首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Early Caledonides in the Olkhon region of western Cisbaikalia, being part of the folded framing of the Siberian craton, are a unique geologic object for studying processes of mantle–crust interaction at deep levels of the Earth’s crust. This paper describes restitic ultramafic bodies and boudins spatially confined to faults (blastomylonite sutures), as well as synkinematic granites related to amphibolite facies of metamorphism. Estimates are given for the PT-conditions of metamorphic rocks from the folded framing of the ultramafic bodies, the chemical and mineral compositions of ultramafic rocks, blastomylonites and synkinematic granites, and the results of U–Pb and Ar–Ar isotopic dating. Particular attention is paid to the thermal history of tectonic exposure of the ultramafic bodies as relics of the paleo-oceanic crust in the Early Caledonian collisional system of western Cisbaikalia.  相似文献   

2.
Dunites, peridotites, olivine and spinel pyroxenites, and metagabbroids have been described in the tectonic blocks of the Pekul’ney complex of the central Chukchi Peninsula together with garnet-hornblende-clinopyroxene and zoisite (clinozoisite)-garnet-hornblende rocks, which are indicative of high-pressure complexes. However, the interpretations of previous researchers on the composition, structure, setting, and processes of formation of this rock association are highly controversial. The petrographic and mineralogical results reported in this paper indicate that the blocks of the complex host bodies of cumulate ultramafics among metamorphic rocks. These relationships were supported by the finding of xenoliths and xenocrysts of metamorphic rocks in the ultramafics. The metamorphic country rocks are lower crustal amphibolites and schists with peak metamorphic parameters corresponding to the high-pressure portion of the epidoteamphibolite facies (610–680°C and 9–14 kbar). All the varieties of ultramafic rocks studied in the blocks of the complex are assigned to a single cumulate series (from dunite to clinozoisite-garnet hornblendite), and the compositions of their primary minerals show regular correlations similar to crystallization differentiation trends. Specific features of the ultramafics of the Pekul’ney complex are the early crystallization of hornblende (which is present already in peridotites), wide range of garnet crystallization (associating with clinopyroxene, ceylonite, and hornblende), presence of magmatic clinozoisite in the most evolved assemblages (with garnet, hornblende, and clinopyroxene), and absence of evidence for plagioclase crystallization. Clinopyroxene from the most evolved ultramafic rocks contains more than 15 wt % Al2O3. The classification of the rocks of the complex provides a basis for the interpretation of geological relations between them and the elucidation of the characteristics of the internal structure of the blocks of the complex and bodies of cumulate ultramafic rocks in them.  相似文献   

3.
This paper presents monomineral and multiphase inclusions in garnet from eclogites and clinopyroxenites, which form layers and boudins in garnet peridotites from two areas in the Moldanubian zone of the Bohemian Massif. The garnet peridotites occur in felsic granulites and reached UHP conditions prior to their granulite facies overprint. In addition to complex compositional zoning, garnets from hosting eclogites and clinopyroxenites preserve inclusions of hydrous phases and alkali silicate minerals including: amphiboles, chlorites, micas and feldspars. Amphibole, biotite and apatite inclusions in garnet have a high concentration of halogens; CO2 and sulfur are involved in carbonates and sulfide inclusions, respectively. The inclusion patterns and compositional zoning in garnet in combination with textural relations among minerals, suggest that the ultramafic and mafic bodies are derived from lithospheric mantle above the subduction zone and were transformed into garnet pyroxenites and eclogites in the subduction zone. Based on compositional, mineral and textural relations, all of these rocks along with the surrounding crustal material were overprinted by granulite facies metamorphism during their exhumation.  相似文献   

4.
The assemblage garnet–chloritoid–kyanite is shown to be quite common in high‐pressure eclogite facies metapelites from orogenic belts around the world, and occurs over a narrowly restricted range of temperature ~550–600 °C, between 20 and 25 kbar. This assemblage is favoured particularly by large Al2O3:K2O ratios allowing the development of kyanite in addition to garnet and chloritoid. Additionally, ferric iron and manganese also help stabilize chloritoid in this assemblage. Pseudosections for several bulk compositions illustrate these high‐pressure assemblages, and a new thermodynamic model for white mica to include calcium and ferric iron was required to complete the calculations. It is extraordinary that so many orogenic eclogite facies rocks, both mafic eclogites sensu stricto as well as metapelites with the above assemblage, all yield temperatures within the range of 520–600 °C and peak pressures ~23±3 kbar. Subduction of oceanic crust and its entrained associated sedimentary material must involve the top of the slab, where mafic and pelitic rocks may easily coexist, passing through these PT conditions, such that rocks, if they proceed to further depths, are generally not returned to the surface. This, together with the tightly constrained range in peak temperatures which such eclogites experience, suggests thermal weakening being a major control on the depths at which crustal material is decoupled from the downgoing slab.  相似文献   

5.
The metamorphic sequences of the Saxonian Erzgebirge were thoroughly overprinted by a Variscan medium-pressure event under amphibolite facies conditions. However, eclogitic relics documenting an older high-pressure event are widespread. P-T conditions of the eclogite-facies metamorphism systematically decrease, over a distance of 50 km, from about >29 kbar/850°C, in the central part, to 20–24 kbar/650°C, in the westernmost part of the Erzgebirge crystalline complex. A distinct gap in P-T conditions exists between the central and the western Erzgebirge coinciding with the fault zone of the Flöha syncline. Therefore, the eclogitebearing sequences are assumed to represent at least two different nappe units. The lower-grade eclogite assemblages in the western Erzgebirge display a continuous metamorphic zonation with a gradual decrease of peak metamorphic temperatures towards the west. Assemblages formed in the stability field of coesite and thus indicating a regional ultra-high pressure metamorphism, are restricted to the central Erzgebirge, where they are widespread in the eclogites, but also present in metaacidic country rocks. The same high-temperature/high-pressure conditions, testifying to a burial of at least 100 km, were independently recorded for the ultramafic garnet pyroxenites associated with the eclogites of the central Erzgebirge. Mineral relics included in the eclogite phases and mineral assemblages formed by retrograde reactions permit reconstruction of the prograde and retrograde P-T paths in the different parts of the Erzgebirge crystalline complex.  相似文献   

6.
Ultramafic blocks that themselves contain eclogite lenses in the Triassic Su-Lu ultrahigh-P terrane of eastern China range in size from hundreds of metres to kilometres. The ultramafic blocks are enclosed in quartzofeldspathic gneiss of early Proterozoic age. Ultramafic rocks include garnetiferous lherzolite, wehrlite, pyroxenite, and hornblende peridotite. Garnet lherzolites are relatively depleted in Al2O3 (<3.8wt%), CaO (<3.2%) and TiO2 (<0.11 wt%), and are low in total REE contents (several p.p.m.), suggesting that the rocks are residual mantle material that was subjected to low degrees of partial melting. The eclogite lenses or layers within the ultramafic rocks are characterized by higher MgO and CaO, lower Al2O3 and TiO2 contents, and a higher CaO/Al2O3 ratio compared to eclogites enclosed in the quartzofeldspathic gneiss. Scatter in the plots of major and trace elements vs. MgO, REE patterns and La, Sm and Lu contents suggest that some eclogites were derived from melts formed by various degrees (0.05–0.20) of partial melting of peridotite, and that other eclogites formed by accumulation of garnet and clinopyroxene ± trapped melt in the upper mantle. Both ultramafic and eclogitic rocks have experienced a complex metamorphic history. At least six stages of recrystallization occurred in the ultramafic rocks based on an analysis of reaction textures and mineral compositions. Stage I is a high temperature protolith assemblage of Ol + Opx + Cpx + Spl. Stage II consists of the ultrahigh-pressure assemblage Ol + Cpx + Opx + Grt. Stage III is manifested by the appearance of fine-grained garnet after coarse-grained garnet. Stage IV is characterized by formation of kelyphitic rims of fibrous Opx and Cpx around garnet, and replacement of garnet by spinel and pargasitic-hornblende. Stage V is represented by the assemblage Ol + Opx + Prg-Hbl + Spl. The mineral assemblages of stages VIA and VIB are Ol + Tr-Amp + Chl and Serp + Chl ± talc, respectively. Garnet and orthopyroxene all show a decrease in MgO with retrogressive recrystallization and Na2O in clinopyroxene also decreases throughout this history. Eclogites enclosed within ultramafic blocks consist of Grt + Omp + Rt ± Qtz ± Phn. A few quartz-bearing eclogites contain rounded and oval inclusion of polycrystalline quartz aggregates after coesite in garnet and omphacite. Minor retrograde features include thin symplectic rims or secondary amphiboles after Cpx, and ilmenite after rutile. P-T estimates indicate that the ultrahigh-metamorphism (stage II) of ultramafic rocks occurred at 820-900d? C and 36-41 kbar and that peak metamorphism of eclogites occurred at 730-900d? C and >28 kbar. Consonant with earlier plate tectonic models, we suggest that these rocks were underplated at the base of the continental crust. The rocks then underwent ultrahigh-pressure metamorphism and were tectonically emplaced into thickened continental crust during the Triassic collision between the Sino-Korean and Yangtze cratons.  相似文献   

7.
Amphibolites are frequently and characteristically associatedwith alpine-type ultramafics within ophiolite zones of differentgeological ages. Ultramafics of the Dinaridic ophiolite zoneare predominantly lherzolite, and are associated with differentvarieties of gabbro, dolerite, diabase, spilite, and amphibolite.Amphibolites commonly form narrow, interrupted zones aroundlarger ultramafic massifs, and, in some areas, they exceed theultramafics in size. All these rocks are members of the Jurassic(?)volcanic-sedimentary complex (‘Diabas-Hornstein Formation’)consisting predominantly of graywacke type sandstone and shale. The amphibolites characteristically have crystalloblastic texturesand are commonly banded and foliated, which distinguishes themfrom associated gabbros and dolerites. Different kinds and varietiesof metamorphic rocks can be found within the Dinaridic amphibolitecomplexes: amphibolite schists containing plagioclase, pyroxeniteschists containing diopside and plagioclase, monomineralic amphiboleschists, and eclogites. Samples of each of these rock typeswere collected from several localities and monomineralic fractionsof amphiboles, plagioclases, garnets, and clinopyroxenes wereseparated and examined in detail. Amphiboles range from kaersutite, pargasite, and edenite throughtransitional varieties enriched in tschermakite and ‘common’hornblende molecules. Plagioclase varies from anorthite to sodicoligoclase. Associated garnets are enriched either in pyropeor in almandine. Clinopyroxene is hedenbergitic diopside withabout 10–20 per cent of jadeite molecule and hypersthenecontains about 40 per cent FeSiO3. Variations in mineral composition of the amphibolites demonstratestheir metamorphic origin. Although there is a continuous changein chemical composition, three mineral assemblages can be distinguished.Data from experimental petrology indicate that the amphibolitesassociated with alpine-type ultramafics can be stable underupper mantle PT conditions.  相似文献   

8.
Strontium isotopic data suggest that the classic eclogite-facies rocks of western south Norway described by Eskola (1921) formed from several parental materials in a variety of environments. Mineral separates from essentially basic, bi-minerallic (clinopyroxene and garnet) eclogites that occur as lens-shaped masses within high grade gneisses (country rock eclogites) have Sr87/Sr86 values that range from 0.704 for fine-grained varieties to 0.716 for coarse-grained, orthopyroxene-bearing varieties. These high, varied ratios contrast with the very low, restricted ratios (0.701 to 0.704) of similar minerals from ultrabasic, garnet-clinopyroxene-orthopyroxene-olivine assemblages (garnet peridotites) that occur as lenses within large peridotite bodies. The eclogite-facies metamorphism that generated the garnet peridotites may have occurred in the mantle. However, the metamorphism that generated at least the more radiogenic country-rock eclogites must have occurred in the crust. The high Sr87/Sr86 ratios of these eclogites could be generated either by forming them from crustal parental rocks or by contaminating mantle-derived parental rocks with radiogenic strontium from the country rocks. If this contamination occurred after intrusion and before eclogite-facies metamorphism, a rather contrived history must be postulated that involves intrusion, contamination accompanied by hydration, subsequent dehydration, and finally eclogite-facies metamorphism. These processes could have occurred within the long, complicated history of the enclosing country rocks. Alternatively, if the contamination occurred during eclogite-facies metamorphism, the presence of some hydrous fluid appears to be required to transport the radiogenic strontium from the enclosing country rocks. The eclogites with the highest Sr87/Sr86 ratios are also the most coarse-grained and it is possible that the presence of some intergranular fluid enabled these eclogites to recrystallize to a much larger grain size than would have been possible in a totally anhydrous environment. The garnet peridotites and fine-grained country rock eclogites may have formed from mantle material in the crust but escaped contamination by radiogenic strontium as a result of their position in a dry environment in the crust.Lamont-Doherty Geological Observatory Contribution No. 2443  相似文献   

9.
Strain patterns within mantle rocks and surrounding coarse‐grained felsic granulites from the Kutná Hora Crystalline Complex in the Variscan Bohemian Massif have been studied in order to assess their strain coupling. The studied rock association occurs within low‐strain domains surrounded by fine‐grained granulite and migmatite. The Doubrava peridotite contains closely spaced and steeply dipping layers of garnet clinopyroxenite, which are parallel to the NE–SW‐striking, high‐temperature foliation in nearby granulites, while the Úhrov peridotite lacks such layering. The Spa?ice eclogite is not associated with peridotite and shows upright folds of alternating coarse‐ and fine‐grained varieties bearing NE–SW‐striking axial planes. Electron back‐scattered diffraction measurements revealed full strain coupling between clinopyroxenites and coarse‐grained granulites in the S1 fabric that is superposed on the S0 fabric preserved in peridotites. The B‐type olivine lattice preferred orientation (LPO) characterizes the S0 fabric in peridotites and its reworking is strongly controlled by the presence of macroscopic clinopyroxenite layering. The S1 in clinopyroxenites and coarse‐grained granulites is associated with the LS‐type clinopyroxene LPO and prism <c> slip in quartz respectively. While the S1 fabric in these rock types is accompanied invariably by a sub‐vertical stretching lineation, the S1 fabric developed in reworked Úhrov peridotite is associated with strongly planar axial (010) type of olivine LPO. The peridotites with the S0 fabric are interpreted to be relicts of a fore‐arc mantle wedge hydrated to a various extent above the Saxothuringian subduction zone. The prograde metamorphism recorded in peridotites and eclogites occurred presumably during mantle wedge flow and was reaching UHP conditions. Strain coupling in the S1 fabric between clinopyroxenites and granulites at Doubrava and upright folding of eclogites at Spa?ice document a link between tectonic and magmatic processes during orogenic thickening, coeval with intrusions of the arc‐related calcalkaline suites of the Central Bohemian Plutonic Complex (c. 360–345 Ma). Juxtaposition of peridotites and granulites could be explained by a rheological heterogeneity connected to the development of clinopyroxenite layering in the upper mantle and a previously published model of a lithospheric‐scale transpressional arc system. It invokes vertical shearing along NE–SW trending, sub‐vertical foliations in the upper mantle that could have led to an emplacement of mantle bodies into the granulitized, orogenic root in the sub‐arc region. Clearly, such a transpressional arc system could represent an important pathway for an emplacement of deep‐seated rocks in the orogenic lower crust.  相似文献   

10.
Equilibrium pressure–temperature (PT) conditions were estimated for kyanite‐bearing eclogite from Nové Dvory, Czech Republic, by using garnet–clinopyroxene thermometry and garnet–clinopyroxene–kyanite–coesite (or quartz) barometry. The estimated PT conditions are 1050–1150 °C, 4.5–4.9 GPa, which are mostly the same as previously estimated values for garnet peridotite from Nové Dvory (~1100–1250 °C, 5–6 GPa). Such very high‐P conditions, which correspond to about 150‐km depth, have been obtained for some garnet peridotites in the Gföhl Unit of the Bohemian Massif, but pressure conditions of eclogites associated with the garnet peridotites have not been so well constrained. This is the first substantial finding of eclogite that gives such very high‐P conditions in the Gföhl Unit of the Bohemian Massif. The Gföhl Unit mainly consists of felsic granulite or migmatitic gneiss, but these rock types do not display high‐P (>2.5 GPa) evidence. It is unclear whether both the peridotite body and surrounding felsic rocks in the Gföhl Unit were buried to very deep levels, but at least some garnet peridotites and associated eclogites in the Gföhl Unit have ascended from about 150‐km depth.  相似文献   

11.
LAPPIN  M. A. 《Journal of Petrology》1974,15(3):567-601
An orthopyroxene eclogite from the Sunndal-Grubse mass containsclinopyroxenes with lamellae of garnet and orthopyroxene. Differencesin mineral and bulk chemistry distinguish this, and adjacenteclogites, from eclogites in other Almklovdalen ultramafic masses.Analyses are used in conjunction with experimental data to assignthree T-P points in the complex T-P path of the ultramafic masses.Other T-P points are assigned on a basis of petrographic andstructural arguments. The inferred T-P path offers support toearlier suggestions that the masses are tectonically controlledintroductions within the surrounding gneisses. The survivalof eclogite facies assemblages within the ultramafic massesis attributed to a gneissic metamorphism where PH2O < PTotal.The T-P path also suggests an extended history of subsolidusre-equilibration under mantle conditions possibly complicatedby open system reactions. The eclogites of the Sunndal-Grubsemass are thought to be cumulates and differentiates of relativelyhigh pressure (25–28 kb) melting in ultramafic rocks.The complex T-P path can be explained in terms of convectioncell mechanisms.  相似文献   

12.
Abstract The Erzgebirge Crystalline Complex (ECC) is a rare example where both‘crustal’eclogites and mantle-derived garnet-bearing ultramafic rocks (GBUs) occur in the same tectonic unit. Thus, the ECC represents a key complex for studying tectonic processes such as crustal thickening or incorporation of mantle-derived material into the continental crust. This study provides the first evidence that high-pressure metamorphism in the ECC is of Variscan age. Sm-Nd isochrons define ages of 333 ± 6 (Grt-WR), 337± 5 (Grt-WR), 360± 7 (Grt-Cpx-WR) (eclogites) and 353 ± 7 Ma (Grt-WR) (garnet-pyroxenite). 40Ar/39Ar spectra of phengite from two eclogite samples give plateau ages of 348 ± 2 and 355 ± 2 Ma. The overlap of ages from isotopic systems with blocking temperatures that differ by about 300 ° C indicates extremely fast tectonic uplift rates. Minimum cooling rates were about 50° C Myr-1. As a consequence, the closure temperature of the specific isotopic system is of minor importance, and the ages correspond to the time of high-pressure metamorphism. Despite textural equilibrium and metamorphic temperatures in excess of 800° C, clinopyroxene, garnet and whole rock do not define a three-point isochron in three of four samples. The metamorphic clinopyroxenes seem to have inherited their isotopic signature from magmatic precursors. Rapid tectonic burial and uplift within only a few million years might be the reason for the observed Sm-Nd disequilibrium. The εNd values of the eclogites (+4.4 to +6.9) suggest the protoliths were derived from a long-term depleted mantle, probably a MORB source, whereas the isotopically enriched garnet-pyroxenite (εNd–2.9) might represent subcontinental mantle material, emplaced into the crust prior to or during collision. The similarity of ages of the two different rock types suggests a shared metamorphic history.  相似文献   

13.
Sm-Nd isotope tracer techniques are powerful tools in identification of the protolith nature of UHP and HP rocks and can be used to constrain modeling of tectonic processes of continental collision. UHP rocks may have diverse origins, and not all of them carry the same significance for subduction of continental blocks. In this paper, Sm-Nd isotopic data are compiled for UHP and HP rocks, mostly represented by eclogites and garnet peridotites, from the Alpine, Hercynian (Variscan), and Caledonian belts of western Europe; the Pan-African belts of northern Africa; and the Ross belt of Antarctica. These data then are compared with the isotopic characteristics of the UHP rocks from the Dabie orogen of central China. Except for the coesite-bearing quartzitic metasediments of Dora-Maira (Western Alps), which are clearly of continental origin, all HP and UHP rocks (eclogites and ultramafic rocks) from the Alpine, Hercynian, and Pan-African belts have oceanic affinities with the characteristic positive εNd(T) values (= metamorphic initial 143Nd/144Nd ratios). They represent segments of oceanic lithosphere that were subducted, underwent eclogite-facies metamorphism, and later were tectonically transported into orogenic zones during continental collisions. By contrast, the majority of UHP rocks from the European Caledonide and the Dabie orogen have negative εND(T) values, indicating continental affinity. This suggests that these mafic and ultramafic rocks have had a long crustal residence time and that their UHP metamorphism is indicative of subduction of ancient and cold continental blocks, as represented by some Precambrian gneiss terranes containing mafic components including greenschists, amphibolites, or basic granulites.

In the Dabie orogen, none of the UHP eclogites analyzed thus far have shown oceanic affinity; thus they do not represent subducted Tethys Ocean crust. The preservation of ultrahigh εND(0) values (+170 to +260) in eclogites of very low Nd concentrations (average 0.5 ppm) from the Weihai region and of the extraordinarily low δ18O in many eclogites and gneisses, the general absence of syntectonic granites in the Dabie Shan, and the available age data obtained by different techniques all point to a rapid rate of exhumation and the absence of a pervasive aqueous fluid phase during the entire process of subduction and exhumation of the Dabie UHP terrane.  相似文献   

14.
This paper summaries tectonic settings and mineral parageneses of several recognized ultrahigh-pressure (UHP) terranes other than the well-studied Kokchetav Massif of northern Kazakhstan, the Western Gneiss Region of Norway, the Dora-Maira massif of the Western Alps, and the Dabie-Sulu terrane of east-central China. Diamond-bearing terranes include the Beni Bousera/Ronda peridotite massif, the Erzgebirge Crystalline Complex, mantle peridotite from a Tibetan ophiolite, and possibly the Maksyutov Complex. Coesite-bearing UHP terranes are the Zermatt-Saas area, Western Alps; the Mali eclogites from West Africa; the Makabal complex of western Tien Shan; the Bohemian massif; and the newly reported Central Indonesia terrane and Himalayan eclogites from the upper Kaghan Valley of Pakistan. Except for the diamond-bearing Tibetan ophiolite, most UHP terranes share similar petrotectonic assemblages and lie within major continental collision belts in Eurasia and Africa. Using new approaches (including new geobarometers) and technologies, additional UHP terranes are expected to be recognized in other Phanenorozic orogenic sutures.  相似文献   

15.
Natural gas hydrate deposits have been estimated to store about 10% of gas in hydrate form (even with regard to a higher concentration of gas in hydrates), proceeding from the known ratio of dissolved-to-deposited gas. This high percentage is largely due to the fact that the buffer factor in natural gas hydrate deposits is lower than that for free gas because of less diverse structural conditions for gas accumulation. Therefore, the available appraisal of world resources of hydrated gas needs a revision.Hydrates in rocks are either syngenetic or epigenetic. Syngenetic hydrates originate from free or dissolved gas which was present in rocks in situ at the time when PT-conditions became favorable for gas hydrate formation. Epigenetic hydrates are derived from gas which came by migration into rocks with their PT-conditions corresponding to formation of gas hydrates.In addition to the optimum PT-conditions and water salinity, economic gas hydrate accumulation requires sustained supply of natural gas into a specific zone of gas hydrate formation. This condition is feasible only in the case of vertical migration of natural gas along faults, fractured zones, and lithologic windows, or, less often, as a result of lateral migration.Of practical importance are only the gas hydrate deposits produced by vertical or lateral gas migration.  相似文献   

16.
 This paper presents mineralogical and textural data as well as thermobarometric calculations on ultramafic high-pressure rocks from the Variscan basement of the Schwarzwald (F.R.G.). The rocks form small isolated bodies within low-pressure / high-temperature gneisses and migmatites. The results of this study constrain contrasting P-T evolutions for four garnet-bearing ultramafic high-pressure rocks. Two magnesian garnet-spinal peridotites sampled near the southern margin of the Central Schwarzwald Gneiss Complex (CSGC) were equilibrated at 670–740° C and 1.4–1.8 GPa. These P-T conditions are similar to those recorded by eclogites intercalated in the same basement unit. Two garnet websterites sampled from the northern part of the CSGC have comparatively low Mg/(Mg+Fe) and low Cr and Ni abundances and are interpreted as former cumulates. These rocks most probably experienced an initial high-temperature stage within the spinel peridotite stability field, followed by re-equilibration at 740–850° C / 3.2–4.3 GPa and subsequent recrystallization at lower pressures. Further petrologic studies have to reveal whether ultramafic high-pressure rocks of the Schwarzwald can generally be assigned to these two groups which are mainly defined by contrasting peak pressures. Received: 22 August 1994 / Accepted: 19 January 1995  相似文献   

17.
Despite the violent eruption of the Siberian Traps at ~ 250 Ma, the Siberian craton has an extremely low heat flow (18–25 mW/m2) and a very thick lithosphere (300–350 km), which makes it an ideal place to study the influence of mantle plumes on the long-term stability of cratons. Compared with seismic velocities of rocks, the lower crust of the Siberian craton is composed mainly of mafic granulites and could be rather heterogeneous in composition. The very high Vp (> 7.2 km/s) in the lowermost crust can be fit by a mixture of garnet granulites, two-pyroxene granulites, and garnet gabbro due to magma underplating. The high-velocity anomaly in the upper mantle (Vp = 8.3-8.6 km/s) can be interpreted by a mixture of eclogites and garnet peridotites. Combined with the study of lower crustal and mantle xenoliths, we recognized multistage magma underplating at the crust-mantle boundary beneath the Siberian craton, including the Neoarchean growth and Paleoproterozoic assembly of the Siberian craton beneath the Markha terrane, the Proterozoic collision along the Sayan-Taimyr suture zone, and the Triassic Siberian Trap event beneath the central Tunguska basin. The Moho becomes a metamorphism boundary of mafic rocks between granulite facies and eclogite facies rather than a chemical boundary that separates the mafic lower crust from the ultramafic upper mantle. Therefore, multistage magma underplating since the Neoarchean will result in a seismic Moho shallower than the petrologic Moho. Such magmatism-induced compositional change and dehydration will increase viscosity of the lithospheric mantle, and finally trigger lithospheric thickening after mantle plume activity. Hence, mantle plumes are not the key factor for craton destruction.  相似文献   

18.
This paper provides the first measurements of the nitrogen (N) concentrations and isotopic compositions of high- and ultrahigh-pressure mafic eclogites, aimed at characterizing the subduction input flux of N in deeply subducting altered oceanic crust (AOC). The samples that were studied are from the Raspas Complex (Ecuador), Lago di Cignana (Italy), the Zambezi Belt (Zambia) and Cabo Ortegal (Spain), together representing subduction to 50-90 km depths. The eclogites contain 2-20 ppm N with δ15Nair values ranging from −1 to +8‰. These values overlap those of altered oceanic crust, but are distinct from values for fresh MORB (for the latter, ∼1.1 ppm N and δ15Nair ∼ −4‰). Based on N data in combination with other trace element data, the eclogite suites can be subdivided into those that are indistinguishable from their likely protolith, AOC, with or without superimposed effects of devolatilization (Lago di Cignana, Cabo Ortegal), and those that have experienced metasomatic additions during subduction-zone metamorphism (Zambezi Belt, Raspas). For the former group, the lack of a detectable loss of N in the eclogites, compared to various altered MORB compositions, suggests the retention of N in deeply subducted oceanic crust. The metasomatic effects affecting the latter group can be best explained by mixing with a (meta)sedimentary component, resulting in correlated enrichments of N and other trace elements (in particular, Ba and Pb) thought to be mobilized during HP/UHP metamorphism. Serpentinized and high-pressure metamorphosed peridotites, associated with the eclogites at Raspas and Cabo Ortegal, contain 3-15 ppm N with δ15Nair values ranging from +3 to +6‰, significantly higher than the generally accepted values for the MORB mantle (δ15Nair ∼ −5‰). Based on their relatively high N contents and their homogeneous and positive δ15N values, admixing of sedimentary N is also indicated for the serpentinized peridotites.One possible pathway for the addition of sediment-derived N into eclogites and peridotites involves mixing with fluids along the slab-mantle wedge interface. Alternatively, sedimentary N could be incorporated into peridotites during serpentinization at bending-related faults at the outer rise and, during later deserpentinization, released into fluids that then infiltrate overlying rocks. Deep retention of N in subducting oceanic crust should be considered in any attempt to balance subduction inputs with outputs in the form of arc volcanic gases. If materials such as these eclogites and serpentinized peridotites are eventually subducted to beyond sub-arc depths into the deeper mantle, containing some fraction of their forearc-subarc N inventory (documented here), they could deliver isotopically heavy N into the mantle to potentially be sampled by plume-related magmas.  相似文献   

19.
Eclogites and associated high-pressure (HP) rocks in collisional and accretionary orogenic belts preserve a record of subduction and exhumation, and provide a key constraint on the tectonic evolution of the continents. Most eclogites that formed at high pressures but low temperatures at > 10–11 kbar and 450–650 °C can be interpreted as a result of subduction of cold oceanic lithosphere. A new class of high-temperature (HT) eclogites that formed above 900 °C and at 14 to 30 kbar occurs in the deep continental crust, but their geodynamic significance and processes of formation are poorly understood. Here we show that Neoarchaean mafic–ultramafic complexes in the central granulite facies region of the Lewisian in NW Scotland contain HP/HT garnet-bearing granulites (retrogressed eclogites), gabbros, lherzolites, and websterites, and that the HP granulites have garnets that contain inclusions of omphacite. From thermodynamic modeling and compositional isopleths we calculate that peak eclogite-facies metamorphism took place at 24–22 kbar and 1060–1040 °C. The geochemical signature of one (G-21) of the samples shows a strong depletion of Eu indicating magma fractionation at a crustal level. The Sm–Nd isochron ages of HP phases record different cooling ages of ca. 2480 and 2330 Ma. We suggest that the layered mafic–ultramafic complexes, which may have formed in an oceanic environment, were subducted to eclogite depths, and exhumed as HP garnet-bearing orogenic peridotites. The layered complexes were engulfed by widespread orthogneisses of tonalite–trondhjemite–granodiorite (TTG) composition with granulite facies assemblages. We propose two possible tectonic models: (1) the fact that the relicts of eclogitic complexes are so widespread in the Scourian can be taken as evidence that a > 90 km × 40 km-size slab of continental crust containing mafic–ultramafic complexes was subducted to at least 70 km depth in the late Archaean. During exhumation the gneiss protoliths were retrogressed to granulite facies assemblages, but the mafic–ultramafic rocks resisted retrogression. (2) The layered complexes of mafic and ultramafic rocks were subducted to eclogite-facies depths and during exhumation under crustal conditions they were intruded by the orthogneiss protoliths (TTG) that were metamorphosed in the granulite facies. Apart from poorly defined UHP metamorphic rocks in Norway, the retrogressed eclogites in the central granulite/retrogressed eclogite facies Lewisian region, NW Scotland have the highest crustal pressures so far reported for Archaean rocks, and demonstrate that lithospheric subduction was transporting crustal rocks to HP depths in the Neoarchaean.  相似文献   

20.
From the abundant metre to km-sized eclogite bodies in the Variscan crystalline complex of the Saxonian Erzgebirge we have investigated 19 samples from the ultrahigh pressure area at the Saidenbach reservoir. Twenty-two samples were from the south-western Erzgebirge, and from occurrences located only some km away from the reservoir. These samples were analysed for major and trace elements using X-ray fluorescence (XRF) spectrometry and inductively coupled plasma mass spectrometry (ICP-MS).The non-Saidenbach eclogites (SiO2=49–53 wt%) can be derived from N-mid-ocean ridge basalts (MORBs) partially transitional to P-MORBs (e.g., (Nb)N: 3–36; (Sr)N: 4–17; (La/Sm)N<1.5 (in most instances <0.7) and (Sm/Yb)N around 1.2). Eclogites from the Saidenbach reservoir (SiO2=49–61 wt%) are characterised by (Nb)N: 20–170; (Sr)N: 9–43; (La/Sm)N: 1.2–3.0; (Sm/Yb)N: 1.4–8.8, and a clear negative Eu anomaly for the Si-rich samples, thus, being significantly different from the other investigated eclogites. These signatures point to protoliths related to within plate igneous rocks. However, we also discuss the possibilities of (1) protoliths related to a magmatic arc along an active continental margin and (2) the formation by melting of crustal material in the deep mantle and final crystallisation in the lowermost continental crust similar to the adjacent diamondiferous quartzofeldspathic rocks.Due to the specific geochemical signatures of eclogites in the Saidenbach area including other facts, this ultrahigh pressure region is believed to represent a section of lowermost crust not outcropping in other portions of the Saxonian Erzgebirge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号