首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
A high‐P granulite facies gneiss complex occurs in north‐west Payer Land (74°28′?74°47′N) in the central part of the East Greenland Caledonian (Ordovician–Devonian) orogen. High‐P metamorphism of the Payer Land gneiss complex resulted in formation of the assemblages Grt + Cpx + Amp + Qtz + Ru ± Pl in mafic rocks, and Grt + Ol + Cpx + Opx + Spl in rare ultramafic pods. Associated metapelites experienced anatexis in the kyanite stability field. Peak metamorphic assemblages formed around 800–850 °C at pressures of c. 1.4–1.7 GPa, corresponding to crustal depths of c. 50 km. Mafic granulites contain abundant reaction textures, including the replacement of garnet by symplectites of Opx + Spl + Pl, indicating that the high‐P event was followed by decompression while the granulites remained at elevated temperatures. Charnockitic gneisses from Payer Land show evidence of late Archean (c. 2.8–2.4 Ga) crustal growth and subsequent Palaeoproterozoic (c. 1.85 Ga) metamorphism. The gneiss complex experienced intense reworking during the Caledonian continental collision. On the basis of Caledonian monazite ages recorded from the high‐P anatectic metapelites, the clockwise P–T evolution and formation of the high‐P granulite facies assemblages is related to Caledonian crustal thickening, which resulted in formation of eclogites approximately 300 km north of Payer Land. The Payer Land granulites comprise a metamorphic core complex, which is separated from the overlying low‐grade supracrustal rocks (the Neoproterozoic Eleonore Bay Supergroup) by a late Caledonian extensional fault zone, the Payer Land Detachment. The steep, nearly isothermal, unloading P–T path recorded by the granulites can be explained by erosional and tectonic unroofing along the Payer Land Detachment.  相似文献   

2.
Two Rongcheng eclogite‐bearing peridotite bodies (Chijiadian and Macaokuang) occur as lenses within the country rock gneiss of the northern Sulu terrane. The Chijiadian ultramafic body consists of garnet lherzolite, whereas the Macaokuang body is mainly meta‐dunite. Both ultramafics are characterized by high MgO contents, low fertile element concentrations and total REE contents, which suggests that they were derived from depleted, residual mantle. High FeO contents, an LREE‐enriched pattern and trace‐element contents indicate that the bulk‐rock compositions of these ultramafic rocks were modified by metasomatism. Oxygen‐isotope compositions of analysed garnet, olivine, clinopyroxene and orthopyroxene from these two ultramafic bodies are between +5.2‰ and +6.2‰ (δ18O), in the range of typical mantle values (+5.1 to +6.6‰). The eclogite enclosed within the Chijiadian lherzolite shows an LREE‐enriched pattern and was formed by melts derived from variable degrees (0.005–0.05) of partial melting of peridotite. It has higher δ18O values (+7.6‰ for garnet and +7.7‰ for omphacite) than those of lherzolite. Small O‐isotope fractionations (ΔCpx‐Ol: 0.4‰, ΔCpx‐Grt: 0.1‰, ΔGrt‐Ol: 0.3–0.4‰) in both eclogite and ultramafic rocks suggest isotopic equilibrium at high temperature. The P–T estimates suggest that these rocks experienced subduction‐zone ultrahigh‐pressure (UHP) metamorphism at ~700–800 °C, 5 GPa, with a low geothermal gradient. Zircon from the Macaokuang eclogite contains inclusions of garnet and diopside. The 225 ± 2 Ma U/Pb age obtained from these zircon may date either the prograde conditions just before peak metamorphism or the UHP metamorphic event, and therefore constrains the timing of subduction‐related UHP metamorphism for the Rongcheng mafic–ultramafic bodies.  相似文献   

3.
Alpine‐type orogenic garnet‐bearing peridotites, associated with quartzo‐feldspathic gneisses of a 140–115 Ma high‐pressure/ultra‐high‐pressure metamorphic (HP‐UHPM) terrane, occur in two regions of the Indonesian island of Sulawesi. Both exposures are located within NW–SE‐trending strike–slip fault zones. Garnet lherzolite occurs as <10 m wide fault slices juxtaposed against Miocene granite in the left‐lateral Palu‐Koro (P‐K) fault valley, and as 10–30 m wide, fault‐bounded outcrops juxtaposed against gabbros and peridotites of the East Sulawesi ophiolite within the right‐lateral Ampana fault in the Bongka river (BR) valley. Six evolutionary stages of recrystallization can be recognized in the peridotites from both localities. Stage I, the precursor spinel lherzolite assemblage, is characterized by Ol+Cpx+Opx±Prg‐Amp ± Spl±Rt±Phl, as inclusions within garnet cores. Stage II, the main garnet lherzolite assemblage, consists of coarse‐grained Ol+Opx+Cpx+Grt; whereas finer‐grained, neoblastic Ol+Opx+Grt+Cpx±Spl±Prg‐Amp±Phl constitutes stage III. Stages IV and V are manifest as kelyphites of fibrous Opx+Cpx+Spl in inner coronas, and Opx+Spl+Prg‐Amp±Ep in outer coronas around garnet, respectively. The final (greenschist facies) retrogressive stage VI is accompanied by recrystallization of Serp+Chl±Mag±Tr±Ni sulphides±Tlc±Cal. P–T conditions of the hydrated precursor spinel lherzolite stage I were probably about 750 °C at 15–20 kbar. P–T determinations of the peak stage IIc (from core compositions) display considerable variation for samples derived from different outcrops, with clustering at 26–38 kbar, 1025–1210 °C (P‐K & BR); 19–21 kbar, 1070–1090 °C (P‐K), and 40–48 kbar, 1205–1290 °C (BR). Stage IIr (derived from rim compositions) generally records decompression of around 4–12 kbar accompanied by cooling of 50–240 °C from the IIc peak stage. Stage III, which post‐dates a phase of ductile deformation, yielded 22±2 kbar at 750±25 °C (P‐K) and 16±2 kbar at 730±40 °C (BR). The granulite–amphibolite–greenschist decompression sequence reflects uplift to upper crustal levels from conditions of 647–862 °C at P=15 kbar (stage IV), through 580–635 °C at P=10–12 kbar (stage V) to 350–400 °C at P=4–7 kbar (stage VI), respectively, and is identical to the sequence recorded in associated granulite, gneiss and eclogite. Sulawesi garnet peridotites are interpreted to represent minor components of the extensive HP‐UHP (peak P >28 kbar, peak T of c. 760 °C) metamorphic basement terrane, which was recrystallized and uplifted in a N‐dipping continental collision zone at the southern Sundaland margin in the mid‐Cretaceous. The low‐T , low‐P and metasomatized spinel lherzolite precursor to the garnet lherzolite probably represents mantle wedge rocks that were dragged down parallel to the slab–wedge interface in a subduction/collision zone by induced corner flow. Ductile tectonic incorporation into the underthrust continental crust from various depths along the interface probably occurred during the exhumation stage, and the garnet peridotites were subsequently uplifted within the HP‐UHPM nappe, suffering a similar decompression history to that experienced by the regional schists and gneisses. Final exhumation from upper crustal levels was clearly facilitated by entrainment in Neogene granitic plutons, and/or Oligocene trans‐tension in deep‐seated strike–slip fault zones.  相似文献   

4.
Abstract End-member, continuous and degenerate reactions are derived for the multisystem with the six components Na2O, CaO, (Mg/Fe)O, Al2O3, SiO2, H2O among the phases plagioclasess, garnetss, amphiboless, cpx, opx, olivine, spinel, quartz and an aqueous fluid. The chemography of this system is degenerate due to the co-linearity 2Opx = Ol + Qtz. This co-linearity has its implications both on reaction space and phase equilibria. From a total of 28 reaction systems, reaction space is derived for nine subsystems (phases in parentheses are absent): Case A1: (Cpx,Ol) (Cpx,Opx) and (Cpx,Qtz), Case A2: (Spl,Ol) (Spl,Opx) and (Spl,Qtz), Case B: (Ol,Opx) (Ol,Qtz) and (Opx,Qtz). In the absence of either cpx or spl (case A), three reactions form an invariant point, either [Cpx] or [Spl], where the co-linear phases olivine, opx and quartz coexist on the transformation line 2Opx = Ol + Qtz. Changing mineral compositions force invariant points to move along the line with the different reaction curves changing their relative position according to Schreinemakers’rules. Zero contours, i.e. the location where (a) phase(s) disappear(s) in reaction space correspond to singular points in phase diagrams. Two types are distinguished; singular points of indispensable and of substitutable phases. In the first case the phase disappears from the entire bundle while in the second it disappears from a single reaction. In the specific case where the substitutable phases are also the co-linear ones, two of the three co-linear phases disappear simultaneously. Two of the three reaction curves coincide. In the system including Cpx and Spl (Case B) three reactions, (Ol,Opx) (Ol,Qtz) and (Opx,Qtz), oppose three invariant points, [Ol], [Opx] and [Qtz]. Invariant points no longer move along the line 2Opx = Ol + Qtz. The coincidence of the zero contours of all three co-linear phases in reaction space-the result of the chemographic degeneracy-causes the respective singular points to coincide in the phase diagrams. This is the location where curves must be rearranged in a bundle to conform Schreinemakers’rules. The reaction Grs1Prp2= 2 Ol + An is fourth order degenerate and part of all nine subsystems (cases A and B). It can be used to relate the different phase diagrams to one another.  相似文献   

5.
Deformed and metamorphic ultramafic to mafic rocks emplaced into the Archaean Sargur supracrustal series (>3.0 Ga) in Karnataka, southern India, represent layered igneous bodies. The terrane has been affected by several episodes of deformation and metamorphism in the time span from 3.4 to 2.5 Ga ago.During the regional metamorphism about 2.5 Ga ago the igneous bodies re-equilibrated partly or completely at conditions of the upper amphibolite to granulite facies. The development of sagvandites with enstatite + magnesite and anthophyllite + magnesite-bearing assemblages, and of mafic garnet—pyroxene charnockites indicates the presence of CO2-rich intergranular fluids (XCO2 ? 0.5) in these rocks during metamorphism.The physical conditions of metamorphism have been estimated by applying methods of geothermobarometry to the recrystallized ultramafic assemblages with olivine, pyroxenes and spinel and to the charnockitic assemblages with garnet, pyroxenes, plagioclase and quartz. A best temperature estimate of 700 ± 30°C was derived with the geothermometers of Evans and Frost (Ol—Spi), Fabriès (Ol—Spi), Wells (Opx—Cpx), Powell (Opx—Cpx), Ellis and Green (Gra—Cpx), Lal and Raith (Gra—Opx), and Danckwerth and Newton (Al2O3-content in opx). A mean pressure estimate of 8.6 ± 0.8 kbar has been obtained with the models of Perkins and Newton (Gar—Opx/Cpx—Plag—Qtz). The PT data indicate a minimum crustal thickness of about 35 km at c. 2.5 Ga in this part of the South Indian Archaean craton.  相似文献   

6.
Mafic garnet-bearing granulites from Sostrene Island, 150 km southwest of Davis Station on the coast of Prydz Bay, East Antarctica, exhibit two-stage symplectic coronas on garnet, formed after peak metamorphic conditions (M1). An outer corona of Opx (Mg66) + Pl (An94–97) + minor Hbl mantles a finer-grained inner corona of Opx (Mg67) + Pl (An95–96) + Spl (Mg36). Both symplectites contain minor ilmenite–magnetite intergrowths. The finer-grained symplectite also occurs along a fracture cleavage in the garnet. The outer corona originated during a second metamorphic event (M2) via the reaction Grt + Cpx (Hbl) + SiO2= Opx + Pl (1), whereas the inner corona formed later in response to decompression and minor deformation, resulting in the fracture cleavage in the garnet, according to the reaction Grt = Opx + Pl + Spl (2). The grossular content of the garent (XGrs= 0.168) is almost exactly that which is required for the stoichiometric breakdown by reaction (2) (calculated XGrs= 0.167). The mafic rocks are silica undersaturated, and the SiO2 for reaction (1) was most probably derived externally from the surrounding felsic gneisses. Preferred P–T estimates for M1 based on garnet core (Prp40Alm42Grs17Sps1)–matrix Opx–Cpx–Hbl pairs are c. 10 kbar at 980°C. The fine-grained symplectite formed post-peak M2 at c. 7 kbar and 850°C. The enclosing felsic gneisses yield pressure estimates of between 5 and 7 kbar, which compare with conditions of c. 6 kbar and 775°C in the nearby Bolingen Islands. These lower P–T estimates are considered to be representative of the widespread 1100-Ma metamorphic event recognized in outcrops along the Prydz Bay coast. The high-P, high-T estimates derived from the garnet relics provide evidence for an earlier, possibly Archaean, high-grade metamorphic event.  相似文献   

7.
Due to the retrograde cation exchange problems experienced by conventional geothermobarometers above their closure temperatures, petrogenetic grids are a potentially powerful alternative to unravelling the PT evolution of ultrahigh‐T granulite terranes. A new qualitative KFMASH (K2O–FeO–MgO–Al2O3–SiO2–H2O) petrogenetic grid for Mg–Al rich metapelites containing K‐feldspar, sillimanite and quartzofeldspathic melt that successfully accounts for the majority of assemblages composed of variations of sapphirine, spinel, garnet, orthopyroxene, cordierite, biotite and quartz is developed. Univariant reactions are predicted utilizing a newly derived ‘melt projection’ and these reactions are entirely consistent with algebraically calculated reaction coefficients obtained using a set of standard phase compositions. Based upon observations of commonly associated mineral assemblages in natural lithologies the [Spr, Spl], [Qtz, Spl], [Bt, Spl], [Opx, Spr], [Opx, Qtz] and [Bt, Opx] invariant points are assumed to be stable, whilst the [Grt, Spr], [Grt, Qtz], [Spr, Qtz] and [Crd, Qtz] are assumed to be metastable. Biotite‐bearing assemblages are confined to the lowest temperatures, and sapphirine + quartz to the highest temperatures. Orthopyroxene + sillimanite ± quartz assemblages are confined to the highest pressures, whilst spinel‐bearing assemblages are stabilized by lower pressures. The alternative choice of invariant point stability leads to significant differences between this grid and previously proposed topologies. Spinel cannot be stable along with the orthopyroxene and sillimanite assemblage as previously proposed. Further, more subtle differences in topology result from the treatment of H2O in the chemographic projection used to deduce univariant reactions, and projecting from a water‐bearing quartzofeldspathic melt does not yield the same reaction coefficients as projection from H2O. The new grid allows reinterpretation of previously proposed evolutionary P–T paths for Mg–Al rich granulites from the Napier Complex and Rauer Group, East Antarctica, and In Ouzzal, Algeria.  相似文献   

8.
To elaborate physicochemical models for the origin of crystalline rocks, experimental studies of the field of high-alumina assemblages of the system CaO–MgO–Al2O3–SiO2 were carried out at 10–30 kbar and 1250–1535 °C. We have determined the phase relations between the melt (L) and An, Sp, Cpx, Cor, and Ga, the slope of the rays of the monovariant reactions An + Sp = Cpx + Cor + (Ga) and L = Cpx +Ga + Cor + Sp, the position of the nonvariant point (An, Sp, Cpx, Cor, Ga, L), and the compositions of phases participating in these reactions. Based on a topological analysis of the studied segment of the system CaO–MgO–Al2O3–SiO2, we have substantiated that “eclogitization” must follow the reaction Opx + An + Sp = Cpx + Ga. A fundamental continuous series of eutectic monovariant equilibria was observed: L = Cpx + Opx + Fo + An, L = Cpx + Opx + An + Sp, L = Cpx (+ Ga) + An + Sp, and L = Cpx + Cor (+ Ga) + An. A change in the melt composition in this series of eutectic reactions depending on pressure must reflect the most likely magma genesis trend in nature. Comparision of the composition fields in which the above series of reactions is observed with the composition fields of the rocks of magmatic formations showed that this series is most similar to the alkali-earth series of rocks. The mineralogical compositions of cumulates and phenocrysts found in the effusive and dike varieties of these rocks correspond to unique sets of subsolidus phase associations and individual subsolidus phases crystallizing in this fundamental eutectic series.  相似文献   

9.
An ultra-high-pressure (UHP) metamorphic slab at Yangkou Beach near Qingdao in the Sulu region of China consists of blocks of eclogite facies metagabbro, metagranitoid, ultramafic rock and mylonitic orthogneisses enclosed in granitic gneiss. A gradational sequence from incipiently metamorphosed gabbro to completely recrystallized coesite eclogite formed at ultra-high-pressures was identified in a single 30 m block; metagabbro is preserved in the core whereas coesite eclogite occurs along the block margins. The metagabbro contains an igneous assemblage of Pl+Aug+Opx+Qtz+Bt+Ilm/Ti-Mag; it shows relict magmatic textures and reaction coronas. Fine-grained garnet developed along boundaries between plagioclase and other phases; primary plagioclase broke down to Ab+Ky+Ms+Zo±Grt±Amp. Augite is rimmed by sodic augite or omphacite, whereas orthopyroxene is rimmed by a corona of Cum±Act and Omp+Qtz layers or only Omp+Qtz. In transitional rocks, augite and orthopyroxene are totally replaced by omphacite, and the lower-pressure assemblage Ab+Ky+Phn+Zo+Grt coexists with domains of Omp (Jd70–73)+Ky±Phn in pseudomorphs after plagioclase. Both massive and weakly deformed coesite-bearing eclogites contain Omp+Ky+Grt+Phn+Coe/Qtz+Rt, and preserve a faint gabbroic texture. Coesite inclusions in garnet and omphacite exhibit limited conversion to palisade quartz; some intergranular coesite and quartz pseudomorphs after coesite also occur. Assemblages of the coronal stage, transitional and UHP peak occurred at about 540±50 °C at c. 13 kbar, 600–800 °C at ≥15–25 kbar and 800–850 °C at >30 kbar, respectively. Garnet from the coronal- through the transitional- to the eclogite-stage rocks show a decrease in almandine and an increase in grossular±pyrope components; garnet in low-grade rocks contains higher MnO and lower pyrope components. The growth textures of garnet within pseudomorphs after plagioclase or along grain boundaries between plagioclase and other phases are complex; the application of garnet zoning to estimate P–T should be carried out with caution. Some garnet enclosing quartz aggregates as inclusions shows radial growth boundaries; these quartz aggregates, as well as other primary and low-P phases, persisted metastably at UHP conditions due to sluggish reactions resulting from the lack of fluid during prograde and retrograde P–T evolution.  相似文献   

10.
超基性岩是苏鲁超高压变质地体中一类特殊且十分重要的岩石类型,它们通常呈规模不一的块状、条带状或不规则透镜状 (体) 赋存于区域大面积出露的花岗质片麻岩中。锆石中矿物包体激光拉曼测试、阴极发光图像分析和不同性质锆石LA-ICP-MS U-Pb定年等综合研究结果表明,北苏鲁威海地区含橄榄石辉石岩 (样品W1和W2) 中锆石的成因十分复杂,可进一步划分3种不同类型锆石。其中第一类锆石呈自形-半自形晶,阴极发光图像显示清晰的岩浆结晶环带,矿物包体主要为Ol+Cpx+Ap, 记录的207Pb/206Pb年龄为1835~1845Ma,应代表含橄榄石辉石岩的原岩形成时代;第二类为变质重结晶锆石,呈半自形-他形晶,阴极发光图像显示模糊的岩浆结晶环带,矿物包体与第一类完全一致,记录的206Pb/238U年龄变化范围大,为250~784Ma之间,表明部分继承性岩浆结晶锆石明显受到后期岩浆-变质热事件的影响而发生不完全重结晶和Pb丢失,进而使其记录的年龄相对偏新;第三类锆石呈他形晶,为典型的变质锆石,阴极发光图像十分均匀,矿物包体相对少见,主要为Grt+Cpx,记录的206Pb/238U年龄为230~234Ma, 且与苏鲁地体榴辉岩及其围岩中含柯石英锆石微区记录的超高压变质年龄 (225~235Ma) 十分一致,应代表含橄榄石辉石岩的峰期超高压变质时代。超基性岩中超高压变质锆石的准确识别表明苏鲁地体在峰期超高压变质阶段的确存在流体,流体的存在对超高压变质锆石的形成起着至关重要的作用。该项研究不仅准确厘定北苏鲁威海地区超基性岩的原岩形成时代和超高压变质时代,而且对于深入探讨苏鲁-大别超高压地体流体行为、演化规律及其水-岩相互作用机理具有重要的科学意义。  相似文献   

11.
Highly anhydrous granulites from Río Santa Rosa in the eastern Sierras Pampeanas of Argentina occur as a thick lens surrounded by melt-depleted migmatites. Grt–Crd granulite composed of Qtz+Pl+Grt+Crd+Ilm±Spl±Ath±Phl is the dominant rock, whereas Opx–Grt granulite appears as discontinuous lenses in the center of the granulite body. Grt–Crd granulite includes blocks of metabasite that are relics of refractory lithologic beds interlayered in the supracrustal sequence. A distinct assemblage composed of Qtz, Pl, Grt, Crd, Opx, Spl, Crn, Sil, Bt, Phl, Ath, and Fe–Ti oxides in different combinations was generated in a reaction zone between Grt–Crd granulites and metabasites at peak metamorphism (850–900 °C and 7.6±0.5 kbar). The PT trajectory of Grt–Crd granulites suggests an early prograde garnet-forming stage followed by nearly isothermal decompression that caused garnet breakdown. Melting and melt draining accompanying garnet growth was active during heating (to 900 °C) at intermediate pressures (∼7.6 kbar). Peak PT estimates for Opx–Grt granulites are similar to those obtained with Grt–Crd granulites, which indicates that both granulites passed through the highest thermal stage. These results constrain the late evolution of Opx–Grt granulite to a garnet-consuming stage. Furthermore, they imply that garnet formation in Opx–Grt granulite happened at an early prograde PT trajectory. Garnet growth in Opx–Grt granulite cannot result from heating at high pressure, which would lead to an apparent contradiction in the prograde PT paths of the two granulites. This discrepancy may be solved by demonstrating that Opx–Grt granulite is the product of synmetamorphic mafic magmatism that was contaminated while cooling. The Río Santa Rosa granulites are inferred to have formed in a thickened crust in which mafic magmatic activity providing a local heat input.  相似文献   

12.
Quartz Al–Mg granulites exposed at In Hihaou, In Ouzzal (NW Hoggar), preserve an unusual high-grade mineral association stable at temperatures up to 1050°C, involving the parageneses orthopyroxene–sillimanite–garnet–quartz, sapphirine–quartz and spinel–quartz. The phase relationships within the FMAS system show that a continuum exists between the earlier prograde reaction textures and those of the later decompressive event. The following mineral reactions involving sillimanite are deduced: (1) Grt+Qtz→Opx+Sil, (2) Opx+Sil→Grt+Spr+Qtz, (3) Grt+Sil+Qtz→Crd, (4) Grt+Sil→Crd+Spr, (5) Grt+Sil+Spr→Crd+Spl, (6) Grt+Sil→Crd+Spl, (7) Grt+Crd+Sil→Spl+Qtz and (8) Grt+Sil→Spl+Qtz. Minerals in quartz Al–Mg granulites display compositional variations consistent with the observed reactions. The Mg/(Mg+Fe2+) range of the main minerals is as follows: cordierite (0.81–0.97), sapphirine (0.77–0.88), orthopyroxene (0.65–0.81), garnet (0.33–0.64) and spinel (0.23–0.56). The reaction textures and the evolution of the mineral assemblages in the quartz Al–Mg granulites indicate a clockwise P–T trajectory characterized by peak conditions of at least 10 kbar and 1050°C, followed by decompression from 10 to 6 kbar at a temperature of at least 900°C.  相似文献   

13.
假蓝宝石是Mg-Al质麻粒岩中一种特殊的高温矿物,对超高温变质作用的研究有重要的意义。本文通过对全球66个超高温麻粒岩中47个含假蓝宝石麻粒岩地区的文献调研,总结了几种最常见的含假蓝宝石矿物组合产出的结构位置和变质反应关系,以及假蓝宝石的矿物化学特征。假蓝宝石的化学成分一般位于7∶9∶3端元左右,X_(Mg)大于0. 7,XFe_(3+)变化范围很宽,为0~0. 7。含假蓝宝石矿物组合的形成和演化指示了岩石经历的P-T轨迹。岩石中保留的假蓝宝石取代尖晶石、Grt/Opx+Sil取代Spr+Qz组合,以及随后的Spr+Crd±Opx后成合晶取代Grt/Opx+Sil组合的结构,一般可能指示了逆时针P-T轨迹中冷却和随后减压的部分;岩石中Grt/Opx+Sil/Ky或富Mg十字石反应形成Spr+Qz组合的结构可能指示了顺时针P-T轨迹中减压升温的部分。超高温变质岩不同的P-T轨迹暗示着它们的成因机制并不单一,前者可能是幔源基性岩浆底侵或增生作用的结果,后者可能与长期的热造山作用相关。  相似文献   

14.
Mafic rocks in the Chipman domain of the Athabasca granulite terrane, western Canadian Shield, provide the first well‐documented record of two distinct high‐P granulite facies events in the same domain in this region. Textural relations and the results of petrological modelling (NCFMASHT system) of mafic granulites are interpreted in terms of a three‐stage tectonometamorphic history. Stage 1 involved development of the assemblage Grt + Cpx + Qtz ± Pl (M1) from a primary Opx‐bearing igneous precursor at conditions of 1.3 GPa, 850–900 °C. Field and microstructural observations suggest that M1 developed synchronously with an early S1 gneissic fabric. Stage 2 is characterized by heterogeneous deformation (D2) and synkinematic partial retrogression of the peak assemblage to an amphibole‐bearing assemblage (M2). Stage 3 involved a third phase of deformation and a return to granulite facies conditions marked by the prograde breakdown of amphibole (Amph2) to produce matrix garnet (Grt3a) and the coronitic assemblage Cpx3b + Opx3b + Ilm3b + Pl3b (M3b) at 1.0 GPa, 800–900 °C. M1 and M3b are correlated with 2.55 and 1.9 Ga metamorphic generations of zircon, respectively, which were dated in a separate study. Heterogeneous strain played a crucial role in both the development and preservation of these rare examples of multiple granulite facies events within single samples. Without this fortuitous set of circumstances, the apparent reaction history could have incorrectly led to an interpretation involving a single‐cycle high‐grade event. The detailed PTtD history constructed for these rocks provides the best evidence to date that much of the east Lake Athabasca region experienced long‐term lower crustal residence from 2.55 to 1.9 Ga, and thus the region represents a rare window into the reactivation and ultimate stabilization processes of cratonic lithosphere.  相似文献   

15.
In mafic granulites, garnet can form by reactions such as Opx + Pl = Cpx + Grt + Qtz; Opx + Pl = Grt + Qtz. As a result of isothermal decompression (ITD), garnet can then break down to a characteristic orthopyroxene-plagioclase symplectite. Mafic, iron-rich garnet-pyroxene granulite from the Guaxupé Massif has symplectite that formed by near-isothermal decompression, as a consequence of uplift of the granulite facies terrane. This symplectite was found to consist of vermicular clinopyroxene-orthopyroxene-plagioclase, with clinopyroxene clearly growing from the garnet that is breaking down, modal amounts of clinopyroxene being less than orthopyroxene. Electron probe analyses show clear differences between core (Cpx1), rim, and symplectite clinopyroxene (Cpx2). Considering also the presence of magnetite in the symplectite texture, garnet breakdown is thought to be better represented by a reaction such as Cpx1 + Grt + O2 = Cpx2 + Opx + Pl +Mt + Qtz.  相似文献   

16.
Sapphirine granulites from a new locality in the Palni Hill Ranges, southern India, occur in a small enclave of migmatitic, highly magnesian metapelites (mg=85–72) within massive enderbitic orthogneiss. They show a variety of multiphase reaction textures that partially overprint a coarse-grained high-pressure assemblage of Bt+Opx+Ky+Grt+Pl+Qtz. The sequence of reactions as deduced from the corona and symplectite assemblages, together with petrogenetic grid considerations, records a clockwise P–T evolution with four distinct stages. (1) Equilibration of the initial high-P assemblage in deep overthickened crust (12 kbar/800–900 °C) was followed by a stage of near-isobaric heating, presumably as a consequence of input of extra heat provided by the voluminous enderbitic intrusives. During heating, kyanite was converted to sillimanite, and biotite was involved in a series of vapour-phase-absent melting reactions, which resulted in the ultra-high-temperature assemblage Opx+Crd+Kfs+Spr±Sil, Grt, Qtz, Bt, coexisting with melt (equilibration at c. 950–1000° C/11–10 kbar). (2) Subsequently, as a result of decompression of the order of 4 kbar at ultra-high temperature, a sequence of symplectite assemblages (Opx+Sil+Spr/Spr+Crd→Opx+Spr+Crd→Opx+Crd→Opx+Crd+Spl/Crd+Spl) developed at the expense of garnet, orthopyroxene and sillimanite. This stage of near-isothermal decompression implies rapid ascent of the granulites into mid-crustal levels, possibly due to extensional collapse and erosion of the overthickened crust. (3) Development of late biotite through back-reaction of melt with residual garnet indicates a stage of near-isobaric cooling to c. 875 °C at 7–8 kbar, i.e. relaxation of the rapidly ascended crust to the stable geotherm. (4) A second period of near-isothermal exhumation up to c. 6–5 kbar/850 °C is indicated by the partial breakdown of late biotite through volatile phase-absent melting reactions. Available isotope data suggest that the early part of the evolutionary history (stages 1–3) is presumably coeval with the early Proterozoic metamorphism in the extended granulite terrane of the Nilgiri, Biligirirangan and Shevaroy Hills to the north, while the exhumation of the granulites from mid-crustal levels (stage 4) occurred only during the Pan-African thermotectonic event, which led to the accretion of the Kerala Khondalite Belt to the south.  相似文献   

17.
Widespread evidence for ultrahigh‐pressure (UHP) metamorphism is reported in the Dulan eclogite‐bearing terrane, the North Qaidam–Altun HP–UHP belt, northern Tibet. This includes: (1) coesite and associated UHP mineral inclusions in zircon separates from paragneiss and eclogite (identified by laser Raman spectroscopy); (2) inclusions of quartz pseudomorphs after coesite and polycrystalline K‐feldspar + quartz in eclogitic garnet and omphacite; and (3) densely oriented SiO2 lamellae in omphacitic clinopyroxene. These lines of evidence demonstrate that the Dulan region is a UHP metamorphic terrane. In the North Dulan Belt (NDB), eclogites are characterized by the peak assemblage Grt + Omp + Rt + Phn + Coe (pseudomorph) and retrograde symplectites of Cpx + Ab and Hbl + Pl. The peak conditions of the NDB eclogites are P = 2.9–3.2 GPa, and T = 631–687 °C; the eclogite shows a near‐isothermal decompression P–T path suggesting a fast exhumation. In the South Dulan Belt (SDB), three metamorphic stages are recognized in eclogites: (1) a peak eclogite facies stage with the assemblage Grt + Omp + Ky + Rt + Phn at P = 2.9–3.3 GPa and T = 729–746 °C; (2) a high‐pressure granulite facies stage with Grt + Cpx (Jd < 30) + Pl (An24–29) + Scp at P = 1.9–2.0 GPa, T = 873–948 °C; and (3) an amphibolite facies stage with the assemblage Hbl + Pl + Ep/Czo at P = 0.7–0.9 GPa and T = 660–695 °C. The clockwise P–T path of the SDB eclogites is different from the near‐isothermal decompression P–T path from the NDB eclogites, which suggests that the SDB was exhumed to a stable crustal depth at a slower rate. In essence these two sub‐belts formed in different tectonic settings; they both subducted to mantle depths of around 100 km, but were exhumed to the Earth's surface separately along different paths. This UHP terrane plays an important role in understanding continental collision in north‐western China.  相似文献   

18.
在高喜马拉雅带的定日县曲当—扎乡一带出露的高喜马拉雅结晶岩系中, 发现了高压变质的石榴辉石岩及其降压变质的镁铁质麻粒岩组合, 早期高压条件下形成的石榴辉石岩矿物组合为Grt+Cpx (富铝) +Ru+Q, 斜长石已完全消失, 形成温度为845~896℃, 压力大于1.2GPa, 已达到榴辉岩相的压力条件.中期的麻粒岩相组合为Opx+Pl±Cpx±Ga, 其中Opx、Cpx和Pl为石榴石的后成合晶, 形成温度为993~776℃, 压力为0.90~1.21GPa, 为中压麻粒岩相产物, 晚期矿物仅见普通角闪石、斜长石和石英, 是角闪岩相退变质的产物, 表明HHC经历了降压升温-降压降温的快速抬升过程, 证明其抬升作用与地幔热源的参与有关.   相似文献   

19.
The Seiland Igneous Province of the North Norwegian Caledonides consists of a suite of deep-seated rift-related magmatic rocks emplaced into paragneisses during late Precambrian to Ordovician time. In the south-eastern part of the province, contact metamorphism of the paragneisses and later reworking of intrusives and associated contact aureoles have resulted in the development of three successive metamorphic stages. The contact metamorphic assemblage (M1) Opx + Grt + Qtz + Pl + Kfs + Hc + Ilm ± Crd is preserved in xenolithic rafts of paragneiss within metagabbro. Geothermobarometric calculations yield 930-960d? C and 5-6.5 kbar for the contact metamorphism. M1 was followed by cooling, accompanied by strong shearing, formation of the gneiss foliation and recrystallization at intermediate-P granulite facies conditions (M2). Stable M2 phases are Cpx + Opx + Pl +Ilm ± Hbl in metagabbro and Grt ± Sil ± Opx + Kfs + Qtz + Pl ± Bt + Ilm in host paragneiss. The M2 conditions are estimated to 700-750d? C and 5-7 kbar. A subsequent pressure increase is recorded in the M3 episode, which is associated with recrystallization in narrow ductile shear zones and secondary growth on M2 minerals. M3 is defined by the assemblages Grt + Cpx ± Opx + Pl + Ru + Qtz in metagabbro, and Grt ± Ky + Qtz + Pl ± Kfs + Bt + Ru in host paragneiss. M3 conditions are estimated to 650-700d? C and 8-10 kbar. The substantial pressure increase related to the M2 → M3 transition is interpreted to be a result of (early?) Caledonian overthrusting. Chemical zoning in cordierite and biotite suggest rapid cooling following the M3 event. The proposed P-T-t evolution implies that the tectonic evolution of the Seiland Igneous Province was long (at least 330 Ma) and complex and involved initial rifting and extension followed by crustal thickening and compression.  相似文献   

20.
 The garnet (Grt)-clinopyroxene (Cpx) Fe-Mg exchange thermometer has been re-evaluated through analysis of phase equilibrium experiments defining the Fe-Mg exchange between Grt and Cpx, Grt and Ol (Ol=Olivine), and Cpx and Ol, together with thermophysical and other phase equilibrium constraints on solid solution and individual end-member properties. Results show that all data are mutually compatible if the heterogeneity range of Grt and Cpx in run products previously obtained by Pattison and Newton (PN) are accounted for in assessing equilibrium Grt-Cpx compositions. Derived mixing properties are in good agreement with results from numerous recent phase equilibrium studies. Application of the newly calibrated thermometer to a number of amphibolite to granulite facies terrains indicates temperatures between 70 and 200 ° C above PN’s thermometer, and general compatibility with independent temperature estimates. Received: 3 September 1993 / Accepted: 16 June 1994  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号