-deficient pyroxenite that is most likely derived from deeply subducted Pacific oceanic crust. Additionally, peridotite and recent subducted sediments are also required to account for high Ni and MgO in primary magmas together with their trace elements and Sr–Nd–Pb isotope systematics. We suggest that a mixed pyroxenite–peridotite source lithology can better match observed whole-rock and olivine signatures in the ADB, compared with either peridotite only or olivine-free pyroxenite only source lithology. In our model, pyroxenite melts would either react with or mechanically mix with peridotite, and the proportion of pyroxenite melts may range from 30% to 45% for mechanical mixing scenario. A continuous spectrum from tholeiitic to alkali melts revealed by melt-peridotite reaction experiment can explain formation of primary magmas of basanites, alkali basalts and tholeiitic basalts by increasing melting degree of a similar mantle source. Relatively higher 206Pb/204Pb of the ADB may suggest more significant role of recent (< 0.5 Ga) subducted Pacific oceanic materials, in contrast to other Cenozoic basalts in eastern China (e.g., Changbai basalts) that exhibit varying contributions from ancient (> 1.5 Ga) subducted continental sediments. We emphasize that coupled geochemical and geodynamic links (i.e., subduction polarity) between deeply subducted Pacific slab and continental intraplate volcanism in eastern China may exist, which directly support the involvement of deeply subducted Pacific materials in petrogenesis of the ADB. From the perspective of plate motion kinetics, decompression partial melting of upwelling fragmented Pacific slab (silica-deficient pyroxenite + recent subducted sediments) may be triggered by rollback of deeply subducted Pacific slab during Late Cenozoic times. Continental intraplate volcanism in the ADVF generally started with termination of opening of the Japan Sea, suggesting that deep subduction of the Pacific slab may have been an important geodynamic mechanism responsible for tectono-magmatic evolution of northeastern Asia. We suggest that the ADBs have the potential to shed light on genetic links between continental intraplate volcanism and deep subduction of the Pacific slab in geochemical and geodynamic processes.  相似文献   

12.
The presence of recycled crust in the lithospheric mantle of the Dharwar craton has been investigated using trace element geochemistry of olivine grains from an ENE-trending Paleoproterozoic picrite dyke (associated with the ca. 1.89–1.88 Ga Hampi dyke swarm) emplaced in the western Dharwar craton. Olivine grains are purely magmatic, formed as early phenocrysts in a fractionated basaltic melt. They exhibit enrichment in NiO contents (0.32–0.43 wt%) and depletion in Ca (1366–2105 ppm), Mn (1578–2663 ppm) and 100 1 Mn/Fe (1.28–1.48). Further, the compiled whole-rock geochemical data of the picrite dyke and associated dyke swarm illustrates relatively low CaO/MgO (0.55–1.78), intermediate FeO/MnO (47–54), negative to positive PX# (?0.34 to +1.86), and high values of FC3MS (0.24–0.90) and FCKANTMS (0.19–1.11). These chemical markers are not consistent with the derivation of the primary melt from a pure peridotite or a pyroxenite source; therefore, contribution from a mixed type of source having both peridotite and pyroxenite end members (pyroxene rich and olivine poor lithology) is suggested. The amount of pyroxenite and recycled crust varies from 46% to 86% and 14% to 44%, respectively. The Al-in-olivine based thermometer estimates the maximum crystallization temperature as 1407 °C, which is 137 °C higher than the average temperature of MORB and accordant with several well-established plume-induced large igneous provinces (LIPs) worldwide. Therefore, it is suggested that the studied picrite dyke is derived from a primary melt generated by plume-induced melting of a peridotite-pyroxenite mixed source. The ca. 1.89–1.88 Ga Hampi dyke swarm, being genetically linked with the studied dyke, could also be derived from this same source. Further, the recycled crust in the subcontinental lithospheric mantle of the western Dharwar craton may have generated the pyroxene rich mafic source during the Neoarchean convergence between eastern and western Dharwar craton.  相似文献   

13.
Melt inclusions and hosting them highly magnesian olivine from rocks of Kamchatka and the Western Aleutian island arc were analyzed for copper content by LA-ICP-MS to determine the copper partition coefficient in primitive island-arc magmas. Based on measurements of 45 olivine–melt pairs, this coefficient was determined to be 0.028 ± 0.009 (2σ), which is the lowest value among previously published data. Mass-balance calculations of copper in a typical mantle peridotite using obtained partition coefficient indicate that its content in peridotite and primary mantle magmas is mainly determined by mantle sulfide. The Cu partition coefficient was also used to calculate the copper content in parental magmas of volcanoes of the Central Kamchatka Depression. Estimates obtained using copper content in phenocrysts of primitive olivine (Fo > 88 mol %) from these rocks are, on average, 139 ± 58 ppm (2σ), which exceed copper contents in primitive basalts (MgO > 8.5 wt %) of mid-ocean ridges (MORB 93 ± 31 ppm). This suggests the primary enrichment of Central Kamchatka magmas in copper and correlates with their more oxidizing conditions of formation as compared to MORB.  相似文献   

14.
New high-precision minor element analysis of the most magnesian olivine cores (Fo85–88) in fifteen high-MgO (Mg#66–74) alkali basalts or trachybasalts from the Quaternary backarc volcanic province, Payenia, of the Andean Southern Volcanic Zone in Argentina displays a clear north-to-south decrease in Mn/Feol. This is interpreted as the transition from mainly peridotite-derived melts in the north to mainly pyroxenite-derived melts in the south. The peridotite–pyroxenite source variation correlates with a transition of rock compositions from arc-type to OIB-type trace element signatures, where samples from the central part of the province are intermediate. The southernmost rocks have, e.g., relatively low La/Nb, Th/Nb and Th/La ratios as well as high Nb/U, Ce/Pb, Ba/Th and Eu/Eu* = 1.08. The northern samples are characterized by the opposite and have Eu/Eu* down to 0.86. Several incompatible trace element ratios in the rocks correlate with Mn/Feol and also reflect mixing of two geochemically distinct mantle sources. The peridotite melt end-member carries an arc signature that cannot solely be explained by fluid enrichment since these melts have relatively low Eu/Eu*, Ba/Th and high Th/La ratios, which suggest a component of upper continental crust (UCC) in the metasomatizing agent of the northern mantle. However, the addition to the mantle source of crustal materials or varying oxidation state cannot explain the variation in Mn and Mn/Fe of the melts and olivines along Payenia. Instead, the correlation between Mn/Feol and whole-rock (wr) trace element compositions is evidence of two-component mixing of melts derived from peridotite mantle source enriched by slab fluids and UCC melts and a pyroxenite mantle source with an EM1-type trace element signature. Very low Ca/Fe ratios (~1.1) in the olivines of the peridotite melt component and lower calculated partition coefficients for Ca in olivine for these samples are suggested to be caused by higher H2O contents in the magmas derived from subduction zone enriched mantle. Well-correlated Mn/Fe ratios in the wr and primitive olivines demonstrate that the Mn/Fewr of these basalts that only fractionated olivine and chromite reflects the Mn/Fe of the primitive melts and can be used as a proxy for the amount of pyroxenite melt in the magmas. Using Mn/Fewr for a large dataset of primitive Payenia rocks, we show that decreasing Mn/Fewr is correlated with decreasing Mn and increasing Zn/Mn as expected for pyroxenite melts.  相似文献   

15.
New major and trace element data for the Permo–Triassic basalts from the West Siberian Basin (WSB) indicate that they are strikingly similar to the Nadezhdinsky suite of the Siberian Trap basalts. The WSB basalts exhibit low Ti/Zr (50) and low high-field-strength element abundances combined with other elemental characteristics (e.g., low Mg#, and negative Nb and Ti anomalies on mantle-normalised plots) typical of fractionated, crustally contaminated continental flood basalts (CFBs). The major and trace element data are consistent with a process of fractional crystallisation coupled with assimilation of incompatible-element-enriched lower crust. Relatively low rates of assimilation to fractional crystallisation (0.2) are required to generate the elemental distribution observed in the WSB basalts. The magmas parental to the basalts may have been derived from source regions similar to primitive mantle (OIB source) or to the Ontong Java Plateau source. Trace element modelling suggests that the majority of the analysed WSB basalts were derived by large degrees of partial melting at pressures less than 3 GPa, and therefore within the garnet-spinel transition zone or the spinel stability field.

It seems unlikely that large-scale melting in the WSB was induced through lithospheric extension alone, and additional heating, probably from a mantle plume, would have been required. We argue that the WSB basalts are chemically and therefore genetically related to the Siberian Traps basalts, especially the Nadezhdinsky suite found at Noril'sk. This suite immediately preceded the main pulse of volcanism that extruded lava over large areas of the Siberian Craton. Magma volume and timing constraints strongly suggest that a mantle plume was involved in the formation of the Earth's largest continental flood basalt province.  相似文献   


16.
传统型铂族矿产,系指与镁铁质岩浆成矿作用有关的铂族矿产资源。华力西运动时期,扬子地台西南缘沿超壳深断裂带发生的大陆裂谷作用,为来自上地幔的镁铁质(拉斑玄武岩质)岩浆的上涌和侵位提供了极为有利的前提条件。含铂基性超基性岩的时空分布,受到大陆裂谷作用的主要发生发展时期和裂谷活动带的控制。通过对典型矿床特征及其成矿作用的探讨,论述了扬子地台西南缘主要的铂族矿床类型;并从四维成矿的角度,阐述了对区域成矿规律的一些基本认识。  相似文献   

17.
The Cape Verde hotspot, like many other Ocean Island Basalt provinces, demonstrates isotopic heterogeneity on a 100–200 km scale. The heterogeneity is represented by the appearance of an EM1-like component at several of the southern islands and with a HIMU-like component present throughout the archipelago. Where the EM1-like component is absent, a local DMM-like component replaces the EM1-like component. Various source lithologies, including peridotite, pyroxenite and eclogite have been suggested to contribute to generation of these heterogeneities; however, attempts to quantify such contributions have been limited. We apply the minor elements in olivine approach (Sobolev et al. in Nature 434:590–597, 2005; Science, doi: 10.1126/science.1138113, 2007), to determine and quantify the contributions of peridotite, pyroxenite and eclogite melts to the mantle heterogeneity observed at Cape Verde. Cores of olivine phenocrysts of the Cape Verde volcanics have low Mn/FeO and low Ni*FeO/MgO that deviate from the negative trend of the global array. The global array is defined by mixing between peridotite and pyroxenite, whereas the Cape Verde volcanics indicate contribution of an additional eclogite source. Eclogite melts escape reaction with peridotite either by efficient extraction in an area of poor mantle flow or by reaction of eclogite melts with peridotite, whereby an abundance of eclogite can seal off the melt from further reaction. Temporal trends of decreasing Mn/FeO indicate that the supply of eclogite melts is increasing. Modelling suggests the local DMM-like end-member is formed from a relatively peridotite-rich melt, while the EM1-like end-member has a closer affinity to a mixed peridotite–pyroxenite–eclogite melt. Notably the HIMU-like component ranges from pyroxenite–peridotite-rich melt to one with up to 77 % eclogite melt as a function of time, implying that sealing of melt pathways is becoming more effective.  相似文献   

18.
Electronic microprobe analyses for olivine, clinopyroxene and Cr-spinel in picrites, which we have discovered recently in the Emeishan continental flood basalt province (ECFBP), show that the olivine is rich in Mg, and that Cr-spinel is rich in Cr. Based on the olivine-melt equilibrium, the primary parental melt compositions are calculated. The high-Mg olivine-hosted picrite can be regarded as parental melt. Thus, the melting temperature and pressure are estimated: T=1600℃ and P=4.5 GPa. It suggests that the picrites are connected with the activity of mantle plumes. Their major element composition is comparable to many other CFBs by their high Fe8, (CaO/Al2O3)8 and low Na8, indicating a high pressure. All rocks display a similar chondrite-normalized REE patterns, i.e., enrichment of LREE, relative depletion of HFSE and absence of negative Nb and Ta but depletion in P and K. Some incompatible element ratios, such as La/Ta, La/ Sm, (La/Nb)PM, (Th/Ta)PM, are in a limited range, show that they were derived  相似文献   

19.
Modern analytical methods (XRF and ICP-MS) were employed for the first time to investigate the geochemical characteristics of rocks from the Noril’sk Trough. It differs from other folded structures of the region in the presence of massifs with high-grade Pt-Cu-Ni ores at relatively high levels in the section of the platform cover, in the middle part of the tuff-lava sequence. This provides an opportunity of directaions of observe geologic relationships between the extrusive and intrusive rocks of the Siberian Traps and more reliably test the possibility of their comagmatic origin, because other intrusions with massive ores occur at a deeper stratigraphic level in the Devonian sequences (Kharaerlakhsky and Talnakhsky massifs in the Kharaerlakhsky Trough). A comparison of the volcanic sections of the Noril’sk Trough and other parts of the region suggests that the tectonic structures were initiated before or simultaneously with trap development. By the example of the sill of the Maslovsky intrusion, it was shown that the ore-bearing gabbro-dolerites were formed in post-Nadezhdinsky time. The geochemical characteristics of the rocks of the Noril’sk 1 and Maslovsky intrusions were compared with those of the supposedly comagmatic rocks of the Gudchikhinsky, Tuklonsky, Nadezhdinsky, and Morongovsky formations. It was found that the Gudchikhinsky picritic basalts show higher Gd/Yb values compared with the picritic gabbro-dolerites (on average, 2.5 and 1.5, respectively) and higher nickel and calcium contents in olivine (0.44 and 0.22 wt % NiO and 0.30 and 0.12 wt % CaO for Fo82, respectively). The high-magnesium rocks of the Tuklonsky Formation are depleted in U and enriched in Eu relative to their intrusive analogues and also differ with respect to NiO and CaO contents in olivine (0.11 and 0.21 wt % NiO and 0.21 and 0.12 wt % CaO for Fo78, respectively). The rocks of the Nadezhdinsky Formation show strongly enriched incompatible trace element patterns, especially for LREE. Although the Morongovsky Formation is geochemically similar to the intrusions of the Noril’sk complex, it shows a lower weighted mean MgO content (6–7 wt % as compared with 11–12 wt % for the gabbro-dolerites). Thus, it was shown by the example of the geologic setting and compositional features of the Maslovsky intrusion that the massifs with high-grade mineralization are not analogues of volcanic complexes, but were produced by an independent magmatic stage.  相似文献   

20.
The Shiribeshi Seamount off northwestern Hokkaido, the Sea of Japan, is a rear-arc volcano in the Northeast Japan arc. This seamount is composed of calc-alkaline and high-K basaltic to andesitic lavas containing magnesian olivine phenocrysts and mantle peridotite xenoliths. Petrographic and geochemical characteristics of the andesite lavas indicate evidence for the reaction with the mantle peridotite xenoliths and magma mixing between mafic and felsic magmas. Geochemical modelling shows that the felsic end-member was possibly derived from melting of an amphibolitic mafic crust. Chemical compositions of the olivine phenocrysts and their chromian spinel inclusions indicate that the Shiribeshi Seamount basalts in this study was derived from a primary magma in equilibrium with relatively fertile mantle peridotites, which possibly represents the mafic end-member of the magma mixing. Trace-element and REE data indicate that the basalts were produced by low degree of partial melting of garnet-bearing lherzolitic source. Preliminary results from the mantle peridotite xenoliths indicate that they were probably originated from the mantle beneath the Sea of Japan rather than beneath the Northeast Japan arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号