首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 281 毫秒
1.
原油裂解成气动力学研究进展   总被引:2,自引:0,他引:2  
对于高温古油藏来说,原油裂解气是形成天然气藏的重要气源.原油裂解成气关系到天然气生成和原油消耗,因而客观评价这一过程对油气勘探有着重要意义.生烃动力学和热模拟实验是原油裂解成气动力学研究的基础.本文总结了原油裂解热模拟实验、原油裂解成气过程及判识指标,讨论了原油裂解成气动力学模型及碳同位素动力学,分析了原油裂解成气动力学研究的地质应用.指出现有的原油裂解成气判识指标难以确定有些天然气是属于原油裂解气还是干酪根裂解气,尤其是高-过成熟阶段生成的天然气;碳同位素动力学已逐渐成为当今国内外油气地球化学研究的前沿,而对原油裂解成气过程中的碳同位素分馏效应研究不够,其预测模型尚不完善.  相似文献   

2.
川东北飞仙关组鲕滩气藏天然气运聚效率   总被引:3,自引:1,他引:2  
设计进行了封闭体系下原油裂解成气的模拟实验, 建立并标定了原油裂解成气及其碳同位素分馏的化学动力学模型, 以罗家寨气田罗家7井为例分别进行了地质应用.生烃动力学研究发现, 飞仙关组古油藏具备“高效气源灶”的特点, 原油在中晚侏罗世172~151Ma约20Ma时期内裂解殆尽, 且原油裂解气的生成与其运聚成藏作用具有良好的时空匹配关系, 由此可促成飞仙关组气藏天然气的高效运聚.碳同位素分馏动力学研究证实甲烷成藏参与率达87%.利用生烃动力学与碳同位素分馏动力学结合的方法对天然气的运聚效率进行探讨是一个新的有效途径.   相似文献   

3.
以甲烷的量子化模型及正构二十四烷(n C24)金管限定体系裂解成气实验为基础,从理论上进一步论述了量子化模型应用于重烃气体(乙烷和丙烷)碳同位素动力学模拟的适应性,计算了甲烷、乙烷及丙烷生烃动力学与碳同位素动力学参数, 重点探讨了δ13C2与δ13C3变化的主控因素。研究结果表明, n C24裂解生成的气态烃碳同位素与早期报道的n C18、n C25及原油裂解生成的气态烃碳同位素具有可比性,可应用于地质条件下解释原油裂解气的某些地球化学特征。n C24生烃地质模型表明,其在150~160℃是稳定的,主要裂解温度介于180~200℃之间,与目前所报道的原油裂解地质模型吻合。随热解程度的增加,δ13C2与δ13C3体现了比δ13C1更明显的变化。气藏充注历史控制的同位素累积效应对天然气碳同位素有很大的影响,与累积聚集气相比,阶段聚集气的δ13C变重,并在更大程度上影响了演化曲线的分异。在此基础上,应用n C24裂解成气碳同位素分馏地质模型探讨了塔里木盆地某些油气藏天然气碳同位素值变化的原因。  相似文献   

4.
本文就和田河气田天然气组分组成、碳同位素组成和天然气成因类型进行了分析,着重分析了其东西部差异。研究发现:和田河气田天然气甲烷含量很高,达64.19%~86.86%,平均含量79.36%,C2+含量0~3.75%,干燥系数为95.52~99.4,平均值为97.34,CO2含量高。和田河气田东西部天然气差异明显,其主要表现为多期成藏、TSR反应东西运移的结果。天然气的成因分别是东部为原油裂解气,玛2井为原油裂解气和干酪根裂解气混合气,西部为干酪根裂解气。  相似文献   

5.
天然气碳同位素动力学研究是在生烃动力学基础上发展起来的一种动力学研究方法。以库车坳陷侏罗系煤在限定体系下热解实验为基础,分析了煤成气甲烷碳同位素演化的基本特征。整体上,煤成气甲烷碳同位素值比较重。随着热解温度的增加,甲烷碳同位素演化形式表现为,在低温段存在着一个明显变轻的趋势,然后逐渐变重。这主要是由煤的非均质性造成的,煤沉积时不但有高等植物来源,还有水生生物来源,他们具有不同的活化能和不同的同位素组成。用自行开发的同位素模拟软件,结合库车坳陷的热史,对库车坳陷煤成甲烷碳同位素进行了模拟计算。其核心是把甲烷看作重碳甲烷和正常甲烷两个部分,各自求取动力学参数。模拟结果表明,坳陷中心几个干气藏中甲烷的碳同位素值(-27‰~ 32‰,PDB)落在了由干酪根开始裂解生气到2.0Ma之间。这说明库车坳陷中心区域的天然气主要来源于侏罗系煤系地层的长时期裂解、累积。累积阶段为开始生烃到库车期。  相似文献   

6.
东营凹陷民丰地区天然气生成机理与化学动力学研究   总被引:3,自引:0,他引:3  
民丰地区天然气存在源岩热解和原油裂解成因的争议。本文采用高压釜封闭体系对该区烃源岩和原油样品分别进行了热模拟实验,从烃类气体生成过程、气态烃与部分单体烃生成动力学特征讨论了二者的生气机理,认为原油裂解比源岩热解生气活化能高30~40 kJ/mol,原油比源岩生气需要更高的热力学条件。模拟实验证实,成熟阶段源岩热解气与原油裂解气相比,以环烷烃和芳烃相对含量低为特征,与民丰地区产出的天然气组成更接近,据此认为该区天然气主要为源岩热解成因。  相似文献   

7.
原油裂解成气反应机理、介质影响因素与判识评价   总被引:3,自引:1,他引:2  
原油裂解成气是近年来天然气勘探领域重大的理论进展之一,其直接关系到勘探工作的决策和部署.对原油裂解气的裂解反应机理、介质影响因素与判识评价进行了较为详细的总结和评述,认为常用的原油热裂解一级动力学模拟模型可能不适合于地质温度条件下特别稳定的重烃气体;地质温度条件下原油加氢裂解的重要性可能被忽视;疏导体系及储层条件下的重烃反应损耗也是形成实际天然气藏的重要途径之一;目前的判识评价指标尚不能从本质上反映原油裂解气与干酪根裂解气的差异.  相似文献   

8.
应用高压封闭体系,对海相碳酸盐岩干酪根进行了热裂解模拟实验,并从气态烃、非气态烃产率及碳同位素演化特征等方面,探讨了海相碳酸盐岩烃源岩干酪根作为气源的生气机理。在模拟实验基础上,结合专用Kinetics软件求取碳酸盐岩烃源岩干酪根裂解产气动力学参数(活化能和指前因子),并将模拟实验结果外推至地质条件下,探讨其动力学模型的实际应用。结果表明,在该地质条件下,甲烷在EasyRo为0.9%时进入主生气期(转化率为10%),2.9%时主生气期结束(转化率为90%)。乙烷至戊烷在EasyRo为1.1%时进入主生气期(转化率10%),2.7%时主生气期结束(转化率90%)。该研究成果为我国海相碳酸盐岩裂解气的判识、资源评价提供了可靠的实验依据。  相似文献   

9.
煤成甲烷碳同位素分馏的动力学模拟   总被引:10,自引:6,他引:4  
主要目的是通过动力学模拟实验与GC-IRMS技术建立煤成甲烷碳同位素分馏的动力学模拟.热解产物中甲烷碳同位素的测定结果表明,同时假定生气过程中同位素分馏系数(α)固定不变和所有产甲烷母质具有相同的初始碳同位素组成(δ13Co)对于解释煤化过程中的碳同位素分馏是不可行的.在本研究中,为了解决陆源有机质的非均质性,应用了两个方法:一是假定对于煤中所有产甲烷前身物具有一个相同的初始碳同位素组成(δ13Co),通过调整各个平行反应的△Ea,i(Ea,i13C-Ea,i12C)来拟合实测甲烷同位素组成的变化;另一个是假定在整个生气过程中同位素分馏系数(α)不变,即△Ea,i为常数,通过改变fi13C来实现与实测甲烷同位素的拟合.动力学计算结果表明,在2℃/Ma的地质升温速率下两种方法具有相似的结果.  相似文献   

10.
基于龙马溪组页岩气样品的气体组分、稳定碳氢同位素资料分析,对比研究了四川盆地不同区块(威远、长宁和涪陵区块)龙马溪组页岩气地球化学特征,探讨了页岩气成因和碳同位素倒转原因。结果表明:1威远、长宁和涪陵3个区块龙马溪组页岩气甲烷含量高(95.52%~99.45%),非烃含量低(主要为CO2、N2,各占0.01%~1.07%、0.01%~2.95%),均属于典型的干气;甲烷、乙烷碳同位素(δ13C1、δ13C2)值分别为-37.3‰~-26.7‰、-42.8‰~-31.6‰,且烷烃气(C1-C3)碳同位素呈现完全倒转现象。2威远区块龙马溪组页岩气主要为油型裂解气,长宁和涪陵区块龙马溪组页岩气主要是由油型裂解气和干酪根裂解气的混合气;四川盆地龙马溪组页岩气碳同位素倒转的原因主要是同源不同期气体的混合、原油裂解气和干酪根裂解气的混合。  相似文献   

11.
Although oil cracking has been documented as one of the important sources of gas in many overmature marine sedimentary basins, the chemical and carbon isotopic signatures of gases of this origin are still open to question. In this study a Cambrian crude oil from the central Tarim basin, along with its main separated fractions (saturates, aromatics and asphaltenes), were pyrolyzed in sealed gold tubes to investigate how generated gases vary in chemical and carbon isotopic composition and how this variation would influence the genetic interpretation of oil cracking gas. The results indicate that the gases from cracking of aromatics and asphaltenes are much drier and more enriched in 13C than the gases from the cracking of saturates and crude oil at the same level of thermal maturity. In the experimental run of 20 °C/h, the dryness index of the gases (defined as the volume percentage of C1 in C1–5) from the cracking of saturates ranges from 26.2–90.6% with the methane carbon isotope change ranging from −54.8‰ to −35.5‰, whereas the dryness index is never lower than 60.6% for the gases from the cracking of aromatics with methane carbon isotope ranging from −39.9‰ to −32.2‰. Correspondingly, experimental data for the four samples plot in different areas in diagrams designed to distinguish oil cracking gas from kerogen cracking gas, such as ln(C2/C3) vs. δ13C2δ13C3 and δ13C1 vs. δ13C2δ13C3, indicating compositional variability of crude oil could assert an important influence in these diagrams. Therefore it is prudent to bring other geological constraints into consideration to avoid misinterpretation.The kinetic parameters for the bulk generation of C1–5 gas and the methane carbon isotope fractionation extrapolated to geological conditions of 2 °C/Ma and an initial temperature of 50 °C show that the temperatures of C1–5 gas generation from the aromatics and asphaltenes are lower than those from the saturates and crude oil due to their lower activation energies and frequency factors. Generation of C1–5 gases from the aromatics is modeled to be initiated about 122 °C whereas the initiation temperature for the saturates sample is 176 °C. Below 189 °C (EasyRo = 1.8%), the yields of C1–5 gases follow the order: aromatics > asphaltenes > crude oil > saturates. At similar thermal maturity levels, the methane carbon isotopic compositions are significantly different for the four samples, with an order of 13C enrichment: aromatics > asphaltenes > crude oil > saturates, however the difference in methane carbon isotopes becomes smaller with increasing temperature. This indicates that methane carbon isotopic values can be significantly different for gases cracked from oils that are compositionally diverse, especially in the early stage of methane generation.  相似文献   

12.
The origin of natural gases in central Tarim Basin is very complicated and there has been no definite conclusion in this aspect. Based on the results of systematic research on their composition and carbon isotopic characteristics, natural gases in central Tarim Basin are composed mainly of hydrocarbon gas, Ordovician natural gas with the characteristics of crude oil-cracking gas, and Carboniferous natural gas not only originating from kerogen cracking, but also from oil cracking. There are significant differences in composition and carbon isotope of natural gases between the eastern and western areas. The causes for the differences in geochemical characteristics of natural gases are presented as follows: different thermal evolution degrees of organic matter. Natural gases in the western region may have generated from the Middle- Upper Ordovician source rocks, and natural gases in the eatern region may be derived from the Cambrian source rocks, which entered into high to over mature stages; the gases migrated from west to east and caused the different compositional and carbon isotopic characteristics of natural gases; difference in the strength of thermal sulfate reduction between the eastern and western parts, with the reduction in the eastern part being stronger than that in the western part.  相似文献   

13.
青海祁连山冻土区天然气水合物的气体成因研究   总被引:18,自引:4,他引:14  
在祁连山冻土区发现天然气水合物之后,其气体成因或来源便成为一个重要的科学问题。开展了气体组成和同位素特征及δ13C1-1/n、C1/(C2+C3)-δ13C1、δDCH4-δ13CCH4、(δ13C2-δ13C3)-ln(C2/C3)、ln(C2/C3)-ln(C1/C2)等关系图解的综合研究,结果显示:祁连山冻土区天然气水合物的气体以轻烃为主,具湿气特征,其同位素表现为正碳同位素系列特征。研究区天然气水合物的气体为有机成因,且以热解成因为主,夹少量微生物成因(醋酸根发酵),其中,热解成因气主要与原油裂解气、原油伴生气有关,少部分与凝析油伴生气、煤成气、干酪根裂解气有关。这一分析结果可能意味着研究区天然气水合物的气体来源与油型气密切相关,而与煤型气关系不大。  相似文献   

14.
To determine the origin, maturity, formation mechanism and secondary process of marine natural gases in Northeastern Sichuan area, molecular moieties and carbon isotopic data of the Carboniferous and Triassic gases have been analyzed. Typical samples of marine gas precursors including low-maturity kerogen, dispersed liquid hydrocarbons (DLHs) in source rocks, residual kerogen and oil have been examined in a closed system, and several published geochemical diagrams of gas origins have been calibrated by using laboratory data. Results show that both Carboniferous and Triassic gases in the study area have a thermogenic origin. Migration leads to stronger compositional and weak isotopic fractionation, and is path dependent. Carboniferous gases and low-H2S gases are mainly formed by secondary cracking of oil, whereas high-H2S gases are clearly related to the TSR (Thermal Sulfate Reduction) process. Gases in NE Sichuan show a mixture of heavy (13C-enriched) methane in comparison to the lower maturated ethane of Triassic gas samples, suggesting a similar source and maturity for ethane and propane of Carboniferous gases, and a mixture of heavy ethane to the propane for Triassic gases. Based on the data plotted in the diagram of Chung et al. (1988), the residual kerogen from Silurian marine shale and palaeo oil reservoirs are the main source for Carboniferous gases, and that the residual kerogen from Silurian and Permian marine rocks and Permian paleao oil reservoirs constitute the principal source of Triassic gases.  相似文献   

15.
油成甲烷碳同位素分馏的化学动力学及其初步应用   总被引:5,自引:0,他引:5  
利用金管实验装置,在高压、恒速升温的条件下对塔里木盆地2个油样进行了热解成气实验,结合GC和碳同位素分析,得到了甲烷生成率、甲烷碳同位素与实验温度和升温速率的关系。由此建立并标定了油成甲烷及其碳同位素分馏的化学动力学模型。结果表明:2个油样生成甲烷气时的平均活化能差别不大,但活化能的分布有所差异;12C生成的活化能在低值区稍高,而在高值区稍低,从而使生成12C的平均活化能稍低于13C。正是12C、13C甲烷生成的活化能分布上的这一微小的差异,导致了甲烷生成时碳同位素的明显分馏。所得模型在塔里木盆地的初步应用显示,英南2气藏天然气主要为晚近期的阶段聚集气,而满东1气藏天然气可能为累积聚集。  相似文献   

16.
Asphaltenes extracted from crude oils are proposed to possess structural features of the related source rock kerogen. For the present study micro-scale sealed vessel pyrolysis (MSSV) and combustion isotope ratio mass spectrometry (GC–C–IRMS) were used to compare gas generation from a whole rock (type II-S kerogen) from southern Italy with that from related sulfur rich asphaltenes isolated from a low maturity heavy crude oil. The purpose of was to determine whether experimental pyrolysis of oil asphaltenes can be used to predict the timing and the chemical and isotopic composition of hydrocarbon gases generated from genetically related kerogen in the source rock during burial maturation. The results show that parameters such as (gas to oil ratio) GOR and oil and gas formation timing are very similar for these two sample types, whereas gas composition, product aromaticity and sulfur content are remarkably different. Slight differences in GOR are mainly due to differences in gas formation characteristics at very high levels of thermal alteration. Secondary gas formation from the whole rock covers a much broader temperature range under geological conditions than that from the asphaltene products. However, it is remarkable that both the onset and the maximum temperature are nearly identical under geological conditions. The observed differences in gas generation characteristics are supported by discrepancies in the carbon isotopic characteristics of the gas range compounds and indicate different precursors and/or mechanisms for gas generated from whole rock and asphaltenes.  相似文献   

17.
徐家围子断陷深层天然气的形成   总被引:6,自引:0,他引:6  
通过对松辽盆地徐家围子断陷深层天然气的地质和地球化学分析 ,揭示了天然气的成因特征和形成过程。该区天然气的分子组成和同位素组成均显示出较大的变化 ,甲烷是天然气中的主要组分 ,质量分数在 57.4 % - 98.2 %之间 ,平均为 90 .1%。主要非烃气体是CO2 和N2 ,平均质量分数分别为 4 .9%和 3.2 % ,且CO2 质量分数变化范围较大。气体同位素分析结果表明 ,甲烷同位素显示煤型气特征 ,而乙烷和丙烷的同位素显示油型气的特征 ,表明徐家围子深部除煤和Ⅲ型干酪根作为主要气源外 ,仍有一定含量趋于生油的Ⅱ型干酪根作为次要气源 ,实测和计算结果证实天然气主要是有机质在高成熟阶段形成的产物。运移过程中和成藏后的次生变化使天然气的组成和同位素面目变得非常复杂 ,尤其是由盖层微渗漏造成的蒸发分馏作用使同位素出现倒转。徐家围子断陷深层煤型气的发现为该区油气勘探展示出了更广阔的前景。  相似文献   

18.
徐家围子断陷深层天然天的形成   总被引:8,自引:0,他引:8  
黄海平  杨玉峰 《地学前缘》2000,7(4):515-522
通过对松辽盆地徐家围子断陷深层天然气的地质和地球化学分析,揭示了天然气的成因特征和形成过程。该区天然气的分子组成和同位素组成均显示出较大的变化,甲烷是天敢中的主要组分,质量分数在57.4%-98.2%之间,平均为90.1%,主要非烃气体是CO2和N2,平均质量分数分别为4.9%和3.2%,且CO2质量分数变化范围较大,气体同位素分析结果表明,甲烷同位素显示煤型气特征,而乙烷和丙烷的同位素显示油型 的特征,表明徐家子深部除煤和III型干酪根作为主要气源外,仍有一定含量趋于生油的II型干酪根作为次要气源,实测和计算结果证实天然气主要是有机质在高成熟阶段形成的产物,运移过程中和成藏后的次生变化使天然气的组成和同位素面目变得非常复杂,尤其是由盖层微渗漏造成的蒸发分馏的作用使同位素出现例转,徐家围子断陷深层煤型气的发现为  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号