首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Geochronology is a fundamental measurement for planetary samples, providing global and solar system context for the conditions prevailing on the planet at the time of major geological events. The potassium (K)‐Argon (Ar) laser experiment (KArLE) will make in situ noble gas geochronology measurements aboard planetary robotic missions such as rovers and landers. Laser‐induced breakdown spectroscopy (LIBS) is used to measure the K abundance in a sample and to release its noble gases; the evolved Ar is measured by mass spectrometry, and relative K content is related to absolute Ar abundance by sample mass, determined by optical measurement of the ablated volume. This approach allows K and Ar to be measured on identical volumes multiple times to create an isochron, which improves the age determination and reveals irregularities in the rock if they exist. The KArLE technique measures a whole‐rock K‐Ar age with 10% uncertainty or better for rocks 2 Ga or older, sufficient to resolve the absolute age of many planetary samples. The LIBS–mass spectrometry approach is attractive because the analytical components have been flight‐proven, do not require further technical development and provide essential measurements (complete elemental abundance, evolved volatile analysis, micro‐imaging) as well as in situ geochronology.  相似文献   

2.
During the Cainozoic there was widespread volcanism, mainly basaltic, in eastern New South Wales. Numerous new K‐Ar ages, together with previously published results, provide information on the age of virtually all the main volcanic provinces, and indicate that the volcanism started about 70 m.y. ago in the Late Cretaceous, and was continuous from about 60 m.y. ago (Palaeocene) until about 10 m.y. ago (middle Miocene). There has been no volcanic activity since 10 m.y. ago.

The ages of uplift of the Eastern Highlands are estimated from the relationship of the dated basaltic flows to the topography. A major uplift is deduced some time between the mid‐Cretaceous and late Oligocene, followed by a quiescent period. A further uplift started some time after the middle Miocene, and it continues to the present day. The highland was uplifted differentially both along and transverse to the axis.  相似文献   

3.
The epithermal El Peñon gold–silver deposit consists of quartz–adularia veins emplaced within a late Upper Paleocene rhyolitic dome complex, located in the Paleocene–Lower Eocene Au–Ag belt of northern Chile. Detailed K–Ar and 40Ar/39Ar geochronology on volcano–plutonic rocks and hydrothermal minerals were carried out to constrain magmatic and hydrothermal events. The Paleocene to Lower Eocene magmatism in the El Peñon area is confined to a rhomb-shaped basin, which was controlled by N–S trending normal faults and both NE- and NW-trending transtensional fault systems. The earliest products of the basin-filling sequences comprise of Middle to Upper Paleocene (~59–55 Ma) welded rhyolitic ignimbrites and andesitic to dacitic lavas, with occasional dacitic dome complexes. Later, rhyolitic and dacitic dome complexes (~55–52 Ma) represent the waning stages of volcanism during the latest Upper Paleocene and the earliest Eocene. Lower Eocene porphyry intrusives (~48–43 Ma) mark the end of the magmatism in the basin and a change to a compressive tectonomagmatic regime. 40Ar/39Ar geochronology of hydrothermal adularia from the El Peñon deposit yields ages between 51.0±0.6 and 53.1±0.5 Ma. These results suggest that mineralization occurred slightly after the emplacement of the El Peñon rhyolitic dome at 54.5±0.6 Ma (40Ar/39Ar age) and was closely tied to later dacitic–rhyodacitic bodies of 52 to 53 Ma (K–Ar ages), probably as short-lived pulses related to single volcanic events.  相似文献   

4.
Four slate samples from subduction complex rocks exposed on the south coast of New South Wales, south of Batemans Bay, were analysed by K–Ar and 40Ar/39Ar step‐heating methods. One sample contains relatively abundant detrital muscovite flakes that are locally oblique to the regional cleavage in the rock, whereas the remaining samples appear to contain sparse detrital muscovite. Separates of detrital muscovite yielded plateau ages of 505 ± 3 Ma and 513 ± 3 Ma indicating that inheritance has not been eliminated by metamorphism and recrystallisation. Step‐heating analyses of whole‐rock chips from all four slate samples produced discordant apparent age spectra with ‘saddle shapes’ following young apparent ages at the lowest temperature increments. Elevated apparent ages associated with the highest temperature steps are attributed to the presence of variable quantities of detrital muscovite (<1–5%). Two whole‐rock slate samples yielded similar 40Ar/39Ar integrated ages of ca 455 Ma, which are some 15–30 million years older than K–Ar ages for the same samples. These discrepancies suggest that the slates have also been affected by recoil loss/redistribution of 39Ar, leading to anomalously old 40Ar/39Ar ages. Two other samples, from slaty tectonic mélange and intensely cleaved slate, yielded average 40Ar/39Ar integrated ages of ca 424 Ma, which are closer to associated mean K–Ar ages of 423 ± 4 Ma and 409 ± 16 Ma, respectively. Taking into account the potential influences of recoil loss/redistribution of 39Ar and inheritance, the results from the latter samples suggest a maximum age of ca 440 Ma for deformation/metamorphism. The current results indicate that recoil and inheritance problems may also have affected whole‐rock 40Ar/39Ar data reported from other regions of the Lachlan Fold Belt. Therefore, until these effects are adequately quantified, models for the evolution of the Lachlan Fold Belt, that are based on such whole‐rock 40Ar/39Ar data, should be treated with caution.  相似文献   

5.
The Tari‐Koroba district is at an altitude of about 1,500 m in the Southern Highlands of Papua in an imbricate province in which uplift and faulting occurred in Pliocene times. In the southeast of the area Miocene limestones are overlain by volcanic rocks erupted about 0.85 m.y. ago, as determined from K‐Ar measurements. These middle Pleistocene flows crossed the course of the Tagari River, damming its waters to form Lake Haibuga. Sediments accumulated in this and neighbouring basins. At one site near Pureni, diprotodontid remains were found; wood associated with the deposit gave a 14C age of 32,700 yrs B.P. Pollen from this fossiliferous horizon and from another section nearby (14C age of 38,600 yrs B.P.) indicate that the climate was cooler than at present and perhaps equivalent to that experienced at about 600 m higher elevation today. Pollen from stratigraphically lower samples indicate still colder conditions and may reflect a glacial phase in the highlands earlier than the last glaciation.  相似文献   

6.
K–Ar clay fraction ages of brittle faults often vary with grain size, decreasing in the finer size fractions, producing an inclined age–grain‐size spectrum. K–Ar ages and mineralogical characterization of gouges from two normal faults in the Kongsberg silver mines, southern Norway, suggest that inclined spectra derived from brittle fault rocks reflect the mixing of inherited components with authigenic mineral phases. The ages of the coarsest and finest fractions constrain faulting at c. 260–270 Ma and reactivation around 200–210 Ma, respectively. This study demonstrates how wall‐rock contamination influences the K–Ar age of the coarsest size fractions and that authigenic illite and K‐feldspar can crystallize synkinematically under equivalent conditions and thus yield the same K–Ar ages.  相似文献   

7.
Hornblende from the Lone Grove Pluton, Llano Uplift, Texas, has served as an irradiation reference material in 40Ar/39Ar studies for decades. In order to evaluate the apparent age bias that currently exists between the U‐Pb and 40Ar/39Ar systems, zircon and titanite were dated by isotope dilution‐thermal ionisation mass spectrometry (ID‐TIMS) from the same rock from which the hornblende 40Ar/39Ar reference material HB3gr is derived. Zircon U‐Pb data indicate initial crystallisation at 1090.10 ± 0.16 Ma (2s), a date that is 1.7% older than the accepted K‐Ar date (1072 ± 14 Ma, 2s) for HB3gr; an offset that exceeds the typical 0.5–1% bias between the two systems, though remaining within uncertainty due to the large uncertainties in the 40K decay constant. Zircon data are presented using both EARTHTIME tracers ET535 and ET2535 and are statistically indistinguishable. Single grain titanite analyses range between 1082 ± 0.75 and 1086 ± 0.81 Ma (2s) and are interpreted to record the subsequent cooling following crystallisation at rates between 30 and 50 °C Ma?1. This is supported by the observation that hornblende 40Ar/39Ar dates corrected for decay constant bias are resolvably younger than the zircon U‐Pb date and in good agreement with titanite U‐Pb dates, permitting the conclusion that both titanite U‐Pb and hornblende 40Ar/39Ar systems provide a record of cooling.  相似文献   

8.
K‐Ar total rock age determinations have been made on a sequence of metasedimentary rocks resting on a 2350 m.y.‐old basement in southern Eyre Peninsula, South Australia. The metasediments have an Rb‐Sr age of 1785 m.y., but K‐Ar isochrons suggest that relatively high temperatures persisted for a further 250 million years before the rocks became systems closed to K and Ar diffusion. A significant amount of 40Ar was trapped in the metasediments at the time of closure of the K‐Ar system, 1550 million years ago.  相似文献   

9.
The chronology of the Solar System, particularly the timing of formation of extra‐terrestrial bodies and their features, is an outstanding problem in planetary science. Although various chronological methods for in situ geochronology have been proposed (e.g., Rb‐Sr, K‐Ar), and even applied (K‐Ar), the reliability, accuracy, and applicability of the 40Ar/39Ar method makes it by far the most desirable chronometer for dating extra‐terrestrial bodies. The method however relies on the neutron irradiation of samples, and thus a neutron source. Herein, we discuss the challenges and feasibility of deploying a passive neutron source to planetary surfaces for the in situ application of the 40Ar/39Ar chronometer. Requirements in generating and shielding neutrons, as well as analysing samples are described, along with an exploration of limitations such as mass, power and cost. Two potential solutions for the in situ extra‐terrestrial deployment of the 40Ar/39Ar method are presented. Although this represents a challenging task, developing the technology to apply the 40Ar/39Ar method on planetary surfaces would represent a major advance towards constraining the timescale of solar system formation and evolution.  相似文献   

10.
We present a breadboard prototype to perform in situ dating applicable to planetary exploration. Based on the K–Ar dating method and using instruments inspired by flight‐proven analytical components, ‘KArMars’ ablated a geological sample under high vacuum with a quadrupled ultraviolet (UV at 266 nm) Nd:YAG laser. During ablation, the K content of the target material was given by laser‐induced breakdown spectroscopy and the released 40Ar was measured with a quadrupole mass spectrometer. Because K was measured as a concentration and 40Ar as a count of atoms, these values were converted using the ablated mass given by the product of the density and the ablated volume. The uncertainties of the age measurement were < 15%. The quality of the K–Ar measurements was enhanced by the advantages of UV laser ablation such as the minimisation of thermal effects on argon diffusion. This work demonstrates that a specialised instrument inspired by this set‐up could provide in situ absolute geochronology with sufficient precision for scientific investigations, particularly where the crater density counting provides higher uncertainties on Mars.  相似文献   

11.
Circumstantial evidence indicates that Gaussberg, an isolated, 370 m high volcanic cone on the Antarctic coast at 57°S, 89°E, is the product of subglacial eruption. The vesicular, highly potassic leucitite, of which Gaussberg is composed, has been dated by K‐Ar and fission‐track methods, the former being applied to leucite concentrates, the latter to glassy leucitite from the ropy‐textured, outer rind of a pillow‐like structure. The K‐Ar geochronology yields an average date of 56 000 ± 5000 years, jwhich is interpreted as defining the time of Gaussberg's formation. The fission‐track work yields a less precise date, which supports the K‐Ar age estimate. These new age determinations indicate that previously published K‐Ar age determinations of 20 Ma and 9 Ma for Gaussberg should be rejected.  相似文献   

12.
By using the 40Ar-39Ar chronological method to date K-feldspar from K-feldspar granite in the Qiaohuote copper district, the authors obtained a plateau age of 274.78±0.44 Ma and an isochron age of 272.7±3.0 Ma. Because there is no tectonic deformation overprinted or hydrothermal alteration in the K-feldspar granite intrusion after its emplacement, the 40Ar-39Ar age represents the crystallization age of K-feldspar in K-feldspar granite, i.e. the late crystallization age of the K-feldspar granite intrusion, which indicates that the K-feldspar granite formed in the intraplate extensional stage during the Early Permian. Moreover, based on the spatial relationship between the K-feldspar granite intrusion and copper orebodies, variations of copper ore grade, REE characteristics of K-feldspar granite and copper ores, and H and O isotopic compositions of fluid inclusions in copper ores, the metallogenesis of the Qiaohuote copper deposit is directly related to intrusive activities of the K-feldspar granite, and  相似文献   

13.
The Zhujiachong eclogite in the south‐eastern Dabieshan ultra‐high‐P terrane has been overprinted during retrograde metamorphism, with the development of garnet‐amphibolite mineral assemblages in most rocks in the outcrop. This study is focused on providing age constraints for the retrograde amphibolite facies and greenschist facies mineralogy by 40Ar/39Ar dating. By applying a novel approach of combining three different techniques for extracting argon: laser stepwise heating of single grains and small separates, a spot fusion technique by UV‐laser ablation microprobe on polished sections and an in vacuo crushing technique for liberating radiogenic argon from fluid inclusions, it is demonstrated that an internally consistent thermal history can be derived. The 40Ar/39Ar ages indicate that phengite formed before 265 Ma, probably during the ultra‐high‐P event. Ages associated with amphibolite facies retrograde metamorphism range from 242 to 217 Ma by the analyses of amphibole. Ages of c. 230 Ma were found for the symplectite matrix that formed during retrogression from eclogite pyroxene. Late stage hydrothermal activity leading to the formation of coarse‐grained paragonite and fluid inclusions in vein amphibole was dated at c. 200 Ma. These age results agree well with the mineral crystallization sequence observed from thin‐sections of the retrograded eclogite: phengite → paragonite and amphibole in matrix → amphibole in the corona.  相似文献   

14.
Authigenic K‐feldspar was investigated in two Albian to Turonian sections in Israel using K‐Ar and Ar‐Ar dating, X‐ray diffraction, scanning electron microscopy and chemical analysis. Both sections comprise a similar succession of shallow‐marine limestones, dolomites and marls, with some sandstone and shale beds of continental origin. The HCl‐insoluble residue fraction of the studied samples consists of clays, quartz, feldspars, goethite and trace amounts of heavy minerals. Most of the insoluble residues have a relatively high K‐feldspar content that has an adularia habit and is concentrated in the 4–7 µm size fraction. The authigenic origin of the K‐feldspar in the fine silt fraction is indicated by its high content relative to quartz, the uniform and idiomorphic shape of the crystals and its limited size range. Of the fine silt (4–7 or 4–10 µm) separates, 40% have ages that are similar to stratigraphic ages within the analytical and biostratigraphic errors. Ar‐Ar dating of a fine silt fraction with 94% K‐feldspar (4–10 µm, sample GYP 7) yields a plateau age identical to the total gas age and similar to the stratigraphic age. These results indicate that the K‐Ar age is not a mixture between detrital and late diagenetic K‐feldspar ages, but is rather an age of formation within a few million years after deposition. It is suggested that the early formation of the K‐feldspar was associated with dolomitization and was induced by residual brines as part of a reflux process.  相似文献   

15.
Silcretes on the N.S.W. coast near Ulladulla have long been attributed to. a sub‐basaltic origin, but field evidence is at odds with all variations of the sub‐basaltic hypothesis, and one site shows good evidence that the basalt post‐dates the silcrete. K‐Ar ages averaging 29.7 ± 0.5 Ma from the basalts provide a minimum age for silcrete development in this area. Furthermore, the K‐Ar dates, together with evidence for an erosional rather than tectonic origin of the coastal lowland, demonstrate that the adjacent tablelands reached their present elevation prior to the mid‐Oligocene.  相似文献   

16.
Geochronological data, combined with field and petrological evidence, constrain the timing and rate of near‐isothermal decompression at granulite facies temperatures in rocks from the Lützow‐Holm Complex of East Antarctica. Granulite facies gneisses from Rundvågshetta in Lützow‐Holm Bay experienced a peak metamorphic temperature of over 900 °C at c. 11 kbar, as evidenced by primary orthopyroxene–sillimanite‐bearing assemblages, and secondary cordierite–sapphirine‐bearing assemblages in metapelites. Peak metamorphic assemblages show strong preferred mineral orientation, interpreted to have developed synchronously with pervasive ductile deformation. Zircon from a syndeformational leucosome has a U–Pb age of 517±9 Ma, which is interpreted as a melt crystallization age. This age provides the best estimate of the time of peak metamorphic conditions. The post‐peak metamorphic history is characterized by near‐isothermal decompression, recorded by mineral textures in a variety of rock compositions. Field and textural relations indicate that decompression post‐dated pervasive ductile deformation. K/Ar and 40Ar/39Ar ages from hornblende and biotite represent closure ages during cooling subsequent to decompression, and indicate cooling to temperatures between c. 350 and 300 °C by c. 500 Ma, thus placing a lower time limit on the duration of the high‐temperature isothermal decompression episode. The combination of the zircon age from a syndeformational melt with K/Ar and 40Ar/39Ar closure ages indicates that near‐isothermal decompression from c. 11 to c. 4 kbar at granulite facies temperatures, followed by cooling to c. 300 °C, took place within a time interval of 20±10 Myr. Simple one‐dimensional models for exhumation‐controlled cooling indicate that these data require exhumation rates of the order of c. 3 km Myr?1 for several million years, then cessation of exhumation followed by relatively isobaric cooling during thermal re‐equilibration.  相似文献   

17.
Abstract This paper discusses the relationships between granitic magmatism and gold mineralization and the exhumation history of the Dapinggou gold deposit in northern Altun, NW China based on the geochronological data, including zircon U‐Pb ages, Rb‐Sr isochron age and 40Ar‐39Ar dating and MDD modeling data. The main granitic magmatism age in this area is attained from the ID TIMS U‐Pb geochronology of zircons from the Kuoshibulak granite, the biggest granite in the northern Altun area, which gives a concordant age of 443±5 Ma in the Late Ordovician. Zircon ID TIMS U‐Pb geochronology of the West Dapinggou biotite granite west of the Dapinggou gold deposit gives concordant ages around 485±10 Ma, representing the early stage of Ordovician magmatism. The Rb‐Sr isochron age (487±21 Ma) of 6 quartz inclusion samples from quartz veins in this gold deposit is very close to that of the West Dapinggou granite. MDD modeling of step heating 40Ar‐39Ar data of K‐feldspar from the same West Dapinggou biotite granite gives a rapid cooling history from 300°C to 150°C during 200–185 Ma. According to the age data and the geological setting of this area, we conclude that the Dapinggou gold deposit was formed at the early stage of the Early Paleozoic granitic magmatism in northern Altun, and exhumed in the Early Jurassic due to the normal faulting of the Lapeiquan detachment. The Early Paleozoic magmatism may provide heat source and produce geological fluids, which are very important for gold mineralization. Exhumation in the Mesozoic caused the uplift of the deposit towards the ground surface.  相似文献   

18.
Australia's Eastern Highlands are a conspicuous manifestation of a tectonic regime that has been previously shown to go back at least 65 Ma. This review of the Mesozoic stratigraphy of eastern Australia gives evidence of a very different regime before 95 Ma, related to the presence of a plate boundary close to the present east coast of the continent.

During the prior regime, cratonic sedimentation in eastern Australia was dominated by labile sediment from an andesitic orogen coincident with the coast north of Brisbane during the Cretaceous, and further offshore in the Jurassic. Whereas the plate boundary north of Brisbane appears to have been simply convergent, that south to Bass Strait may have experienced prolonged oblique‐slip, manifested in the Jurassic by alkaline volcanism within the SE Highlands terrain.

Following a Cenomanian (95–90 Ma) phase of transition, during which the eastern Australian plate boundary may have resembled that margining western North America at present, the plate boundary migrated away from mainland Australia, as is evidenced by the subsequent dominance of quartzose sedimentation on the craton, and the fission‐track and palaeomagnetic evidence of rapidly falling geotherms in the Late Cretaceous. The Eastern Highlands were initiated around 90 Ma ago, and the crestline subsequently migrated west from an initial location at the present coastline.

The geography and history of the Eastern Highlands are inconsistent with concepts of continental margin development based on analogues outside the Pacific realm. The Highlands are an intrinsic element of a continent formerly fronting the Pacific Ocean, but now abutting a back‐arc basin.  相似文献   

19.
The southern part of the Sydney Basin of New South Wales is comprised mainly of Permian and Triassic marine to freshwater clastic sedimentary rocks. Within this sequence there are six latite extrusive units, several medium‐sized monzonite intrusions and a large number of small to medium‐sized basic to intermediate intrusions. Thin basaltic flows were extruded onto the Tertiary topographic surface. All of these rocks are relatively undeformed.

Radiometric (K‐Ar) dating has previously been carried out on Mesozoic and Tertiary intrusions and flows of the southwestern portion of the Sydney Basin. However, relatively few Permian, and no post‐Permian, K‐Ar dates have been published for the southeastern portion of the basin. The present investigation provides nine K‐Ar dates from the latter area.

Four extrusive and intrusive units have been confirmed as Permian in age (238 ± 6; 241 ± 4; 245 ± 6; and 251 ± 5 m.y.). Five post‐Permian (on stratigraphic criteria) intrusions yielded Tertiary ages (26.2 ± 3.0; 47.9 ± 2.5; 49.0 ± 4.0; 49.4 ± 2.0; and 58.8 ± 3.5 m.y.). The Permian ages agree with previously published K‐Ar data from the southeastern Sydney Basin, and the Tertiary ages complement and extend the data from the southwestern portion of the basin. However, no Mesozoic K‐Ar dates were obtained from the southeastern Sydney Basin. The Tertiary intrusions may have been emplaced as a result of rifting between Australia and New Zealand, or between Australia and Antarctica, or both.  相似文献   

20.
The Tieshanlong tungsten‐polymetallic deposit is a large wolframite deposit of quartz vein type located in southern Jiangxi, South China. It is genetically related to a high‐K S‐type granite. Seven pyrite and two wolframite samples, selected for He and Ar isotope analyses, yielded 3He/4He values of 0.04–0.98 Ra, 40Ar/36Ar ratios of 293.5–368.0, and 38Ar/36Ar ratios of 0.176–0.193. These data indicate that the ore‐forming fluids associated with the deposit did not result from a simple mixing of the crustal‐ and mantle‐derived end‐member fluids, but that primeval meteoric fluids were also involved in the generation of the associated granitic magma by partial melting of crustal metasedimentary rocks. Further investigations show that only minimal He from the mantle was added during generation of the associated granitic magma. It is postulated that boiling and second mixing with “new” meteoric fluids took place during migration of magmatic‐hydrothermal fluids into wall‐rock fractures, resulting in a drastic decrease of their metal transport capacity, which triggered the tungsten‐polymetallic mineralization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号