首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
江西岩背含锡斑岩主要造岩矿物标型特征   总被引:2,自引:0,他引:2  
江西会昌岩背J3-K1时期形成的火山穹窿由火山岩,次火山岩和侵入岩组成,大型斑岩型锡矿床赋存于含黄玉花岗斑岩与(次)流纹斑岩内外接触带上,成矿岩体花岗斑岩和花岗岩富Si富F,其钾长石均为Al/Si有序的低微斜长石,黑云母为含Li富F的铁叶云母或黑鳞云母,具低Mg/ΣFe(MF)值,所含岩浆晚期阶段结晶的黄玉,其成分接近于氟黄玉端元,并具有较短的b轴,不同于玻利维亚Sn-B型,本区为Sn-F型,这是  相似文献   

2.
张宏飞  骆庭川 《现代地质》1994,8(4):453-458
扬子克拉通北缘的铁船山岩体形成于新元古代,其岩石类型为霓石-钠铁门石花岗岩,岩石富碱质、St、Fe、REE和高场强元素,而贫Al、Ca、Mg、Sr、Ba、Co、Ni等组分,δEu=0.20,A/KNC=0.85,K2O+Na2O/Al2O3=1.09,A·R=9.28,岩石属典型的A型花岗岩,Nd、Sr和O同位素示踪反映其成岩物质来自于壳幔混合源区。根据区域地质背景的综合分析,岩体形成于活动陆缘的张裂构造环境,属活动板块边缘拉张型花岗岩。  相似文献   

3.
嵩山A型花岗岩的地质地球化学特征和构造环境   总被引:8,自引:0,他引:8  
薛良伟  尉向东 《岩石学报》1996,12(1):137-144
从岩石学、岩石化学、微量元素、REE等方面讨论了嵩山古元古代钾长花岗岩体的地质地球化学特征,结果表明这些岩体属于A型花岗岩,其SiO2、K2O、K2O/Na2O、F、Ga、Hf、Rb、Y、Co、Ga/Al、REE高,Al2O3、MgO、CaO、Na2O、Ba、Sr、V、Th低,Eu为0.15~0.27,A/CNKM<1.10,这些岩体是与古元古代熊耳群火山岩相伴生的钾质侵入岩,两者均形成于非造山的大陆裂谷环境,表明华北陆台南缘在古元古代晚期处于拉张的非造山构造环境。  相似文献   

4.
吉乃县塔斯特岩体地质地球化学特征及含矿性评价   总被引:5,自引:0,他引:5  
周刚 《新疆地质》2000,18(1):79-84
塔斯特岩体由石英闪长岩、英云闪长岩、二长花岗岩和钾长花岗岩组成。岩石均具有高Na低K,Na2O、Fe2O3、Hf、K/Rb偏高,K2O、CaO、FeO、Rb、Sr、Nb、∑REE、δ^18O、Rb/Sr明显偏低的特点。岩石化学和地球化学特征表明该岩体为形成于火山弧环境的“I”型花岗岩。岩体中Au、Ag、As、Bi、Cu等成矿元素明显富集,并与该岩体中金矿床、矿点的元素组合一致,说明该岩体与Au的成  相似文献   

5.
河南栾川南部地区与Mo—W矿床有关的燕山期花岗岩特征   总被引:9,自引:0,他引:9  
徐兆文  杨荣勇 《岩石学报》1995,11(4):397-408
河南栾川南部分布着一系列与钼钨矿化有关的燕山期花岗岩小岩体。根据这些岩体的含矿性、地质及地球化学特征可将其分为三类。第一类岩体往往与大型一超大型Mo-W矿床有关,岩体顶部有纹层状石英层,石英辉钼矿脉发育。岩石中SiO2、K2O、Rb含量高,K2O/Na2O、Rb/Sr比值高,Al2O3、FeO、CaO、Na2O、Sr含量低。第二类岩体往往与中小型Mo-W矿床有关,岩体中含辉钼矿石英脉发育较差,岩石中SiO2、K2O含量中等,K2O/Na2O比值中等。第三类岩体不含Mo-W矿,岩体中各种脉体不发育,岩石中SiO2、K2O、Rb含量低,K2O/Na2O、Rb/Sr比值相对较低,Al2O3、Na2O、Sr含量相对较高。研究还表明小岩体的分异演化程度与小岩体的合矿性有密切的内在联系。  相似文献   

6.
苏北石桥岩群沉积环境及其大地构造意义探讨   总被引:2,自引:1,他引:1  
樊金涛 《江苏地质》2000,24(3):129-134
石桥岩群是一套浅变质的正常沉积碎屑岩,同位素地质年龄Ma。岩石富SiO2、K2O、REE,贫Al2O3、Mno、Ca、Na2O、Sr,K2O/Na2O、SiO2/AlO3比值高,铕负异常明显,表明它是伸展型断陷盆地边缘之河口浅海环境中沉积的稳定型复理式建造。它揭示苏胶造山带在晋宁期造山后的震旦纪开始裂解,是Rodina超大陆震旦纪裂解的组成部分。  相似文献   

7.
水溪庙不对称层状伟晶岩─细晶岩岩脉生根于黄玉钠长石花岗岩中,其底板部分多以钠质细晶岩为主,顶板部分多以钾硅质伟晶岩为主,中间部分则往往以上述二种岩性的韵律式互层为主。笔者认为,岩脉的母岩浆应该与黄玉钠长石花岗岩的母岩浆相同,是一种富含F、Na的残余花岗质熔浆。岩脉自底板至顶板在组分和结构上的规律性变化,与这种特殊熔浆在岩脉环境下的分异演化、F含量的涨落和黄玉的周期性晶出以及熔浆结晶的动力学机制有关。  相似文献   

8.
水溪庙不对称层状伟晶岩-细晶岩岩脉生根于黄玉钠长石花岗岩中,其底板部分多以钠质细晶岩为主,顶板部分多以钾硅质伟晶岩为主,中间部分则往往以上述二种岩性的韵律式互层为主。笔者认为,岩脉的母岩浆应该与黄玉钠长石花岗岩的母岩浆相同,是一种富含F、Na的残余花岗质熔浆。岩脉自底板至顶板在组分和结构上的规律性变化,与这种特殊熔浆在岩脉环境下的分异演化、F含量的涨落和黄玉的周期性晶出以及熔浆结晶的动力学机制有关  相似文献   

9.
王一先  包志伟 《地球化学》1999,28(4):367-373
赣东北蛇绿混杂岩带中的西湾斜长花岗岩富Al2O3和Na2O,贫K2O;Sr、Ba和Th含量高,而Rb和高场强元素含量很低;LREE富集、无Eu异常;δNd(t)值高,为5.39。(^87Sr/^86Sr)i低,为0.7027。这些特征表明西湾斜长花岗岩是大洋斜长花岗岩。在La/Sm-La图中,该斜长花岗岩与超基性岩和基性岩的分离结晶趋势不一致,所以它不是岩浆分离结晶的产物,而可能是基性岩石小比例部  相似文献   

10.
高加索Eldjurti花岗岩体的生成环境及岩浆演化特征   总被引:4,自引:0,他引:4  
朱永峰 Sobo.  RN 《地质论评》1994,40(6):554-564
Eldjurti岩体是俄罗斯内高加索地区阿尔卑斯造山活动晚期形成的花岗岩体。笔者研究了岩体中部由钻孔构成深达5000m的垂直剖面中岩石的岩石化学特征及岩体的生成环境和岩浆演化特征,结果表明Eldjurti花岗岩体分异成两个岩石化学特征不同的单元,相对偏在性,岩浆分异程度较左的浅部和偏酸性,岩浆分异程度较高的深部。浆结晶分异作用使熔体中Al,Mg,Fe,Ca,Na不断被消耗,Si,K相对富集于残余熔  相似文献   

11.
Two small dykes consisting of a quartz-topaz-loellingite rock type have recently been discovered within the aplitic phase of the Pilot Range granite, near Eldorado, in NE Victoria. Minor biotite, muscovite, chlorite, kaolinite, anatase and pharmacosiderite are associated. Apart from the loellingite, the dykes are similar mineralogically to the ‘topazites’ from New England, NSW. These were considered to be magmatic in origin, based on field relationships and high homogenization temperatures for fluid inclusions in topaz (Eadington & Nashar 1978, Contrib. Mineral. Petrol. 67, 433–438). Although experimental evidence on F-enriched ‘granitic’ systems is inconclusive, the emplacement of the Eldorado topazite dykes most likely involved both magmatic and hydrothermal components operating essentially simultaneously. The topazite melt represented a F-rich residual granitic magma, from which aqueous alkali halide-rich solutions separated during high level intrusion. Separation of these aqueous solutions was responsible for miarolitic cavities into which topaz crystals grew. F-OH equilibration calculations for coexisting topaz-biotite pairs suggest the minerals equilibrated in the presence of hydrothermal solutions of variable composition (in terms of the HF/H2O fugacity ratio), at temperatures around 550°C. Alteration of topaz to muscovite, the precipitation of loellingite and the formation of clay and fluorite in the cavities occurred at progressively lower temperatures. The widespread alluvial topaz in the Beechworth-Eldorado area may be derived from similar quartz-topaz dykes.  相似文献   

12.
Quartz-topaz rocks from the New England district, New South Wales, have mineralogical, textural and field relationships suggesting a magmatic origin. These rocks (called topazites) occur as dykes and sills intruding a biotite granite and sediments in a roof pendant. Where they have intruded into sediments, the topazites have a narrow aureole of induration or hornfels. One type of primary solid inclusion, thought to be silicate glass, has a composition ranging from that of the topazite towards that of nearby granite. Primary fluid inclusions contain an aqueous solution of alkali chlorides with concentrations of total salts to 57 wt%. These fluid inclusions indicate crystallization temperatures in the range 570–620° C, close to the experimentally determined solidus of a vapour-saturated, topaz-normative melt. The presence of primary fluid inclusions indicates crystallization of topazite following saturation of a granitic magma with water and the formation of immiscible silicate and aqueous phases. Partitioning of alkali metals into the aqueous phase left a silicate melt that could only crystallize quartz and topaz.  相似文献   

13.
The Nimchak granite pluton (NGP) of Chotanagpur Granite Gneiss Complex (CGGC), Eastern India, provides ample evidence of magma interaction in a plutonic regime for the first time in this part of the Indian shield. A number of outcrop level magmatic structures reported from many mafic-felsic mixing and mingling zones worldwide, such as synplutonic dykes, mafic magmatic enclaves and hybrid rocks extensively occur in our study domain. From field observations it appears that the Nimchak pluton was a vertically zoned magma chamber that was intruded by a number of mafic dykes during the whole crystallization history of the magma chamber leading to magma mixing and mingling scenario. The lower part of the pluton is occupied by coarse-grained granodiorite (64.84–66.61?wt.% SiO2), while the upper part is occupied by fine-grained granite (69.80–70.57?wt.% SiO2). Field relationships along with textural and geochemical signatures of the pluton suggest that it is a well-exposed felsic magma chamber that was zoned due to fractional crystallization. The intruding mafic magma interacted differently with the upper and lower granitoids. The lower granodiorite is characterized by mafic feeder dykes and larger mafic magmatic enclaves, whereas the enclaves occurring in the upper granite are comparatively smaller and the feeder dykes could not be traced here, except two late-stage mafic dykes. The mafic enclaves occurring in the upper granite show higher degrees of hybridization with respect to those occurring in the lower granite. Furthermore, enclaves are widely distributed in the upper granite, whereas enclaves in the lower granite occur adjacent to the main feeder dykes.Geochemical signatures confirm that the intermediate rocks occurring in the Nimchak pluton are mixing products formed due to the mixing of mafic and felsic magmas. A number of important physical properties of magmas like temperature, viscosity, glass transition temperature and fragility have been used in magma mixing models to evaluate the process of magma mixing. A geodynamic model of pluton construction and evolution is presented that shows episodic replenishments of mafic magma into the crystallizing felsic magma chamber from below. Data are consistent with a model whereby mafic magma ponded at the crust-mantle boundary and melted the overlying crust to form felsic (granitic) magma. The mafic magma episodically rose, injected and interacted with an overlying felsic magma chamber that was undergoing fractional crystallization forming hybrid intermediate rocks. The intrusion of mafic magma continued after complete solidification of the magma chamber as indicated by the presence of two late-stage mafic dykes.  相似文献   

14.
Early Proterozoic Dongargarh granite complex of Central India, intruding the tonalitic to granodioritic Amgaon gneisses and the Nandgaon Group bimodal volcanic suite, comprises three different textural and compositional types, viz., porphyritic granodiorite (PG), coarse equigranular granite (EG) and microgranite (MG). Synplutonic mafic dykes are common in the granite complex. The PG is characterised by rapakivi texture and the EG is the dominant facies and exhibits sporadically developed rapakivi texture. Microgranular enclaves are common in the EG while they are rare in PG. Major and trace element geochemistry of PG shows marked I- type and some occasional A-type granite characters unusual for a rapakivi granite while the EG shows A-type granite signatures. The field, petrographic, chemical and isotopic data of these granites suggest their derivation by mixing of mantle derived basic magma with a crustal-derived partly crystalline granitic magma. Episodic mafic magma underplating caused the anatexis of the Archaean lower continental crust in a continental margin tectonic setting resulting first in the formation of the I-type granodiorite followed by A-type granite. The I-type granodiorite is mixed with the basic magma (synplutonic dykes) while the EG is formed by mingling of A- type granite magma and the intruding basic magma.  相似文献   

15.
新疆阿拉套山南缘分布有由众多岩性复杂的脉岩所组成的岩墙群,部分岩墙与成矿作用密切相关,是了解该地区地壳生长过程的重要窗口。其西段出露大量中酸性脉岩,脉岩侵入到上泥盆统托斯库尔他乌组地层,以闪长岩脉为主,含少量花岗斑岩脉和霏细岩脉。为了探讨花岗斑岩的形成时代、岩浆源区和构造背景,对其进行了锆石U-Pb年龄测定和Sr、Nd同位素研究。分析结果显示,花岗斑岩锆石U-Pb(加权平均)年龄为310 Ma,说明花岗斑岩脉形成于晚石炭世早期,该年龄与北天山沙湾流纹岩(形成于陆板内拉张环境)的喷发时代(310 Ma)以及区内察哈乌苏岩基的形成时代(313 Ma)十分接近,是阿拉套山西段最晚一期岩浆活动的产物。Sr、Nd同位素分析结果表明,该岩脉具有中等ISr值(0.709 328~0.710 018)、负的εNd(t)值(-3.92~-2.33)和较大的Nd同位素模式年龄(1 294~1 502 Ma)特征,明显不同于同时期西天山乃至新疆北部众多的花岗岩类,后者普遍拥有低ISr值、正的高εNd(t)值和较年轻的Nd同位素模式年龄,是幔源玄武质岩浆底侵、发生岩浆的同化分离结晶作用或岩浆混合作用的结果,说明该花岗斑岩脉不太可能是幔源岩浆底侵演化的产物,其岩浆源区可能来自成熟度比较高的前寒武纪基底岩石。310 Ma以后,阿拉套山地区逐渐进入后碰撞伸展阶段,处于陆壳垂向生长、区域构造应力场显示拉张的构造环境,花岗斑岩脉可能形成于同碰撞挤压向后碰撞伸展背景转换的过渡阶段。  相似文献   

16.
富氟花岗质熔体形成和演化的实验研究   总被引:5,自引:0,他引:5  
通过高温高压实验,模拟了富氟花岗质熔体形成和演化的过程,结果表明,随着结晶分异作用的进行,熔体中SiO2含量降低而Al2O3和F含量升高,相应地,A/NKC和NKA/Si比值逐渐升高,并最终形成了贫硅过铝富氟的熔体。  相似文献   

17.
新疆西准噶尔克拉玛依岩体以及周围地层中存在着大量暗色闪长玢岩岩墙,是岩浆物质贯入3组走向不同的裂隙形成的。对其中一个闪长玢岩岩墙样品进行锆石LA-ICP-MS年代学测试,得到303.1±1.2Ma的锆石206Pb/238U加权平均年龄,对从该闪长玢岩中分离出的角闪石进行Ar-Ar年代学测试,得到312.1±2.8Ma的坪年龄(1120~1400℃)和313.6±6.9Ma的反等时线年龄。对该闪长玢岩岩墙附近的含角闪石黑云母二长花岗岩进行的锆石LA-ICP-MS年代学测试,获得其206Pb/238U加权平均年龄为319.0±1.0Ma。对侵入石炭纪地层的一个花岗斑岩岩脉样品进行锆石LA-ICP-MS年代学测试,得到了315.3±1.0Ma的206Pb/238U加权平均年龄。上述年代学测试结果表明克拉玛依市以西地区的暗色岩墙形成时代是石炭纪末期,不是前人所说的二叠纪。在这些岩墙形成之前,该区在石炭纪晚期还发育以克拉玛依岩体及附近酸性岩脉为代表的花岗质岩浆活动。上述围岩和岩墙的年代学资料揭示出该区闪长玢岩岩墙所占据的裂隙形成时代在315~303Ma之间,为新疆西准噶尔地区晚古生代地球动力学背景及岩浆活动的深入研究,提供了时间方面的约束。  相似文献   

18.
诸广山岩体中段鹿井地区矿床周边常有花岗斑岩脉及煌斑岩脉等晚期岩脉产出。钾长石40Ar-39Ar同位素年代学测试结果表明,花岗斑岩脉与煌斑岩脉侵位年龄分别为116.24±0.49 Ma和128.27±0.86 Ma,是早白垩世地壳伸展的岩浆响应。岩脉记录的岩浆活动时代与鹿井矿田铀成矿作用时代具有较好的对应关系。花岗斑岩脉与铀矿石均具有幔源特征,表明以花岗斑岩为代表的酸性岩浆在为铀矿化提供热源的同时可能还提供了部分成矿物质。在铀成矿作用过程中,以煌斑岩为代表的基性岩浆为铀成矿作用提供了热源、矿化剂、流体及动力条件等有利条件。  相似文献   

19.
西秦岭温泉岩体是壳幔混浆的产物。寄主岩石以贫CaO富FeOtot为特征 ,ANKC值大于 1 1 ,NK A值均小于 0 9,属铝过饱和钙碱性系列岩石 ,系上地壳碎屑岩类熔融而成。基性端元暗色微细粒镁铁质包体及基性岩墙 ,高Na2 O及K2 O ,而贫FeOtot。两类岩浆混合形成的混浆花岗岩 ,岩石地球化学介于两个端元并有显著的过渡特征和依从关系反映了重要的岩浆混合信息  相似文献   

20.
黄沙坪多金属矿床是湖南最大的铅锌生产基地,并且在与矿床内花岗斑岩接触的矽卡岩带产有隐伏的大型矽卡岩型白钨矿和中型规模的辉钼矿。钨-钼矿化的时代为晚侏罗世,与矿床内花岗斑岩侵入时代一致。然而,已有研究认为,由于该花岗斑岩规模很小,矽卡岩型白钨矿的成矿热液应来自深部岩浆房而非此花岗斑岩。为此,我们对花岗斑岩进行了仔细的镜下观测,并且对其中的副矿物和黑云母以及矽卡岩中的白钨矿进行了电子探针成分分析,应用原位LA-ICP-MS方法测定了矽卡岩中白钨矿的稀土元素含量,试图对白钨矿矿化的物质和流体来源提供确切的证据。通过研究,首次在矿床内花岗斑岩中发现了与未蚀变黑云母伴生的黑钨矿和铌铁矿,表明花岗斑岩至少在岩浆结晶作用晚期或岩浆-热液过渡阶段早期就已发生钨的矿物富集,为确定花岗斑岩是控制钨矿化的成矿岩体提供了依据。此外,发现花岗斑岩中的黑云母(属铁叶云母)含有极高的氟含量(3%),指示其应形成于富含氟的高分异岩浆。研究进一步揭示,矽卡岩中白钨矿的轻稀土元素配分模式与花岗斑岩十分一致,而重稀土元素则显著亏损,而且Eu的含量较花岗斑岩更为富集。这暗示形成白钨矿的成矿流体应直接来自花岗斑岩,即:在早期无水矽卡岩阶段,石榴子石的沉淀导致流体中的重稀土亏损而Eu相对富集;白钨矿随后再从这种流体中沉淀。此外,白钨矿的Eu含量与Sm、Gd含量具有负相关关系,表明Eu的分配是相对独立的行为,主要以Eu2+存在,从而指示沉淀白钨矿的流体具有还原的性质。结合前人的研究成果及本文所提供的新证据,我们认为,形成矽卡岩型白钨矿的钨和成矿热液应来自高分异且富F的花岗斑岩,而所需的钙则可能来自于碳酸盐围岩,即矿床内花岗斑岩应是形成钨钼矿床的物质来源,驱动热液活动的能量来源,和寻找隐伏钨矿床的重要找矿标志。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号