首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurement of the levels of organic maturation below and within shear zones of thrust faults in the Rocky Mountains has revealed no general thermal metamorphism that can be attributed to faulting, with the exception of very localized areas. With few exceptions the vitrinite reflectance values obtained are in the range expected if the maximum level of organic maturation was produced as a result of increasing temperature during progressive burial accompanying sedimentation. Only at Marias Pass evidence has been found to suggest additional maturation as a result of post-orogenic burial below the thrust sheets. Anomalously high vitrinite reflectances obtained from the Lewis thrust, McConnell thrust, Coleman thrust and two unnamed thrusts, are restricted to very narrow films immediatly adjacent to, or within the shear zone which, considering any reasonable thermal conductivity, indicates elevated temperatures were very short lived. The anomalously high vitrinite reflectances within these films, when compared to laboratory heated coals, suggest temperatures in the order of 350°-650°C were locally generated during faulting. Such high temperatures are considered to have been generated during stick-slip faulting at macro-asperities or at ramps on the fault plane where local, and possibly transient, high frictional stresses existed. The absence of evidence for extensive frictional heating supports previous arguments that stable-sliding and/or low frictional stress must exist during thrusting.  相似文献   

2.
Hot collisional orogens are characterized by abundant syn-kinematic granitic magmatism that profoundly affects their tectono-thermal evolutions. Voluminous granitic magmas, emplaced between 360 and 270 Ma, played a visibly important role in the evolution of the Variscan Orogen. In the Limousin region (western Massif Central, France), syntectonic granite plutons are spatially associated with major strike–slip shear zones that merge to the northwest with the South Armorican Shear Zone. This region allowed us to assess the role of magmatism in a hot transpressional orogen. Microstructural data and U/Pb zircon and monazite ages from a mylonitic leucogranite indicate synkinematic emplacement in a dextral transpressional shear zone at 313 ± 4 Ma. Leucogranites are coeval with cordierite-bearing migmatitic gneisses and vertical lenses of leucosome in strike–slip shear zones. We interpret U/Pb monazite ages of 315 ± 4 Ma for the gneisses and 316 ± 2 Ma for the leucosomes as the minimum age of high-grade metamorphism and migmatization respectively. These data suggest a spatial and temporal relationship between transpression, crustal melting, rapid exhumation and magma ascent, and cooling of high-grade metamorphic rocks.Some granites emplaced in the strike–slip shear zone are bounded at their roof by low dip normal faults that strike N–S, perpendicular to the E–W trend of the belt. The abundant crustal magmatism provided a low-viscosity zone that enhanced Variscan orogenic collapse during continued transpression, inducing the development of normal faults in the transpression zone and thrust faults at the front of the collapsed orogen.  相似文献   

3.
1800 m of drill core through the Nojima fault zone, Japan, reveals subsidiary fault and fracture networks that developed in the fault zone that triggered the 1995 Ms 7.2 Kobe earthquake. The subsidiary fault zones contain a fault gouge of < 1 cm bounded by thin zones of foliated cataclasite or breccia. Fractures are filled with calcite veins, calcite-cemented breccias, clay, and iron-oxide and carbonate alternation of the granitic host rock. These features are typical of extensional fractures that form the conduit network for fluid flux close to a major fault zone. The zone of distributed deformation surrounding the main fault is 50 m in width, and the dip of the Nojima fault at > 1 km depth is 75°. The fault-fracture networks associated with the Nojima fault zone are coseismic and were filled with carbonate and fine-grained material during repeated seismic-related infiltration of the fault zone by carbonate-bearing subsurface water. This study shows that fault-related fracture networks plays an important role as fluid flow conduits within seismically active faults, and can change in character from zones of high permeability to low permeability due to cementation and/or pore collapse.  相似文献   

4.
The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970–1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.  相似文献   

5.
Field observations and interpretations of satellite images reveal that the westernmost segment of the Altyn Tagh Fault (called Karakax Fault Zone) striking WNW located in the northwestern margin of the Tibetan Plateau has distinctive geomorphic and tectonic features indicative of right-lateral strike-slip fault in the Late Quaternary. South-flowing gullies and N–S-trending ridges are systematically deflected and offset by up to ~ 1250 m, and Late Pleistocene–Holocene alluvial fans and small gullies that incise south-sloping fans record dextral offset up to ~ 150 m along the fault zone. Fault scarps developed on alluvial fans vary in height from 1 to 24 m. Riedel composite fabrics of foliated cataclastic rocks including cataclasite and fault gouge developed in the shear zone indicate a principal right-lateral shear sense with a thrust component. Based on offset Late Quaternary alluvial fans, 14C ages and composite fabrics of cataclastic fault rocks, it is inferred that the average right-lateral strike-slip rate along the Karakax Fault Zone is ~ 9 mm/a in the Late Quaternary, with a vertical component of ~ 2 mm/a, and that a M 7.5 morphogenic earthquake occurred along this fault in 1902. We suggest that right-lateral slip in the Late Quaternary along the WNW-trending Karakax Fault Zone is caused by escape tectonics that accommodate north–south shortening of the western Tibetan Plateau due to ongoing northward penetration of the Indian plate into the Eurasian plate.  相似文献   

6.
Late- to post-magmatic deformation in slightly diachronous contiguous intrusions of the north-western Adamello batholith (Southern Alps, Italy) is recorded as, from oldest to youngest: (i) joints, (ii) solid-state ductile shear zones, (iii) faults associated with epidote-K-feldspar veins and (iv) zeolite veins and faults. Structures (ii) to (iv) are localized on the pervasive precursory network of joints (i), which developed during the earliest stages of pluton cooling. High temperature ( 500 °C), ductile overprinting of joints produced lineations, defined by aligned biotite and hornblende, on the joint surfaces and highly localized mylonites. The main phase of faulting, producing cataclasites and pseudotachylytes, occurred at  250 °C and was associated with extensive fluid infiltration. Cataclasites and pseudotachylytes are clustered along different E–W-striking dextral strike-slip fault zones correlated with the activity of the Tonale fault, a major tectonic structure that bounds the Adamello batholith to the north. Ductile deformation and cataclastic/veining episodes occurred at P = 0.25–0.3 GPa during rapid cooling of the batholith to the ambient temperatures ( 250 °C) that preceded the exhumation of the batholith. Timing of the sequence of deformation can be constrained by 39Ar–40Ar ages of  30 Ma on pseudotachylytes and various existing mineral ages. In the whole composite Adamello batholith, multiple magma pulses were intruded over the time span 42–30 Ma and each intrusive body shows the same ductile-to-brittle structural sequence localized on the early joint sets. This deformation sequence of the Adamello might be typical of intrusions undergoing cooling at depths close to the brittle–ductile transition.  相似文献   

7.
The objective of the study was to characterize changes of reflectance, reflectance anisotropy and reflectance indicating surface (RIS) shape of vitrinite, sporinite and semifusinite subjected to thermal treatment under inert conditions. Examination was performed on vitrinite, liptinite and inertinite concentrates prepared from channel samples of steam coal (Rr = 0.70%) and coking coal (Rr = 1.25%), collected from seam 405 of the Upper Silesian Coal Basin. The concentrates were heated at temperatures of 400–1200 °C for 1 h time in an argon atmosphere.All components examined in this study: vitrinite, sporinite and semifusinite as well as matrix of vitrinite and liptinite cokes, despite of rank of their parent coal, show, in general, the most important changes of reflectance value and optical anisotropy when heated at 500 °C, 800 °C (with the exception of bireflectance value of sporinite) and 1200 °C.After heating the steam coal at 1200 °C, the vitrinite and the semifusinite reveal similar reflectances, whereas the latter a slightly stronger anisotropy. Sporinite and matrix of liptinite coke have lower reflectances but anisotropy (Rbi and Ram values) similar to those observed for vitrinite and semifusinite. However, at 1000 °C sporinite and matrix of liptinite coke have the highest reflectivity of the studied components. The RIS at 1200 °C is the same for all components.The optical properties of the three macerals in the coking coal become similar after heating at 1000 °C. Coke obtained at 1200 °C did not contain distinguishable vitrinite grains. At 1200 °C semifusinite and vitrinite coke matrix have highest Rr values among the examined components. Maximum reflectance (Rmax) reach similar values for vitrinite and sporinite, slightly lower for semifusinite. Matrix of liptinite coke and matrix of vitrinite coke have considerably stronger anisotropy (Rbi and Ram values) than other components. RIS at 1200 °C is also similar for all components.  相似文献   

8.
Talc is one of the weakest minerals that is associated with fault zones. Triaxial friction experiments conducted on water-saturated talc gouge at room temperature yield values of the coefficient of friction, μ (shear stress, τ/effective normal stress, σ′N) in the range 0.16–0.23, and μ increases with increasing σ′N. Talc gouge heated to temperatures of 100°–400 °C is consistently weaker than at room temperature, and μ < 0.1 at slow strain rates in some heated experiments. Talc also is characterized by inherently stable, velocity-strengthening behavior (strength increases with increasing shear rate) at all conditions tested. The low strength of talc is a consequence of its layered crystal structure and, in particular, its very weak interlayer bond. Its hydrophobic character may be responsible for the relatively small increase in μ with increasing σ′N at room temperature compared to other sheet silicates.Talc has a temperature–pressure range of stability that extends from surficial to eclogite-facies conditions, making it of potential significance in a variety of faulting environments. Talc has been identified in exhumed subduction zone thrusts, in fault gouge collected from oceanic transform and detachment faults associated with rift systems, and recently in serpentinite from the central creeping section of the San Andreas fault. Typically, talc crystallized in the active fault zones as a result of the reaction of ultramafic rocks with silica-saturated hydrothermal fluids. This mode of formation of talc is a prime example of a fault-zone weakening process. Because of its velocity-strengthening behavior, talc may play a role in stabilizing slip at depth in subduction zones and in the creeping faults of central and northern California that are associated with ophiolitic rocks.  相似文献   

9.
We describe and compare the two transform zones that connect the Icelandic rift segments and the mid-Atlantic Ridge close to the Icelandic hot spot, in terms of geometry of faulting and stress fields. The E–W trending South Iceland Seismic Zone is a diffuse shear zone with a Riedel fault pattern including N0°–N20°E trending right-lateral and N60°–N70°E trending left-lateral faults. The dominant stress field in this zone is characterised by NW–SE extension, in general agreement with left-lateral transform motion. The Tjörnes Fracture Zone includes three major lineaments at different stages of development. The most developed, the Húsavík–Flatey Fault, presents a relatively simple geometry with a major fault that trends ESE–WNW. The stress pattern is however complex, with two dominant directions of extension, E–W and NE–SW on average. Both these extensions are compatible with the right-lateral transform motion and reveal different behaviours in terms of coupling. Transform motion has unambiguous fault expression along a mature zone, a situation close to that of the Tjörnes Fracture Zone. In contrast, transform motion along the immature South Iceland Seismic Zone is expressed through a more complicate structural pattern. At the early stage of the transform process, relatively simple stress patterns prevail, with a single dominant stress field, whereas, when the transform zone is mature, moderate and low coupling situations may alternate, as a function of volcanic–tectonic crises and induce changes in stress orientation.  相似文献   

10.
E. Carminati  G.B. Siletto   《Tectonophysics》2005,401(3-4):179-197
The internal sectors of the Orobic Alps (Northern Italy) are characterised by Alpine age regional shortening showing a transition, through time, from plastic to brittle deformation. Thrust faults cut Alpine ductile folds and are marked by cataclasites and, locally, by pseudotachylytes, suggesting that motion was accommodated by seismic frictional slip. In the Eastern Orobic Alps the thrusting initiated at depths deeper than 10 km (the emplacement depth of the Adamello pluton) and possibly continued at shallower depths. This demonstrates that thrust motion occurred between 10 km depth and the brittle-ductile transition, i.e., at mid-crustal depths. The Orobic Alps exhumed paleoseismic zone shows different geometries along strike. In the central sectors of the Orobic Alps, thrust faults, associated with pseudotachylytes, have average dips around 40° and show no pervasive veining. Much steeper thrusts (dips up to about 85°) occur in the eastern Orobic Alps. In this area, faults are not associated with pervasive veining, i.e., fluid circulation was relatively scarce. This suggests that faulting did not occur with supralithostatic fluid pressure conditions. These reverse faults are severely misoriented (far too steep) for fault reactivation in a sublithostatic fluid pressure regime. We suggest that thrust motion likely started when the faults were less steep and that the faults were progressively rotated up to the present day dips. Domino tilting is probably responsible for this subsequent fault steepening, as suggested by a decrease of the steepness of thrust faults from north to south and by systematic rotations of previous structures consistently with tilting of thrust blocks. When the faults became inclined beyond the fault lock-up angle, no further thrusting was accommodated along them. At later stages regional shortening was accommodated by newly formed lower angle shear planes (dipping around 30–40°), consistently with predictions from fault mechanics.  相似文献   

11.
P. Mandal  S. Horton   《Tectonophysics》2007,429(1-2):61-78
The HYPODD relocation of 1172 aftershocks, recorded on 8–17 three-component digital seismographs, delineate a distinct south dipping E–W trending aftershock zone extending up to 35 km depth, which involves a crustal volume of 40 km × 60 km × 35 km. The relocated focal depths delineate the presence of three fault segments and variation in the brittle–ductile transition depths amongst the individual faults as the earthquake foci in the both western and eastern ends are confined up to 28 km depth whilst in the central aftershock zone they are limited up to 35 km depth. The FPFIT focal mechanism solutions of 444 aftershocks (using 8–12 first motions) suggest that the focal mechanisms ranged between pure reverse and pure strike slip except some pure dip slip solutions. Stress inversion performed using the P and T axes of the selected focal mechanisms reveals an N181°E oriented maximum principal stress with a very shallow dip (= 14°). The stress inversions of different depth bins of the P and T axes of selected aftershocks suggest a heterogeneous stress regime at 0–30 km depth range with a dominant consistent N–S orientation of the P-axes over the aftershock zone, which could be attributed to the existence of varied nature and orientation of fractures and faults as revealed by the relocated aftershocks.  相似文献   

12.
Jean-Philippe Bellot   《Tectonophysics》2008,449(1-4):133-144
The role of fluids in the deformation of continental serpentinites is investigated from structural, microstructural and petrographic analyses applied to a km-scale porphyroclast mantled in a viscous matrix of amphibolites. The clast is sited within a shear zone of the Palaeozoic Maures massif, France. Syntectonic fluid–rock interactions occurred from km to mm scales, at first on the clast borders (along the main rheological boundaries) then within the clast. They are accommodated macroscopically by slickenfibers faults and microscopically by shear microcracks within crack-seal veins, typifying an intermediate, brittle–ductile behaviour of serpentinites. Three main stages of deformation–serpentinisation processes occurred in relation with the left-lateral movement of the hosted shear zone. They developed under metamorphic conditions evolving from amphibolites to green-schists facies conditions ( 400 MPa/550 °C to  200 MPa/< 300 °C), as inferred from the surrounding sheared amphibolites. Deformation and serpentinisation increase through time although fluid pressure decreases. If the shape of the inclusion and its orientation relative to the shear zone mainly controlled the deformation pattern though time (P then R' shears), fluid pressure is required for starting deformation–serpentinisation processes along inherited anisotropy planes. Whatever the origin of fluids, they play a key role all along the deformation processes by influencing stress states within the shear zone at the onset of deformation and by changing at various scales and through time behaviour of the rock, depending of the intensity of serpentinisation and the rate of deformation.  相似文献   

13.
The basement of central Madagascar displays two contrasted structural patterns. The first one (D1) is characterized by north-striking foliations that are gently dipping to the west and carry W- to WSW-plunging lineations, whereas the second one (D2) is characterized by steeper foliations that are striking to the NNE and lineations that are either subhorizontal or gently plunging to the SSW. The younger pattern is related to late-Panafrican tectonics along the major Angavo shear zone that is about 1000 km in length and 40 km in width with apparently little offset. Deformation in the Angavo zone induced interference folding on both sides. The D2 event is characterized by low pressures (ca 400 MPa) and high temperatures (up to 790 °C) responsible for prograde granulite facies conditions, that resulted from heat transfer due to magma and fluid advection in the Angavo shear zone. The D2 event is pinned at 550 ± 11 Ma by a new monazite age from a reoriented Andringitrean granite near Ankaramena. A new suite of amphibole and biotite Ar–Ar geochronological data enables to retrace the thermochronogical evolution inside and outside the Angavo shear zone. Combined with new structural results from the western interference zone, these ages yield a better understanding of the late-Panafrican history of central Madagascar. No diachronism is observed along the strike of the Angavo shear zone. Conversely, amphibole and especially biotite ages decrease from West to East, i.e. towards the shear zone. These new ages range from 511 to 469 Ma. A 1-D conductive model constrains the thermal effect in relation with the Angavo shear zone to be restricted to a lateral distance of ca 60 km (in map view) for a maximum heating duration of 20 Myr. This is in agreement with the Ar–Ar data and with the width of the observed interference zone. Following this episode of deformation and heat transfer, the estimated cooling rates of the Angavo shear zone range from to 15 to 6 °C/Myr, respectively before and after 515 Ma. A post-collision intracontinental setting is suggested for the Angavo shear zone, which is regarded as a remote effect of the Kuunga Orogeny between India and Antarctica.  相似文献   

14.
A comparison is made between the Gavarnie thrust and the Mérens Fault in the Axial zone of the Pyrenees. The former has a gentle dip and quite a large displacement (at least 12 km) but does not cut through either Hercynian or Alpine isograds. The latter has a smaller displacement (~ 5 km) but dips steeply and cuts through both Hercynian and Alpine isograds at a high angle. On this basis and on the basis of shear zone geometries immediately north of it, it is proposed that the Mérens Fault nucleated as a steeply (65°–80°) dipping structure, while the Gavarnie thrust nucleated with a shallow attitude. The Mérens Fault is not a backward-rotated thrust fault, nor is it the root zone for any major nappe structure. Similar steep ductile structures occur within the Gavarnie nappe and may reflect considerable internal strain in basement lithologies.The relationship between steep and shallow structures is not yet clear; the shear zones may pre-date the thrusting in which case they may be thick-skinned structures affecting the whole lithosphere, or they may be contemporary with thrusting reflecting only local thickening above a décollement.Rheological models can be used to test proposed geometrical and kinematic models for the lithosphere-scale evolution of the Pyrenees. Suggested models are dominated by a cool, rigid, high-level mantle wedge beneath the North Pyrenean zone which probably controlled the location of north-dipping thrust faults. Thick-skinned shortening is possible in thick crust in the Axial zone but is very unlikely in the North Pyrenean zone where steeply rooted structures would have to cut through the strongest part of the lithosphere.  相似文献   

15.
16.
Two major faults, over 32 km long and 6.4 km apart, truncate or overprint most previous folds and faults as they trend more northerly than the previous N25°E to N40°E fold trends. The faults were imposed as the last event in a region undergoing sequential counter-clockwise generation of tectonic structures. The western Big Cove anticline has an early NW verging thrust fault that emplaces resistant rocks on its NW limb. A 16 km overprint by the Cove Fault is manifested as 30 small northeast striking right-lateral strike-slip faults. This suggests major left-lateral strike-slip separation on the Cove Fault, but steep, dip-slip separation also occurs. From south to north the Cove Fault passes from SE dipping beds within the Big Cove anticline, to the vertical beds of the NW limb. Then it crosses four extended, separated, Tuscarora blocks along the ridge, brings Cambro-Ordovician carbonates against Devonian beds, and initiates the zone of overprinted right-lateral faults. Finally, it deflects the Lat 40°N fault zone as it crosses to the next major anticline to the northwest. To the east, the major Path Valley Fault rotates and overprints the earlier Carrick Valley thrust. The Path Valley Fault and Cove Fault may be Mesozoic in age, based upon fault fabrics and overprinting on the east–west Lat 40°N faults.  相似文献   

17.
We have analyzed the Nojima fault NIED 1800 m drill core samples by ESR (Electron Spin Resonance) to detect seismic frictional heating events, especially during the 1995 Kobe Earthquake. Dark gray fault gouge with foliation > 10 cm away from the fault plane at about 1140 m in depth, which was produced by ancient fault movements, has a FMR (ferrimagnetic resonance) signal. Heating experiments show that this FMR signal is derived from ferrimagnetic trivalent ion oxides (γ-Fe2O3: maghemite) with imperfect crystallinity, which is produced by thermal dehydration of γ-FeOOH (lepidocrocite) or Fe(OH)3 (limonite). The existence of the FMR signal means that dry heating such as frictional heating once occurred, and that the frictional heat temperature along the dark gray fault gouge may have risen to over 350 °C during ancient seismic fault slip. In order to detect frictional heating events in fault zones, the increase of the FMR signal and the color change of fault gouge into dark gray or black are important indexes. On the other hand, no FMR signal is detected from the fault gouges just on two fault planes at about 1140 m and 1300 m in depth, which are considered to be possible main fault planes in the 1995 Kobe Earthquake. These two fault planes may not have played an important role of fault slip in the Earthquake.  相似文献   

18.
We combine geological and geophysical data to develop a generalized model for the lithospheric evolution of the central Andean plateau between 18° and 20° S from Late Cretaceous to present. By integrating geophysical results of upper mantle structure, crustal thickness, and composition with recently published structural, stratigraphic, and thermochronologic data, we emphasize the importance of both the crust and upper mantle in the evolution of the central Andean plateau. Four key steps in the evolution of the Andean plateau are as follows. 1) Initiation of mountain building by 70 Ma suggested by the associated foreland basin depositional history. 2) Eastward jump of a narrow, early fold–thrust belt at 40 Ma through the eastward propagation of a 200–400-km-long basement thrust sheet. 3) Continued shortening within the Eastern Cordillera from 40 to 15 Ma, which thickened the crust and mantle and established the eastern boundary of the modern central Andean plateau. Removal of excess mantle through lithospheric delamination at the Eastern Cordillera–Altiplano boundary during the early Miocene appears necessary to accommodate underthrusting of the Brazilian shield. Replacement of mantle lithosphere by hot asthenosphere may have provided the heat source for a pulse of mafic volcanism in the Eastern Cordillera and Altiplano at 24–23 Ma, and further volcanism recorded by 12–7 Ma crustal ignimbrites. 4) After 20 Ma, deformation waned in the Eastern Cordillera and Interandean zone and began to be transferred into the Subandean zone. Long-term rates of shortening in the fold–thrust belt indicate that the average shortening rate has remained fairly constant (8–10 mm/year) through time with possible slowing (5–7 mm/year) in the last 15–20 myr. We suggest that Cenozoic deformation within the mantle lithosphere has been focused at the Eastern Cordillera–Altiplano boundary where the mantle most likely continues to be removed through piecemeal delamination.  相似文献   

19.
The cartographic, sedimentologic and stratigraphic studies carried out on the Mesozoic deposits in the border zone between the Middle and the High Moroccan Atlas (regions of Naour and Aghbala) led us to specify the lithology of formations, the significant differences of thickness and the angular unconformities as well as stratigraphic hiatuses. All of this indicates a tectonic regime of transcurrent faults from the Bajocian–Bathonian period along the major fault zone “Aghbala–Afourer” in a N70° direction. A sinistral strike-slip movement along this major fault zone induced the development of folded and fractured zones in a N120° direction, which limited a small trough filled by the red continental formations. The whole system is covered thereafter by lower Cretaceous deposits.  相似文献   

20.
The Lesser Himalayan duplex (LHD) is a prominent structure through much of the Lesser Himalayan fold–thrust belt. In the Darjeeling - Sikkim Himalaya a component of the LHD is exposed in the Rangit window as the Rangit duplex (RD). The RD consists of ten horses of the upper Lesser Himalayan Sequence (Gondwana, Buxa, Upper Daling). The duplex varies from hinterland-dipping in the north, through an antiformal stack in the middle to foreland-dipping in the south. The Ramgarh thrust (RT) is the roof thrust and, based on a balanced cross-section, the Main Himalayan Sole thrust is the floor thrust at a depth of ~ 10 km and with a dip of ~ 3.5° N.Retrodeformation suggests that the RD initiated as a foreland-dipping duplex with the Early Ramgarh thrust as the roof thrust and the RT as the floor thrust. The RT became the roof thrust during continued duplexing by a combination of footwall imbrication and concurrent RT reactivation. This kinematic history best explains the large translation of the overlying MCT sheets. The restoration suggests that RD shortening is ~ 125 km, and the original Gondwana basin extended ~ 142 km northward of its present northernmost exposures within the window.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号