首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The relative incompatibility of Ar and K are fundamental parameters in understanding the degassing history of the mantle. Clinopyroxene is the main host for K in most of the upper mantle, playing an important role in controlling the K/Ar ratio of residual mantle and the subsequent time-integrated evolution of 40Ar/36Ar ratios. Clinopyroxene also contributes to the bulk Ar partition coefficient that controls the Ar degassing rate during mantle melting. The partitioning of Ar and K between clinopyroxene and quenched silicate melt has been experimentally determined from 1 to 8 GPa for the bulk compositions Ab80Di20 (80 mol% albite-20 mol% diopside) and Ab20Di80 with an ultraviolet laser ablation microprobe (UVLAMP) technique for Ar analysis and the ion microprobe for K. Data for Kr (UVLAMP) and Rb (ion probe) have also been determined to evaluate the role of crystal lattice sites in controlling partitioning. By excluding crystal analyses that show evidence of glass contamination, we find relatively constant Ar partition coefficients (DAr) of 2.6 × 10−4 to 3.9 × 10−4 for the Ab80Di20 system at pressures from 2 to 8 GPa. In the Ab20Di80 system, DAr shows similar low values of 7.0 × 10−5 and 3.0 × 10−4 at 1 to 3 GPa. All these values are several orders of magnitude lower than previous measurements on separated crystal-glass pairs.DK is 10 to 50 times greater than DRb for all experiments, and both elements follow parallel trends with increasing pressure, although these trends are significantly different in each system studied. The DK values for clinopyroxene are at least an order of magnitude greater than DAr under all conditions investigated here, but DAr appears to show more consistent behavior between the two systems than K or Rb. The partitioning behavior of K and Rb can be explained in terms of combined pressure, temperature, and crystal chemistry effects that result in changes for the size of the clinopyroxene M2 site. In the Ab20Di80 system, where clinopyroxene is diopside rich at all pressures, DK and DRb increase with pressure (and temperature) in an analogous fashion to the well-documented behavior of Na. For the Ab80Di20 system, the jadeite content of the clinopyroxene increases from 22 to 75 mol% with pressure resulting in a contraction of the M2 site. This has the effect of discriminating against the large K+ and Rb+ ions, thereby countering the effect of increasing pressure. As a consequence DK and DRb do not increase with pressure in this system.In contrast to the alkalis (Na, K, and Rb), DKr values are similar to DAr despite a large difference in atomic radius. This lack of discrimination (and the constant DAr over a range of crystal compositions) is also consistent with incorporation of these heavier noble gases at crystal lattice sites and a predicted consequence of their neutrality or “zero charge.” Combined with published DAr values for olivine, our results confirm that magma generation is an efficient mechanism for the removal of Ar from the uppermost 200 km of the mantle, and that K/Ar ratios in the residuum are controlled by the amount of clinopyroxene. Generally, Ar is more compatible than K during mantle melting because DAr for olivine is similar to DK for clinopyroxene. As a result, residual mantle that has experienced variable amounts of melt extraction may show considerable variability in time-integrated 36Ar/40Ar.  相似文献   

2.
The argon isotope systematics of vein-quartz samples with two different K-reservoirs have been evaluated in detail. Potassium is hosted by ultra-high-salinity fluid inclusions in quartz samples from the Eloise and Osborne iron-oxide-copper-gold (IOCG) deposits of the Mt Isa Inlier, Australia. In contrast, K is hosted by accidentally trapped mica within lower-salinity fluid inclusions of a sample selected from the Railway Fault, 13 km south of the Mt Isa copper mine, Australia. Imprecise apparent ages have been obtained for all of the samples studied and conclusively demonstrate that quartz fluid inclusions are retentive to Ar and have not leaked over billions of years. IOCG samples that host K in fluid inclusions only, have K/Cl values of <1 and the ages obtained represent the maximum ages for mineralization. In contrast, the Railway Fault samples that include accidentally trapped mica have K/Cl values of ?1. Excess 40ArE plus Cl hosted by fluid inclusions, and radiogenic 40ArR plus K, are strongly correlated in these samples and define a plane in 3D 40Ar-36Ar-K-Cl space. In this case, the plane yields an ‘excess 40ArE’ corrected age of ∼1030 Ma that is 100’s of Ma younger than nearby Cu-mineralization at Mt Isa. The age is interpreted to reflect 40Ar-loss from the accidentally trapped mica into the surrounding fluid inclusions, and is not related to the samples’ age of formation. The initial 40Ar/36Ar value of fluid inclusions is widely used to provide information on fluid origin. For the IOCG samples that host K in fluid inclusions only, the initial 40Ar/36Ar values are close to the measured values at every temperature of stepped heating experiments. For samples that include accidentally trapped mica, the correction for post-entrapment radiogenic 40ArR production is significant. Furthermore, because 39ArK present in accidentally trapped mica crystals is released at different temperatures to radiogenic 40ArR lost to the surrounding fluid inclusions, intra-sample 40Ar/36Ar variation cannot be reliably documented. The results demonstrate that noble gas analysis is readily applicable to Proterozoic, or older, samples but that if K-mineral impurities are present within quartz the abundance of K must be determined before calculation of mean 40Ar/36Ar values that are representative of the samples’ initial composition.  相似文献   

3.
In a reconnaissance study, we investigated the potential of γ-ray induced production of 38ArK from 39K for geochronological applications. For this purpose, various age monitors commonly in use for the established 40Ar/39Ar-method were co-irradiated for 60 h at 17.6 MeV maximum energy in the ELBE facility, Dresden-Rossendorf, Germany. Because the available energy was low, total production of 38ArK was depressed, leading to low J38-values of (2.1–4.1) × 10-6 and hence resulted in only minor 38Ar excess when compared with atmospheric 38Ar/36Ar ratios. In spite of these restrictions, ages of younger monitors could be reproduced within error, whereas older age reference materials showed discrepancies due to the low production rate. We observed Ca-derived contributions on 36Ar in analysed CaF2 reference materials, and calculated a limit for Ca-interference on 38ArCa of (38Ar/36Ar)Ca = 0.07 ± 0.03 (1s). In addition, we investigated a potential recoil redistribution of 38Ar by stepwise heating experiments, but could not quantify this further because of concurring processes. More work at higher photon energies is necessary to resolve other open issues, in particular the potential of utilising 40Ar/37Ar ratios for age determination and the possibility of 42Ar production from 44Ca, which would allow correction for Ca-interference reactions on other Ar isotopes. This would be a pre-requisite for dating extra-terrestrial rocks.  相似文献   

4.
The understanding of the evolution of microstructures in a metamorphic rock requires insights into the nucleation and growth history of individual grains, as well as the coarsening processes of the entire aggregate. These two processes are compared in impure carbonates from the contact metamorphic aureole of the Adamello pluton (N‐Italy). As a function of increasing distance from the pluton contact, the investigated samples have peak metamorphic temperatures ranging from the stability field of diopside/tremolite down to diagenetic conditions. All samples consist of calcite as the dominant matrix phase, but additionally contain variable amounts of other minerals, the so‐called second phases. These second phases are mostly silicate minerals and can be described in a KCMASHC system (K2O, CaO, MgO, Al2O3, SiO2, H2O, CO2), but with variable K/Mg ratios. The modelled and observed metamorphic evolution of these samples are combined with the quantification of the microstructures, i.e. mean grain sizes and crystal size distributions. Growth of the matrix phase and second phases strongly depends on each other owing to coupled grain coarsening. The matrix phase is controlled by the interparticle distances between the second phases, while the second phases need the matrix grain boundary network for mass transfer processes during both grain coarsening and mineral reactions. Interestingly, similar final mean grain sizes of primary second phase and second phases newly formed by nucleation are observed, although the latter formed later but at higher temperatures. Moreover, different kinetic processes, attributed to different driving forces for growth of the newly nucleated grains in comparison with coarsening processes of the pre‐existing phases, must have been involved. Chemically induced driving forces of grain growth during reactions are orders of magnitudes larger compared to surface energy, allowing new reaction products subjected to fast growth rates to attain similar grain sizes as phases which underwent long‐term grain coarsening. In contrast, observed variations in grain size of the same mineral in samples with a similar T–t history indicate that transport properties depend not only on the growth and coarsening kinetics of the second phases but also on the microstructure of the dominant matrix phase during coupled grain coarsening. Resulting microstructural phenomena such as overgrowth and therefore preservation of former stable minerals by the matrix phase may provide new constraints on the temporal variation of microstructures and provide a unique source for the interpretation of the evolution of metamorphic microstructures.  相似文献   

5.
为了满足K-Ar定年中K和40Ar*分析的质量监控及Ar-Ar法样品在反应堆照射时中子通量监测的需要,我国氩同位素年代学工作者研制了一个K-Ar法年龄标准物质ZBJ角闪石,它采自北京房山花岗闪长岩体。它的40Ar-39Ar阶段加热分析结果表明:40Ar*在矿物晶格中保存均匀稳定,年龄谱平坦,39Ar析出量高达97%。这些证据充分表明该黑云母结晶以后未受过热扰动,40K-40Ar*同位素计时体系封闭良好。坪年龄为133.3±0.6Ma,总气体年龄为134.4±1.4Ma,36Ar/40Ar-39Ar/40Ar反等时线年龄为133.2±0.8Ma,40Ar/36Ar初始值为297.6±4.8,此值与(40Ar/36Ar)a大气氩丰度比(295.5±0.5)处于同一范围,表明样品不含过剩氩。这几个年龄值的一致性,说明该样品具有良好的均匀性和稳定性,它作为K-Ar和Ar-Ar法地质年龄标准物质是适合的。ZBJ角闪石均匀性检验结果表明:在0.05显著性水平下经统计学方法检验,证明K和40Ar*的F分布值小于F临界值,说明该样品是均匀的。国内8个实验室参加了ZBJ角闪石K含量和40Ar*含量的定值分析,经统计学方法检验,结果显示全部定值数据都服从正态分布并具等精度。在置信概率为0.95时,40Ar*和K含量的相对标准偏差都小于1%。两个特性量值定值分析结果的一致值(认定值)和不确定度分别为:40Ar*=(2.464±0.018)×10-10mol/g,K=(1.027±0.008)%,K-Ar年龄(标准值)=133.3±1.5Ma(2σ)。此标准物质纯度为98.1%,粒度为0.15~0.30mm,总重量为740g,缩分成最小样品单元共100瓶,每瓶7.4g,可供我国K-Ar和Ar-Ar法同位素年代学实验室使用37年。  相似文献   

6.
Spherulitic textures in the Rocche Rosse obsidian flow (Lipari, Aeolian Islands, Italy) have been characterized through petrographic, crystal size distribution (CSD) and in situ major and volatile elemental analyses to assess the mode, temperature and timescales of spherulite formation. Bulk glass chemistry and spherulite chemistry analyzed along transects across the spherulite growth front/glass boundary reveal major-oxide and volatile (H2O, CO2, F, Cl and S) chemical variations and heterogeneities at a ≤5 μm scale. Numerous bulk volatile data in non-vesicular glass (spatially removed from spherulitic textures) reveal homogenous distributions of volatile concentrations: H2O (0.089 ± 0.012 wt%), F (950 ± 40 ppm) and Cl (4,100 ± 330 ppm), with CO2 and S consistently below detection limits suggesting either complete degassing of these volatiles or an originally volatile-poor melt. Volatile concentrations across the spherulite boundary and within the spherulitic textures are highly variable. These observations are consistent with diffusive expulsion of volatiles into melt, leaving a volatile-poor rim advancing ahead of anhydrous crystallite growth, which is envisaged to have had a pronounced effect on spherulite crystallization dynamics. Argon concentrations dissolved in the glass and spherulites differ by a factor of ~20, with Ar sequestered preferentially in the glass phase. Petrographic observation, CSD analysis, volatile and Ar data as well as diffusion modeling support continuous spherulite nucleation and growth starting at magmatic (emplacement) temperatures of ~790–825 °C and progressing through the glass transition temperature range (T g ~ 750–620 °C), being further modified in the solid state. We propose that nucleation and growth rate are isothermally constant, but vary between differing stages of spherulite growth with continued cooling from magmatic temperatures, such that there is an evolution from a high to a low rate of crystallization and low to high crystal nucleation. Based on the diffusion of H2O across these temperature ranges (~800–300 °C), timescales of spherulite crystallization occur on a timescale of ~4 days with further modification up to ~400 years (growth is prohibitively slow <400 °C and would become diffusion reliant). Selective deformation of spherulites supports a down-temperature continuum of spherulite formation in the Rocche Rosse obsidian; indeed, petrographic evidence suggests that high-strain zones may have catalyzed progressive nucleation and growth of further generations of spherulites during syn- and post-emplacement cooling.  相似文献   

7.
KAr and 40Ar39Ar ages have been determined for altered submarine tholeiitic and boninite (high-Mg andesite) lavas from the Dabi Volcanics, Cape Vogel Peninsula, Papua New Guinea. 40Ar39Ar whole rock total fusion and plateau ages identify a Late Paleocene age for the tholeiitic lavas (58.9 ± 1.1 Ma) and also for the boninitic lavas (58.8 ± 0.8 Ma). Apparent KAr ages for the same samples range from 27.2 ± 0.7 to 63.9 ± 4.5 Ma, and young KAr ages for glassy boninites are probably due to variable radiogenic 40Ar (40Ar1) loss. These new ages effectively reconcile previously ambiguous age data for the Dabi Volcanics and indicate contemporaneous tholeiitic and boninitic volcanism occurring in southeast PNG during the Late Paleocene.Smectites, developed as alteration products after glass in oceanic lavas commonly do not retain 39Ar during or subsequent to irradiation, but in some cases may contain 40Ar1. In the absence of other factors modifying K and Ar contents, samples which have not lost 40Ar1 from smectite and suffer 39Ar loss only, are interpreted to have been altered immediately subsequent to the crystallization of the lava; whereas samples which have lost 40Ar1 as well as 39Ar may be the result of either recent alteration, or of continuous 40Ar1 loss since the time of crystallization.  相似文献   

8.
Noble gas abundances in basaltic glasses from ocean islands (OIBs) are generally lower than those of mid-oceanic ridge basalts (MORBs), contrary to most geodynamic models which usually require that the source of OIBs is less degassed (resulting in higher primordial noble gas abundances) and more trace element enriched (resulting in higher radiogenic noble gas abundances) than the MORB source. Therefore, noble gas abundances in OIBs are often thought to have been reduced by extensive gas loss from the magma before eruption.The extent of magmatic degassing can be tested as it will cause characteristic changes in the composition of the volatiles; notably the 4He/40Ar* ratio (where 40Ar* is 40Ar corrected for atmospheric contamination) will increase in residual volatiles due to the higher solubility of He relative to Ar. The degree of He-Ar fractionation for a given fraction of gas loss depends on the ratio of the solubilities, SHe/SAr, which is sensitive to (among other things) the CO2 and H2O content of the basalt at the time of degassing.From a global database of OIB and MORB glasses, we show that 4He/40Ar* ratios of MORB glasses are broadly consistent with degassing of a magma with an initial 40Ar of ≈1.5 × 10−5 ccSTP/g, i.e., similar to that of the “popping rock.” However, OIB glasses generally have lower 40Ar* concentration for a given 4He/40Ar*. While this would appear to require lower 40Ar* abundances in the undegassed OIB magmas, the higher volatile contents of OIBs will reduce SHe/SAr (relative to MORBs) during degassing. By modeling SHe/SAr in OIBs, it is possible to show that extensive degassing of OIBs can occur without dramatically increasing the 4He/40Ar* ratio. We show that undegassed 40Ar concentrations of OIB magmas were probably similar to those of MORBs.  相似文献   

9.
This paper describes and interprets the mineral and facies assemblages that occur in carbonate–evaporite shallow lacustrine deposits, considering the importance of the processes pathway (i.e. dolomitization, gypsum calcitization and silicification). The Palaeogene deposits of the Deza Formation (Almazán Basin, central‐northern Spain) are selected as a case study to determine the variety of physicochemical processes taking place in carbonate–evaporite shallow lakes and their resulting diagenetic features. Dolostones are the predominant lithology and are composed mainly of dolomite with variable amounts of secondary calcite (5 to 50%), which mainly mimic lenticular gypsum (pseudomorphs). Five morphological types of dolomite crystal were identified as follows: dolomite tubes, dolomite cylinders, rhombohedral dolomite, spheroidal and quasi‐rhombohedral dolomite, and cocoon‐shaped dolomite. The dolomite cylinders and tubes are interpreted as the dolomitized cells of a widespread microbial community. The sequence of diagenetic processes started with growth of microlenticular interstitial gypsum in a calcareous mud deposited on the playa margin mudflats, and that sometimes included microbial sediments. Immediately following growth of gypsum, dolomite replaced the original calcite (or possibly aragonite) muds, the microbial community and the gypsum. Partial or total replacement of gypsum by dolomite was related mainly to the biomineralization of endolithic microbial communities on gypsum crystals. Later calcitization took place under vadose, subaerial exposure conditions. The development of calcrete in distal alluvial settings favoured the release of silica and subsequent silicification on the playa margin mudflats. Stable isotope compositions of calcite range from ?9·02 to ?5·83‰ δ13CPDB and ?7·10 to 1·22‰ δ18OPDB; for the dolomite, these values vary from ?8·93 to ?3·96‰ δ13CPDB and ?5·53 to 2·4‰ δ18OPDB. Quartz from the cherts has δ18OSMOW values ranging from 27·1 to 31·1‰. Wide variation and relatively high δ18OSMOW values for dolomite indicate evaporitic and closed hydrological conditions; increased influx of meteoric waters reigned during the formation of secondary calcite spar.  相似文献   

10.
Highly turbid alkali feldspars from the Loch Ainort granite (59 Ma), Isle of Skye, have been analysed using the 40Ar-39Ar method to obtain chronological and chemical (K, Cl, Br, I) information concerning their origin and hydrothermal alteration. Three methods of gas extraction have been applied to neutron-irradiated samples: laser probe spot fusion of feldspars, in vacuo crushing of a feldspar/quartz separate, and laser stepped heating of the crushed residue. Apparent ages obtained by laser probe spot fusion are mostly similar to the 59 Ma intrusion age. Analyses of relatively pristine regions give some high apparent ages (>59 Ma) indicating the presence of small amounts of 40ArE (excess 40Ar). Crushing releases significant amounts of 40ArE, but is dominated by an 40ArA (atmospheric 40Ar) component. 84Kr/36Ar values obtained by crushing are higher than air and are consistent with air equilibration with fresh water at low temperature 20°C). Therefore, 40ArA was most probably introduced as palaeoatmospheric argon dissolved in the circulating hydrothermal fluids that interacted with the granite, thus supporting a meteoric origin for the fluids. Stepped heating gives a flat age spectrum and an age of 56±4 Ma. Crushing and stepped heating both released significant amounts of halogens with high Br/Cl and I/Cl ratios; excess Xe is also present as indicated by the high 132Xe/36Ar values. It seems likely that the halogen (and possibly Xe) enrichments resulted from interaction of the meteoric fluids with Jurassic sedimentary country rocks.  相似文献   

11.
Isothermal single-step decompression experiments (at temperature of 1075 °C and pressure between 5 and 50 MPa) were used to study the crystallization kinetics of plagioclase in hydrous high-K basaltic melts as a function of pressure, effective undercooling (ΔT eff) and time. Single-step decompression causes water exsolution and a consequent increase in the plagioclase liquidus, thus imposing an effective undercooling (?T eff), accompanied by increased melt viscosity. Here, we show that the decompression process acts directly on viscosity and thermodynamic energy barriers (such as interfacial-free energy), controlling the nucleation process and favoring the formation of homogeneous nuclei also at high pressure (low effective undercoolings). In fact, this study shows that similar crystal number densities (N a) can be obtained both at low and high pressure (between 5 and 50 MPa), whereas crystal growth processes are favored at low pressures (5–10 MPa). The main evidence of this study is that the crystallization of plagioclase in decompressed high-K basalts is more rapid than that in rhyolitic melts on similar timescales. The onset of the crystallization process during experiments was characterized by an initial nucleation event within the first hour of the experiment, which produced the largest amount of plagioclase. This nucleation event, at short experimental duration, can produce a dramatic change in crystal number density (N a) and crystal fraction (?), triggering a significant textural evolution in only 1 h. In natural systems, this may affect the magma rheology and eruptive dynamics on very short time scales.  相似文献   

12.
Sulfur mass-independent fractionation (S-MIF) preserved in Archean sedimentary pyrite is interpreted to reflect atmospheric chemistry. Small ranges in Δ33S that expanded into larger fractionations leading up to the Great Oxygenation Event (GOE; 2.45–2.2 Ga) are disproportionately represented by sequences from the Kaapvaal and Pilbara Cratons. These patterns of S-MIF attenuation and enhancement may differ from the timing and magnitude of minor sulfur isotope fractionations reported from other cratons, thus obscuring local for global sulfur cycling dynamics. By expanding the Δ33S record to include the relatively underrepresented São Francisco Craton in Brazil, we suggest that marine biogeochemistry affected S-MIF preservation prior to the GOE. In an early Neoarchean sequence (2763–2730 Ma) from the Rio das Velhas Greenstone Belt, we propose that low δ13Corg (<?30‰) and dampened Δ33S (0.4‰ to ?0.7‰) in banded iron formation reflect the marine diagenetic process of anaerobic methane oxidation. The overlying black shale (TOC up to 7.8%) with higher δ13Corg (?33.4‰ to ?19.2‰) and expanded Δ33S (2.3‰ ± 0.8‰), recorded oxidative sulfur cycling that resulted in enhance preservation of S-MIF input from atmospheric sources of elemental sulfur. The sequence culminates in a metasandstone, where concomitant changes to more uniform δ13Corg (?30‰ to ?25‰), potentially associated with the RuBisCO I enzyme, and near-zero Δ33S (?0.04‰ to 0.38‰) is mainly interpreted as evidence for local oxygen production. When placed in the context of other sequences worldwide, the Rio das Velhas helps differentiate the influences of global atmospheric chemistry and local marine diagenesis in Archean biogeochemical processes. Our data suggest that prokaryotic sulfur, iron, and methane cycles might have an underestimated role in pre-GOE sulfur minor isotope records.  相似文献   

13.
根据伊利石K-Ar测年法研究,确定鄂尔多斯盆地存在两期与构造运动有关的成岩作用事件:即与早期燕山运动有关的侏罗纪(170—160Ma)和与晚期加里东运动有关的志留-泥盆纪(420-370Ma)成岩作用时代。为了揭示碎屑物质对K-Ar年龄的影响和伊利石成岩作用的机制,本文提出了一个通过观察K-Ar年龄随深度变化的趋势来进行判断的模式。在K-Ar年龄小于地层时代的条件下,K-Ar年龄与深度呈正相关,或者很相近的K-Ar年龄与深度变化无关均标志着没有或很少有碎屑物质的影响;同时,前者指示逐渐埋藏条件下的成岩作用,而后者则反映短暂的热事件引起的成岩作用事件。  相似文献   

14.
The degassing of radiogenic Ar40 is defined as coherent if only the Ar40 associated with parent K is degassed as K is transferred from the mantle to crust. Coherency predicts, for a 4.55 b.y. Earth, a sialic crust with 2.50 per cent K, using only the Ar content of the atmosphere and present crust (from a Hurley and Rand, 1969, age distribution). This is a maximum limit to K content of the sialic crust if the age of the Earth is no younger than 4.55 b.y. A K content of the sialic crust of 1.9 per cent (Holland and Lambert, 1972) implies an efficiency (E) less than 100 per cent for K transfer from oceanic basalt to sialic crust in subduction zones and/or some non-coherent (preferential) degassing of Ar from the mantle.K, Ar coherence for mantle differentiation to crust is supported however, by the agreement of the predicted oceanic He flux and radiogenic He-Ar ratios of volcanic gases with the observed limits if the best estimate of K, U, Th influx rates at oceanic ridges is used.Assuming K, Ar coherence, various sea-floor spreading rates as functions of time, and limiting K contents of the sialic crust, computed models give E and the portion of the sialic crust derived from melting oceanic basalt in subduction zones. Except for models with very high spreading rates in the Precambrian, they also predict that a significant part of the sialic crust was derived from vertical differentiation of the mantle, presumably early in Earth history. The results are in accord with Armstrong's model of an early sialic crust that is recycled to give a Hurley-type age pattern with the proviso that the ‘vertical’ sial Kυis formed early in Earth history for models with a high Kυcomponent.The coherent K, Ar models with preferred estimates of input parameters are also consistent with a limited mixing model (only old and new sial are equilibrated) for Sr isotopic evolution and the probable average Sr87Sr86 ratio now of the sialic crust.  相似文献   

15.
The Neoproterozoic and Lower Paleozoic along the profile of Yuanguping in western Hunan Province, China underwent anchimetamorphism. The illite crystallinity (IC) of the <2 μm fractions ranges from 0.23-0.34°△2θfor the Neoproterozoic to 0.23-0.35°△A2θ for the Lower Paleozoic (calibrated with the Kisch IC set, Kisch, 1991). This indicates that the metamorphic grade of the Neoproterozoic and Lower Paleozoic is the anchizone. The peak metamorphic temperature is estimated to be 290-210℃. This result does not agree with the greenschist or subgreenschist facies of the Banxi Group, nor with the lower-greenschist facies or sedimentary cover of the Sinian to Lower Paleozoic, as most previous researchers thought. The illite (K-mica) b0 values range from 0.9074 to 0.8963 (nm) for the Neoproterozoic and the Lower Paleozoic. Based on cumulative frequency curves of the illite (K-mica) b0, the peak metamorphic pressure of the Banxi Group was derived to be of a type that is slightly higher than that of the N. Ne  相似文献   

16.
We carried out an experimental study to characterize the kinetics of Ostwald ripening in the forsterite-basalt system and in the plagioclase (An65)-andesite system. Eight experiments were done in each system to monitor the evolution of mean grain size and crystal size distribution (CSD) with time t; the experiments were performed in a 1-atmosphere quench furnace, at 1,250°C for plagioclase and 1,300°C for olivine. Very contrasted coarsening kinetics were observed in the two series. In the plagioclase series, the mean grain size increased as log(t), from ≈3 μm to only 8.7 μm in 336 h. The kinetic law in log(t) means that Ostwald ripening was rate-limited by surface nucleation at plagioclase-liquid interfaces. In the olivine series, the mean grain size increased as t 1/3, from ≈3 μm to 23.2 μm in 496 h. A kinetic law in t 1/3 is expected when Ostwald ripening is rate-limited either by diffusion in the liquid or by grain growth/dissolution controlled by a screw dislocation mechanism. The shape of olivine CSDs, in particular their positive skewness, indicates that grain coarsening in the olivine experiments was controlled by a screw dislocation mechanism, not by diffusion. As the degrees of undercooling ΔT (or supersaturation) involved in Ostwald ripening are essentially <1°C, the mechanisms of crystal growth identified in our experiments are expected to be those prevailing during the slow crystallisation of large magma chambers. We extrapolated our experimental data to geological time scales to estimate the effect of Ostwald ripening on the size of crystals in magmas. In the case of plagioclase, Ostwald ripening is only efficient for mean grain sizes of a few microns to 20 μm, even for a time scale of 105 years. It can, however, result in a significant decrease of the number of small crystals per unit volume, and contribute to the development of convex upwards CSDs. For olivine, the mean grain size increases from 2–3 μm to ≈70 μm in 1 year and 700 μm in 103 years; a mean grain size of 3 mm is reached in 105 years. Accordingly, the rate of grain size-dependent processes, such as compaction of olivine-rich cumulates or melt extraction from partially molten peridotites, may significantly be enhanced by textural coarsening.  相似文献   

17.
Critical aspects of the crystallization dynamics of H2O-saturated melts of a typical granitic composition as well as granitic melts enriched in lithium (8800 ppm) were investigated in real-time experiments using the hydrothermal diamond anvil cell at 480–700 °C and 220–960 MPa. Complete crystallization of the charges was achieved within 5–118 h with average crystal growth rates ranging from 3 to 41 cm/year for quartz and from 18 to 58 cm/year for alkali feldspars, demonstrating that crystals formed from a silicate melt in the presence of a coexisting aqueous phase crystallize rapidly. The combination of substantial nucleation delays, low nucleation densities, and rapid growth rates for quartz and alkali feldspars led to the formation of euhedral megacrysts of these minerals in the vicinity of clusters comprised of much smaller muscovite or α-spodumene crystals. Subsolidus replacement processes initiated during crystal–fluid interactions after the silicate melt was consumed were directly observed in the experiments. The experimental results underscore the important role of water as a medium for the transport of essential elements such as Si, Al, Na, and K from the silicate melt to the newly formed crystals, and provide important insights into the crystallization of miarolitic pegmatites.  相似文献   

18.
The effects of deformation on radiogenic argon (40Ar) retentivity in mica are described from high pressure experiments performed on rock samples of peraluminous granite containing euhedral muscovite and biotite. Cylindrical cores, ∼15 mm in length and 6.25 mm in diameter, were drilled from granite collected from the South Armorican Massif in northwestern France, loaded into gold capsules, and weld-sealed in the presence of excess water. The samples were deformed at a pressure of 10 kb and a temperature of 600 °C over a period 29 of hours within a solid medium assembly in a Griggs-type triaxial hydraulic deformation apparatus. Overall shortening in the experiments was approximately 10%. Transmitted light and secondary and backscattered electron imaging of the deformed granite samples reveals evidence of induced defects and for significant physical grain size reduction by kinking, cracking, and grain segmentation of the micas.Infrared (IR) laser (CO2) heating of individual 1.5-2.5 mm diameter grains of muscovite and biotite separated from the undeformed granite yield well-defined 40Ar/39Ar plateau ages of 311 ± 2 Ma (2σ). Identical experiments on single grains separated from the experimentally deformed granite yield results indicating 40Ar loss of 0-35% in muscovite and 2-3% 40Ar loss in biotite. Intragrain in situ ultraviolet (UV) laser ablation 40Ar/39Ar ages (±4-10%, 1σ) of deformed muscovites range from 309 ± 13 to 264 ± 7 Ma, consistent with 0-16% 40Ar loss relative to the undeformed muscovite. The in situ UV laser ablation 40Ar/39Ar ages of deformed biotite vary from 301 to 217 Ma, consistent with up to 32% 40Ar loss. No spatial correlation is observed between in situ40Ar/39Ar age and position within individual grains. Using available argon diffusion data for muscovite the observed 40Ar loss in the experimentally treated muscovite can be utilized to predict average 40Ar diffusion dimensions. Maximum 40Ar/39Ar ages obtained by UV laser ablation overlap those of the undeformed muscovite, indicating argon loss of <1% and an average effective grain radius for 40Ar diffusion ?700 μm. The UV laser ablation and IR laser incremental 40Ar/39Ar ages indicating 40Ar loss of 16% and 35%, respectively, are consistent with an average diffusion radius ?100 μm. These results support a hypothesis of grain-scale 40Ar diffusion distances in undeformed mica and a heterogeneous mechanical reduction in the intragrain effective diffusion length scale for 40Ar in deformed mica. Reduction in the effective diffusion length scale in naturally deformed samples occurs most probably through production of mesoscopic and submicroscopic defects such as, e.g., stacking faults. A network of interconnected defects, continuously forming and annealing during dynamic deformation likely plays an important role in controlling both 40Ar retention and intragrain distribution in deformed mica. Intragrain 40Ar/39Ar ages, when combined with estimates of diffusion kinetics and distances, may provide a means of establishing thermochronological histories from individual micas.  相似文献   

19.
The Xugou garnet peridotite body of the southern Sulu ultrahigh‐pressure (UHP) terrane is enclosed in felsic gneiss, bounded by faults, and consists of harzburgite and lenses of garnet clinopyroxenite and eclogite. The peridotite is composed of variable amounts of olivine (Fo91), enstatite (En92?93), garnet (Alm20?23Prp53?58Knr6?9Grs12?18), diopside and rare chromite. The ultramafic protolith has a depleted residual mantle composition, indicated by a high‐Mg number, very low CaO, Al2O3 and total REE contents compared to primary mantle and other Sulu peridotites. Most garnet (Prp44?58) clinopyroxenites are foliated. Except for rare kyanite‐bearing eclogitic bands, most eclogites contain a simple assemblage of garnet (Alm29?34Prp32?50Grs15?39) + omphacite (Jd24?36) + minor rutile. Clinopyroxenite and eclogite exhibit LREE‐depleted and LREE‐enriched patterns, respectively, but both have flat HREE patterns. Normalized La, Sm and Yb contents indicate that both eclogite and garnet clinopyroxenite formed by high‐pressure crystal accumulation (+ variable trapped melt) from melts resulting from two‐stage partial melting of a mantle source. Recrystallized textures and P–T estimates of 780–870 °C, 5–7 GPa and a metamorphic age of 231 ± 11 Ma indicate that both mafic and ultramafic protoliths experienced Triassic UHP metamorphism in the P–T forbidden zone with an extremely low thermal gradient (< 5 °C km?1), and multistage retrograde recrystallization during exhumation. Develop of prehnite veins in clinopyroxenite, eclogite, felsic blocks and country rock gneiss, and replacements of eclogitic minerals by prehnite, albite, white mica, and K‐feldspar indicate low‐temperature metasomatism.  相似文献   

20.
Solubilities of noble gases in magnetite were determined by growing magnetite in a noble-gas atmosphere between 450 and 700°K. Henry's law is obeyed at pressures up to 10?2 atm for He, Ne, Ar and up to 10?5 atm for Kr, Xe, with the following distribution coefficients at 500° (cc STP g?1 atm?5): He 0.042, Ne 0.016, Ar 3.6, Kr 1.3, Xe 0.88, some 102–105 times higher than previous determinations on silicate and fluoride melts. Apparent heats of solution in kcal/mole are: He ?2.42 ±0.12, Ne ?2.20 ±0.10, Ar ?15.25 ±0.25, Kr ?13.0 ±0.3, Xe ?12-5 ± 0.5. These values, too, stand in sharp contrast with earlier determinations on melts which were small and positive, but are comparable to the values for clathrates. Presumably the gases are held in anion vacancies.Extrapolation of the magnetite data to the formation temperature of C1 chondrites, 360°K, shows that the Arp36 content of Orgueil magnetite could be acquired by equilibrium solubility at a total nebular pressure of 4 × 10?6 atm. In the absence of data for silicates (the principal host phase of planetary gas), an attempt is made to estimate the solubilities required to account for planetary gases in meteorites. These values do not appear grossly unreasonable in the light of the magnetite data, when structural differences between the two minerals are taken into account. It seems that equilibrium solubility may be able to account for four features of planetary gas: elemental ratios, amounts, correlations with other volatiles and retentive siting. It cannot account for the isotopic fractionation of planetary gas, however.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号