首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
New structural and seismologic evidence from the Rwenzori Mountains, Uganda, indicate that continental rifts can capture and rotate fragments of the lithosphere while rift segments interact, in a manner analogous to the interaction of small-scale fractures. The Rwenzori Mountains are a basement block within the western branch of the East African Rift System that is located at the intersection of two rift segments and is apparently rotating clockwise. Structural data and new seismological data from earthquake epicentres indicate a large-scale, 20-km-long transsection fault is currently detaching the Rwenzori micro-plate on its northern margin from the larger Victoria plate (Tanzania craton), whereas it is already fully detached in the south. We propose that this fault develops due to the rotation of the Rwenzori block. In a numerical model we show how rift segment interaction, block rotation and the development of transsection faults (faults that cut through the Rwenzori Mountains) evolve through time. The model suggests that uplift of the Rwenzori block can only take place after the rift has opened significantly, and rotation leads to the development of transsection faults that connect two rift segments, so that the block is captured within the rifts. Our numerical model suggests that the majority of the uplift has taken place within the last 8 Ma.  相似文献   

2.
In East Africa, the feedback between tectonic uplift, erosional denudation and associated possible climate changes is being studied by a multidisciplinary research group, ‘Riftlink’. The group's focus is the Albertine Rift, the northern part of the western branch of the East African Rift System, and in particular the rising Rwenzori Mountains that stretch along the border of the D.R. Congo and Uganda. Major questions relate to the timing of the formation of the Rwenzori Mountains, and whether the height of these mountains (> 5000 m) relates to rift movements in Neogene times, or represents an old basement block that formed a topographic high long before. Though, at first, research concentrated on the eastern (Ugandan) part of the Albertine Rift and Rwenzori Mountains, it has now moved further to the west to the D.R. Congo. A first field‐campaign, covering the area from northern Lake Edward along the rift shoulder up to the Blue Mountains at Lake Albert, was conducted in summer 2009, in cooperation with the Ruwenzori State University of Butembo. Here, we present a brief overview of the field‐campaign, with impressions gathered on the morphology and geology of the study area.  相似文献   

3.
Western Uganda is a key region for understanding the development of the western branch of the East African rift system and its interaction with pre-existing cratonic lithosphere. It is also the site of the topographically anomalous Rwenzori Mountains, which attain altitudes of >5000 m within the rift. New structural and geochronological data indicate that western Uganda south and east of the Rwenzori Mountains consists of a WSW to ENE trending fold and thrust belt emplaced by thick-skinned tectonics that thrust several slices of Proterozoic and Archaean units onto the craton from the south. The presence of Archaean units within the thrust stack is supported by new Laser-ICP-MS U–Pb age determinations (2637–2584 Ma) on zircons from the Rwenzori foothills. Repetition of the Paleoproterozoic units is confirmed by mapping the internal stratigraphy where a basal quartzite can be used as marker layer, and discrete thrust units show distinct metamorphic grades. The thrust belt is partially unconformably covered by a Neoproterozoic nappe correlated with the Kibaran orogenic belt. Even though conglomerates mark the bottom of the Kibaran unit, intensive brittle fault zones and pseudotachylites disprove an autochthonous position. The composition of volcanics in the Toro-Ankole field of western Uganda can be explained by the persistence of a cratonic lithosphere root beneath the northwardly thrusted Archaean and Palaeoproterozoic rocks of westernmost Uganda. Volcanic geochemistry indicates thinning of the lithosphere from >140 km beneath Toro-Ankole to ca. 80 km beneath the Virunga volcanic field about 150 km to the south. We conclude that the western branch of the East African rift system was initiated in an area of thinner lithosphere with Palaeoproterozoic cover in the Virunga area and has propagated northwards where it now abuts against thick cratonic lithosphere covered by a thrust belt consisting of gneisses, metasediments and metavolcanics of Neoarchaean to Proterozoic age.  相似文献   

4.
This contribution discusses the development of the Palaeoproterozoic Buganda-Toro belt in the Rwenzori Mountains and its influence on the western part of the East African Rift System in Uganda. The Buganda-Toro belt is composed of several thick-skinned nappes consisting of Archaean Gneisses and Palaeoproterozoic cover units that are thrusted northwards. The high Rwenzori Mountains are located in the frontal unit of this belt with retrograde greenschist facies gneisses towards the north, which are unconformably overlain by metasediments and amphibolites. Towards the south, the metasediments are overthrust by the next migmatitic gneiss unit that belongs to a crustal-scale nappe. The southwards dipping metasedimentary and volcanic sequence in the high Rwenzori Mountains shows an inverse metamorphic grade with greenschist facies conditions in the north and amphibolite facies conditions in the south. Early D1 deformation structures are overgrown by cordierite, which in turn grows into D2 deformation, representing the major northwards directed thrusting event. We argue that the inverse metamorphic gradient develops because higher grade rocks are exhumed in the footwall of a crustal-scale nappe, whereas the exhumation decreases towards the north away from the nappe leading to a decrease in metamorphic grade. The D2 deformation event is followed by a D3 E-W compression, a D4 with the development of steep shear zones with a NNE-SSW and SSE-NNW trend including the large Nyamwamba shear followed by a local D5 retrograde event and D6 brittle reverse faulting. The Palaeoproterozoic Buganda-Toro belt is relatively stiff and crosses the NNE-SSW running rift system exactly at the node where the highest peaks of the Rwenzori Mountains are situated and where the Lake George rift terminates towards the north. Orientation of brittle and ductile fabrics show some similarities indicating that the cross-cutting Buganda-Toro belt influenced rift propagation and brittle fault development within the Rwenzori Mountains and that this stiff belt may form part of the reason why the Rwenzori Mountains are relatively high within the rift.  相似文献   

5.
The Rwenzori mountains in western Uganda, with a maximum elevation of more than 5,000 m, are located within the Albertine rift valley. We have deployed a temporary seismic network on the Ugandan side of the mountain range to study the seismic velocity structure of the crust and upper mantle beneath this section of the rift. We present results from a receiver-function study revealing a simple crustal structure along the eastern rift flank with a more or less uniform crustal thickness of about 30 km. The complexity of inner-crustal structures increases drastically within the Rwenzori block. We apply different inversion techniques to obtain reliable results for the thickness of the crust. The observations expose a significantly thinner crust beneath the Rwenzori range with thickness values ranging from about 20–28 km beneath northern and central parts of the mountains. Our study therefore indicates the absence of a crustal root beneath the Rwenzori block. Beneath the Lake Edward and Lake George basins we detect the top of a layer of significantly reduced S-wave velocity at 15 km depth. This low-velocity layer may be attributed to the presence of partial melt beneath a region of recent volcanic activity.  相似文献   

6.
With heights of 4–5 km, the topography of Rwenzori Mountains, a large horst of old crustal rocks located inside a young passive rift system, poses the question “Why are the Rwenzori Mountains so high?”. The Cenozoic Western Rift branch of the East African Rift System is situated within the Late Proterozoic mobile belts between the Archean Tanzania Craton and Congo Craton. The special geological setting of the massif at a rift node encircled by the ends of the northern Western Rift segments of Lake Albert and Lake Edward suggests that the mechanism responsible for the high elevation of the Rwenzoris is related to the rifting process. Our hypothesis is based on the propagation of the rift tips, surrounding the stiff old lithosphere at Rwenzori region, thereby triggering the delamination of the cold and dense mantle lithosphere (ML) root by reducing viscosity and strength of the undermost lower crust. As a result, this unloading induces fast isostatic pop-up of the less dense crustal Rwenzori block. We term this RID—“rift induced delamination of Mantle Lithosphere”. The physical consistency of the RID hypothesis is tested numerically. Viscous flow of 2D models is approximated by a Finite Difference Method with markers in an Eulerian formulation. The equations of conservation of mass, momentum and energy are solved for a multi-component system. Based on laboratory data of appropriate rock samples, a temperature-, pressure- and stress-dependent rheology is assumed. Assuming a simple starting model with a locally heated ML, the ML block between the weakened zones becomes unstable and sinks into the asthenosphere, while the overlying continental crust rises up. Thus, RID seems to be a viable mechanism to explain geodynamically the extreme uplift. Important conditions are a thermal anomaly within the ML, a ductile lower crust with visco-plastic rheology allowing significant strength reduction and lateral density variations. The special situation of a two-sided rifting or offset rift segments to decouple the ML laterally from the surrounding continental lithosphere seems to be most decisive. Further support for the RID mechanism may come from additional crustal thickness and an extensive stress field. Some parameters, such as the excess temperature and yield stress, are very sensitive, small changes determine whether delamination takes place or not.  相似文献   

7.
The Rwenzori Mountains (Mtns) in west Uganda are the highest rift mountains on Earth and rise to more than 5,000 m. We apply low-temperature thermochronology (apatite fission-track (AFT) and apatite (U–Th–Sm)/He (AHe) analysis) for tracking the cooling history of the Rwenzori Mtns. Samples from the central and northern Rwenzoris reveal AFT ages between 195.0 (±8.4) Ma and 85.3 (±5.3) Ma, and AHe ages between 210.0 (±6.0) Ma to 24.9 (±0.5) Ma. Modelled time–temperature paths reflect a protracted cooling history with accelerated cooling in Permo-Triassic and Jurassic times, followed by a long period of constant and slow cooling, than succeeded by a renewed accelerated cooling in the Neogene. During the last 10 Ma, differentiated erosion and surface uplift affected the Rwenzori Mtns, with more pronounced uplift along the western flank. The final rock uplift of the Rwenzori Mtns that partly led to the formation of the recent topography must have been fast and in the near past (Pliocene to Pleistocene). Erosion could not compensate for the latest rock uplift, resulting in Oligocene to Miocene AHe ages.  相似文献   

8.
Abstract

For the determination of the tectonic stress field in the region of the Jura Mountains, three different relief techniques have been used in 18 test sites. In six test sites measurements have been carried out in horizontal boreholes using the doorstopper method. In the remaining test sites measurements were made in vertical boreholes by the doorstopper method (8), triaxial strain cell method (3) and borehole slotter (1). Additionally, analyses of borehole breakouts from six deep wells are presented.

Orientation of maximum horizontal stress clearly deviates from the uniform NW-SE orientated central and western European stress field. Local stress sources, which are probably related to active decollement tectonics in the Jura Mountains, may explain the deviation in stress orientations in comparison to the foreland. Normal stress magnitudes perpendicular to the trend of compressional structures in the Folded Jura are largest in the southeastern Upper Rhine Graben and its southwards prolongation into the Jura Mountains. Low stress magnitudes are characteristic for the eastern termination, intermediate ones for the southern foreland of the Jura Mountains.  相似文献   

9.
With its exceptionally steep topography, wet climate, and active faulting, landslides can be expected to occur in the Rwenzori Mountains. Whether or not this region is prone to landsliding and more generally whether global landslide inventories and hazard assessments are accurate in data-poor regions such as the East African highlands are thus far unclear. In order to address these questions, a first landslide inventory based on archive information is built for the Rwenzori Mountains. In total, 48 landslide and flash flood events, or combinations of these, are found. They caused 56 fatalities and considerable damage to road infrastructure, buildings, and cropland, and rendered over 14,000 persons homeless. These numbers indicate that the Rwenzori Mountains are landslide-prone and that the impact of these events is significant. Although not based on field investigations but on archive data from media reports and laymen accounts, our approach provides a useful complement to global inventories overlooking this region and increases our understanding of the phenomenon in the Rwenzori Mountains. Considering the severe impacts of landslides, the population growth and related anthropogenic interventions, and the likelihood of more intense rainfall conditions, there is an urgent need to invest in research on disaster risk reduction strategies in this region and other similar highland areas of Africa.  相似文献   

10.
姚盼  王杰  林文旺  曾兰华  陈仁容 《冰川冻土》2022,44(4):1260-1269
确定冰川侵蚀的主控因素及其与各影响因素间的相互作用方式,不仅对深入认识冰川侵蚀的物理机制和理解冰川作用区地貌演化具有重要的意义,也是探讨构造、气候、地形间相互关系的根本。然而,以往的学者仅在构造活动略单一的区域研究冰川侵蚀的主控因素,致使对构造的影响认识不足,那么,构造是否是冰川侵蚀的主控因素呢?又是如何作用于冰川侵蚀?北天山第四纪冰川作用规模巨大,留下了丰富的冰川遗迹,其气候与构造条件也多样,因而成为探讨上述问题的理想区域。本文在北天山北坡自西向东选取了7个冰川流域,基于每个流域的Hkr值和冰川侵蚀影响因子的定性定量数据,分析了该区域冰川侵蚀的分布规律及其影响因素。结果表明,北天山各流域冰川侵蚀自西向东有减小趋势,该变化趋势是构造、气候、地形共同作用所致。其中,山顶高度和降水对冰川侵蚀的影响最显著,两者均通过对冰川规模施加作用来控制冰川侵蚀,而构造也可能通过影响顶点高程、积累区面积、冰川规模,进而作用于冰川侵蚀,但是其是否发挥主要作用有待进一步认识。因此,冰川规模可能才是导致北天山各冰川流域侵蚀差异的根本原因。  相似文献   

11.
We examined spatial distribution characteristics of extreme hydrological events in Xinjiang, China, using district data from 1901 to 2010. Frequency distribution showed a general symmetry along the Tianshan Mountains, with even distribution in Junggar Basin and Tarim Basin. Frequency was more in the north-west than in the south-east. The maximum incidence was in west Tianshan Mountains and generally decreased south-eastward. There were significant regional variations in type distribution. Rainstorm floods were more common in central Xinjiang. Hailstorms mainly occurred in the central Junggar Basin, the southern slope of the western Tianshan Mountains and north-west of Tarim Basin. Debris flow was mainly distributed in Ili Valley and the central northern Tianshan Mountains. Glacier lake outburst floods were more common in the Karakorum Mountains and southern slopes of the western Tianshan Mountains. Ice floods were mainly distributed in the western Tianshan Mountains. Snow hazards were mainly distributed in the wide northern areas, especially the Altai Mountains and Hamilton Basin. Snowmelt floods were mainly distributed in the Tacheng Basin and Ili Valley. The incidence of extreme hydrological events was greatly affected by weather systems and terrain features.  相似文献   

12.
柴达木盆地西部中—新生代沉积构造演化   总被引:15,自引:2,他引:13       下载免费PDF全文
通过柴达木盆地西部茫崖-赛什腾山地表地质、航磁、重力、大地电磁测深和地震资料的综合分析,认为柴达木盆地夹持在昆北地块与赛什腾构造带之间,其中包括柴达木地块与祁连地块南缘2个一级构造单元和昆北地体北缘,柴达木盆地,赛什腾构造带和祁连地块南部的苏干湖盆地等4个二级构造单元。盆地的总体结构表现为东昆仑山和祁连山相向向盆地挤压对冲,盆地中部沉降的构造格局。盆地内部的构造样式以自盆地边缘至中心以此形成背斜构造为显著特征,背斜两翼多发育逆断层,构成“两断夹-隆”的构造格局。挤压应力主要来自南西方向、北东方向起阻挡作用。在两侧造山带的强烈挤压作用下,侏罗纪时期在祁连造山带南缘形成并不典型的前陆盆地,古近纪至新近纪时期则在祁连造山带与昆仑造山带之间形成双侧前陆盆地,第四纪属挤压坳陷盆地。  相似文献   

13.
大兴安岭呼中火山岩区中生代古构造应力场初探   总被引:6,自引:1,他引:5  
大兴安岭火山岩带北段呼中火山岩区,在中-晚侏罗世时期,最大主压应力轴方向为NW266°~316°,早白垩世最大主压应力轴为NE12°~50°,显示侏罗纪与白垩纪应力场的应力状态是截然不同的,但都处于拉张环境下。中-晚侏罗世由于NNE-SSW向的拉伸应力场的作用,在本区北部发生构造岩浆活动,形成了上黑龙江断陷盆地如NWW向展布的劲涛-蒙克山中基性火山喷发带,派生的NEE向张扭性应力使前中生代基底构造重新活动,形成大面积火山喷发。而早白垩世在NE-SW向拉伸应力场作用下,"额尔古纳地块"东部形成拗陷带,火山基底构造为NE-NNE向。   相似文献   

14.
1996年川滇地区发生的一次应力转向事件   总被引:16,自引:0,他引:16  
王凯英  马瑾  顾国华  刁桂苓 《地学前缘》2003,10(Z1):233-239
1994— 2 0 0 0年间川滇地区小震震源机制解的分析结果显示 ,川滇地区的应力场存在以丽江—小金河断裂为界的分区特征 :丽江—小金河断裂以北地区 (北区 )存在双重力源应力场 ,而南部地区(南区 )应力方向单一 ;并发现北区在 1996年前后发生过一次应力场转向事件 ,转变前后的应力主轴方位分别对应双重力源的两个方向 ,反映了双重力源在北区随时间的相互作用。南区应力场较为平稳 ,在此期间几乎无变化。GPS测量结果显示 ,1998— 2 0 0 0年丽江—小金河断裂带的活动方式与新构造运动时期的累积位移相反 ,也表明了川滇北部地区应力场发生了转变。  相似文献   

15.
The present study is based on the interpretation of more than 1300 km of 16 kJ sparker seismic profiles recorded in July 1990, during the Cruise T-41 of the Geological Institute of Urbino. The investigated area extends along the 41st parallel in the central Tyrrhenian Sea between the northern Sardinian margin to the west and the Latium–Campanian margin to the east. This zone, situated on continental crust, marks the boundary between the northern Tyrrhenian and the southern Tyrrhenian domains. A kinematic reconstruction is presented, based on the age-dating of the recognized structures (i.e. normal faults, reverse faults, anticline and flower structures). The evolution of the ‘41st parallel zone’ can be described in terms of polyphase tectonics characterized by different orientations of the stress field during time. The direction of the normal fault-trends, turned clockwise, striking NE–SW in the late Tortonian–Messinian, E–W in the early Pliocene, NNW–SSE in the late Pliocene and N–S during the Quaternary. The concurrence of compressional and strike-slip deformations suggests oblique shear motions across the 41st parallel. The occurrence of late Pliocene–Quaternary tectonic activity in the northern Tyrrhenian Sea, locally characterized by inversion tectonics, suggests active mechanisms (intraplate compression?) superimposed on the post-rift subsidence.  相似文献   

16.
华南构造演化的基本特征   总被引:95,自引:11,他引:84  
舒良树 《地质通报》2012,31(7):1035-1053
华南至少经历了4期区域规模的大陆动力学过程,除新元古代和晚中生代具有活动陆缘背景外,均在板块内部发生并完成。华夏块体是一个以新元古代岩石为主体构成的前南华纪基底,不是稳定的克拉通古陆,经历了聚合-裂解-再聚合的复杂构造演化。志留纪发生的板内碰撞-拼合事件使华夏块体与扬子块体再次缝合,形成真正统一的中国南方大陆。在震旦纪—早侏罗世期间,整个华南基本处于陆内滨海-浅海-斜坡环境,内部没有切穿岩石圈的断层,没有大规模幔源岩浆和火山喷发的记录,多次构造变形与岩浆活动均在统一的华南岩石圈之上进行。经过早—中侏罗世的构造体制转换,才演化成为晚中生代西太平洋活动大陆边缘的一部分。从早到晚,华南岩石圈经历了多期、幕式的生长,以侧向增生为主(块体拼合),垂向生长为辅(岩浆上侵)。到晚中生代,在古太平洋板块俯冲和陆内伸展的背景下,形成了独特的华南盆岭构造。长期的板内构造演化和多期的花岗岩浆活动使华南具有很好的成矿条件,成为各种矿产与资源的富集区。新元古代南华纪和晚中生代晚侏罗世—早白垩世是华南最有利的成矿期,尤以后者矿种最多、储量最大。  相似文献   

17.
充分应用GPS、区域水准、跨断层等地形变观测资料, 借助非震负位错反演, 结合地震活动, 综合研究2001年11月14日昆仑山Ms8.1级地震对青藏块体东北缘地壳运动与应变积累的影响。通过分析笔者认为, 青藏块体内部Ms8.1级巨大地震能量释放产生的扰动应力场对NE向主压背景应力场的调制作用, 导致块体边界构造区域地壳差异运动和应力应变状态发生变化。其中, 对阿尔金断裂东段与祁连山断裂带西段的应变积累状态反映减缓为主的影响, 而对祁连山断裂带中东段则反映促进应变积累为主的影响。这种影响是一定时期、一定程度的。近期青藏块体东北缘区域应力场处于昆仑山、玉门、民乐等地震后的恢复状态。而由2008年5月12日汶川Ms8.0地震后有限的GPS、跨断层短水准观测资料, 可推测汶川地震对甘川交界东段-甘川陕交界区应变积累状况一定程度促进影响。  相似文献   

18.
Geochemical and new isotopic (U-Pb, Sm-Nd) data on the Mesoproterozoic metaigneous complexes of the Rayner Province in central East Antarctica (Enderby Land-Kemp Land and the northern Prince Charles Mountains) are presented. These territories are mainly composed of amphibolite-to-granulite-facies orthogneisses, many of which are Y-depleted tonalite gneisses and mafic schists. The igneous complexes of their protolith are largely products of anatexis of the lower crust; mantle-derived and upper crustal rocks are less abundant. The geochemical features of the mafic rocks indicate that they crystallized from high-temperature plume-related mantle melts and low-temperature lithospheric melts. As follows from the published and new Nd model ages, the Rayner Province formed and evolved over the Paleo-to-Mesoproterozoic in the regime of accretionary and collisional tectonics with predominance of accretion of the juvenile Paleoproterozoic crust between 1500–2400 Ma. New data show that in the northern Prince Charles Mountains, granite-gneiss protoliths were emplaced ca. 1040 and 930 Ma ago. The Rayner Province is considered to be a long-living mobile belt formed as a result of collision of Paleoproterozoic island-arc terranes and Archean blocks amalgamating into a continental massif 1050–1000 Ma ago in the course of the growth of the Rodinia supercontinent. In the northern Prince Charles Mountains, thermal processes related to magmatic underplating at the base of the crust were probably important.  相似文献   

19.
上扬子北部褶皱带的构造应力场演化规律   总被引:3,自引:1,他引:2  
胡召齐  朱光  张必龙  陈印  魏鑫  张力 《地质科学》2010,45(2):361-379
在对大量逆冲与平移断层运动学详细分析与观测的基础上,本文利用实测断层擦痕矢量数据组进行了区域应力场反演,根据对断层叠加关系的分析及叠加褶皱的验证,划分出上扬子北部经历过3期挤压构造应力场演化,从早到晚分别为:第1期北西—南东向挤压应力场,第2期近东西向挤压应力场和第3期北东—南西向挤压应力场。结合相关的地质现象,认为在这3期挤压应力场作用下分别形成了晚侏罗世末—早白垩世初的湘鄂西隔槽式褶皱带、早白垩世末—晚白垩世初的川东隔档式褶皱带和南大巴山弧形褶皱带。由此表明,上扬子北部褶皱带的形成顺序为湘鄂西隔槽式褶皱带→川东隔档式褶皱带→南大巴山弧形褶皱带。  相似文献   

20.
ABSTRACT The precise nature of the transition between the present-day compressional tectonics in central Mongolia and extensional deformation in the central Baikal rift has still to be determined. For that purpose we have built a comprehensive earthquake focal mechanism data base for the Mongolia – southern Siberia area, from which we map the variations of the stress field. We focus our detailed investigations on the largest seismic event in the transition zone, the 1950 (Mw 6.9) Mondy earthquake, for which several discordant focal mechanisms have been proposed. Using a new approach in source inversion, we resolve the focal mechanism (left-lateral strike slip type on a steep south-dipping fault) and depth (14 ± 3 km) of the Mondy earthquake with a satisfactory accuracy. This seismological information, combined with the geological observations, allows us to decipher the connections between the 1950 mainshock, the local stress tensor and the active faults, which strongly suggest a partitioning of the deformation between two faults, namely the Mondy and Ikhe–Ukghun faults.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号