首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
李木子  万力 《地学前缘》2016,23(5):301-309
多孔介质中重非水相液体(Dense Non Aqueous Phase Liquid,DNAPL)与水相的界面面积是影响DNAPL在地下水中溶解速率的关键参数。本文通过二维均质砂箱实验,运用界面分配示踪法和体积分配示踪法分别测定DNAPL与水相的界面面积(单位介质体积内的面积,Anw)和DNAPL饱和度(Sn),并研究两者之间的相关关系。使用C18H29NaO3S(SDBS)作为界面分配示踪剂,Alcohol(2,4 Dimethyl 3 Pentanol)作为体积分配示踪剂,CaBr2作为保守示踪剂。利用Fe2+催化的Na2S2O8对DNAPL进行原位氧化修复,改变Anw和Sn。结果表明,通过定量(用孔隙体积数PV值衡量)加入Na2S2O8,Anw由206 cm2逐渐降为37 cm2,下降速率约为14 cm2/PV;Sn由1.34%逐渐降为0.33%,下降速率约为0.1%/PV;Anw和Sn之间具有良好的线性关系(Anw=146×Sn,R2=0.987)。此关系可用于估算多孔介质中DNAPL与水相之间的界面面积。对实验影响因素的分析表明,孔隙度的增大(变化率为20.7%)使示踪剂穿透曲线出现肩现象和拖尾现象,导致保守示踪剂的保留时间增加5.6%,界面面积减小6.8%。  相似文献   

2.
重非水相液体(dense nonaqueous phase liquid,DNAPL)污染土壤和地下水的问题已引起广泛关注,研究其在不同粒径多孔介质及其界面的运移特征形态是确定污染区域、修复治理土壤和地下水环境的前提。文章通过室内试验研究多孔介质界面对DNAPL运移与分布特性的影响。首先在二维砂槽上进行DNAPL污染物的入渗试验,试验过程中用数码相机拍照,将DNAPL扩散过程以图像的形式记录下来;然后用AutoCAD对图片进行处理,绘制出DNAPL迁移过程的锋面变化图。结果表明:DNAPL入渗过程中,迁移主要受到重力作用与毛细作用的控制,毛细作用力随着介质粒径的增大逐层减小,重力作用逐渐起主导作用使污染物入渗速度逐层增大;介质结构影响DNAPL的迁移形态,介质粒径逐层增大,DNAPL污染物的渗流面与指进扩散宽度逐层减小,扩散方式由面状变为指状;在不同粒径介质界面介质结构发生突变时,DNAPL迁移锋面线曲率也相应变大,此时DNAPL的迁移呈现“凸”型特征,另外,不同的界面横向扩散的滞留宽度不同,随着介质粒径的增大,界面的横向扩散宽度相对变短。  相似文献   

3.
An analytical solution is given to evaluate the number and duration of pumping cycles required for the remediation by pumping of contaminants, both single component and multi-component non-aqueous phase liquids (NAPLs), when no free product is present in the system. The method can be applied in a homogenous medium if the contamination zones have been delineated and residual total NAPL concentrations assessed. Based on the principle of the NAPL partitioning in unsaturated or saturated porous media, analytical closed-form solutions are provided for both cases of remediation by pumping in saturated and unsaturated conditions: “pump-and-treat” and “soil vapor extraction”. In each case we determine the number of pumping cycles required to reach the residual required concentration of NAPL (for example, according to health-based standards), considering one or more chemicals simultaneously present in an aquifer. The method requires information on the aquifer saturation state and the properties of the chemicals of interest. Calculations are based on the assumption of equilibrium partitioning of chemicals between the pore water, the soil solids, and the soil gas (in the case of unsaturated conditions), and no presence of a NAPL phase.  相似文献   

4.
Following the accidental subsurface release of dense nonaqueous phase liquids (DNAPLs), spatial variability of physical and chemical soil/contaminant properties can exert a controlling influence on infiltration pathways and organic entrapment. DNAPL spreading, fingering, and pooling typically result in source zones characterized by irregular contaminated regions with complex boundaries. Spatial variability in aquifer properties also influences subsequent DNAPL dissolution and aqueous transport dynamics. An increasing number of studies have investigated the effects of subsurface heterogeneity on the fate of DNAPL; however, previous work was limited to the examination of the behavior of single-component DNAPL in systems with simple and well-defined aqueous and solid surface chemistry. From a DNAPL remediation point of view, such an idealized assumption will bring a large discrepancy between the designs based on the model simulation and the reality. The research undertaken in this study seeks to stochastically explore the influence of spatially variable porous media on DNAPL entrapment and dissolution profiles in the saturated groundwater aquifer. A 3D, multicomponent, multiphase, compositional model, UTCHEM, was used to simulate natural gradient water flooding processes in spatially variable soils. Porosity was assumed to be uniform or simulated using sequential Gaussian simulation (SGS) and sequential indicator simulation (SIS). Soil permeability was treated as a spatially random variable and modeled independently of porosity, and a geostatistical method was used to generate random distributions of soil permeability using SGS and SIS (derived from measured grain size distribution curves). Equally possible 3D ensembles of aquifer realizations with spatially variable permeability accounting of physical heterogeneity could be generated. Tetrachloroethene (PCE) was selected as a DNAPL representative as it was frequently discovered at many contaminated groundwater sites worldwide, including Thailand. The randomly generated permeability fields were incorporated into UTCHEM to simulate DNAPL source zone architecture under 96-L hypothetical PCE spill in heterogeneous media and stochastic analysis was conducted based on the simulated results. Simulations revealed considerable variations in the predicted PCE source zone architecture with a similar degree of heterogeneity, and complex initial PCE source zone distribution profoundly affected PCE recovery time in heterogeneous media when subject to natural gradient water flush. The necessary time to lower PCE concentrations below Thai groundwater quality standard ranged from 39 years to more than 55 years, suggesting that spatial variability of subsurface formation significantly affected the dissolution behavior of entrapped PCE. The temporal distributions of PCE saturation were significantly altered owing to natural gradient water flush. Therefore, soil heterogeneity is a critical factor to design strategies for characterization and remediation of DNAPL contaminated sites. The systematic and comprehensive design algorithm developed and described herein perhaps serves as a template for application at other DNAPL sites in Thailand.  相似文献   

5.
对于重非水相污染场地,传统的钻孔取样方式因经费和取样个数的限制,往往无法准确估计含水层中重非水相污染物的残留量。井间分溶示踪法费用较低,且不会对污染源区造成破坏,可适用于推估重非水相污染物残留量,但目前该方法的准确性尚未得到验证。本文基于数值模拟方法探讨了示踪剂注入速率、示踪剂类型以及污染源区结构等多因素对井间分溶示踪估计重非水相污染物残留量准确性的影响。数值算例结果表明:井间分溶示踪实验估计重非水相污染物残留量的误差小于15%;降低示踪剂的注入速率使得分溶性示踪剂在非水相和水相流体间作用更充分,能够提高井间分溶示踪估计重非水相污染物残留量的精度,实验中示踪剂注入速率由500 m3/d降为250 m3/d后,多种情景的平均精度由91.68%提高至93%;选取低分溶系数的示踪剂有利于提高示踪剂的回收率,从而提高推估精度,实验中示踪剂由2,2-二甲基-3-戊醇改为己醇后,平均精度由87.83%提高至96.85%;复杂的重非水相液体污染源区结构易于出现示踪剂绕流等现象,导致井间分溶示踪估计重非水相污染物残留量的误差增大,实验中含水层由均质变为非均质后,平均精度由93.03%变为91.65%。重非水相污染场地调查时,建议结合数值模拟方法选择适宜的示踪剂和示踪剂注入速率,以提高污染场地的刻画精度。  相似文献   

6.
重非水相污染物(DNAPL)在地下介质中运移和分布受多种因素控制,包括DNAPL本身的物理化学性质,土的性质,泄漏条件等等。由于介质的非均质性,使得多相流运移行为更为复杂。基于地下水随机理论构建渗透率随机场,采用蒙特卡罗方法探讨泄漏速率对非均质饱和介质中DNAPL运移的影响。数值结果表明,在泄漏总量一定的情况下,泄漏速率越低,介质非均质性对DNAPL运移的影响程度越高。反之,DNAPL的渗漏速率越高,小尺度地层的非均质性影响越低。由于DNAPL运移过程中在垂直方向受重力的影响,污染羽在空间上的质心位置(一阶矩)以及展布范围(二阶矩)在垂直方向上的变异程度要高于水平方向。  相似文献   

7.
This paper deals with the theoretical aspects of nonaqueous phase liquid (NAPL)‐dissolution‐induced instability in two‐dimensional fluid‐saturated porous media including solute dispersion effects.After some weaknesses associated with the previous work are analyzed and overcome, a comprehensive dimensionless number, known as the Zhao number, is proposed to represent the main driving force and three controlling mechanisms of an NAPL‐dissolution system that has a finite domain. The linear stability analysis is carried out to derive the critical value of the comprehensive dimensionless number of the NAPL‐dissolution system in a limit case as the ratio of the equilibrium concentration to the density of the NAPL approaches zero. As a result, a theoretical criterion that can be used to assess the instability of planar NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media of finite domains has been established. Not only can the present theoretical results be used for the theoretical understanding of the effect of solute dispersion on the instability of an NAPL‐dissolution front in the fluid‐saturated porous medium of either a finite domain or an infinite domain, but also they can be used as benchmark solutions for verifying numerical methods employed to simulate detailed morphological evolution processes of NAPL‐dissolution fronts in two‐dimensional fluid‐saturated porous media. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
二维孔隙介质中重非水相液体饱和度测定与分析   总被引:2,自引:0,他引:2       下载免费PDF全文
在二维均质饱和孔隙介质中利用光透法与高密度电阻率法定量监测重非水相液体(DNAPL)的运移过程与饱和度。 将光透法与高密度电阻率法相结合,进行高密度电阻率法对 DNAPL 在饱和多孔介质中渗流过程的定量监测。在二维砂箱 中进行 DNAPL 的入渗试验,应用光透法与高密度电阻率法进行动态监测,分别利用 CCD 相机、LCR 数字电桥采集数据。 光透法的数据处理采用“水-DNAPL”两相中 DNAPL 饱和度的计算公式。而高密度电阻率法的数据处理是将获得的电阻值 数据转化为电阻率值,然后利用 Archie 公式获得重非水相液体的饱和度空间分布。Archie 公式中参数β值本文采用与光透法 相结合的新方法来获取,克服了传统方法获取β值时存在的困难。根据不同时刻的饱和度空间分布可以估算注入砂箱内的 DNAPL 总量,并将其与实测的入渗量进行对比。结果表明,与光透法结合后的高密度电阻率成像法能定量监测饱和孔隙介 质中 DNAPL 的入渗过程,且估算的 DNAPL 入渗量与实测值比较吻合,提出的基于光透法计算β值的新方法是有效且可行的。  相似文献   

9.
A three-dimensional, three-phase numerical model is presented for simulating the movement of immiscible fluids, including nonaqueous-phase liquids (NAPLs), through porous media. The model is designed to simulate soil flume experiments and for practical application to a wide variety of contamination scenarios involving light or dense NAPLs in heterogeneous subsurface systems. The model is derived for the three-phase flow of water, NAPL, and air in porous media. The basic governing equations are based upon the mass conservation of the constitutents within the phases. The descretization chosen to transform the governing equations into the approximating equations, although logically regular, is very general. The approximating equations are a set of simultaneous coupled nonlinear equations which are solved by the Newton-Raphson method. The linear system solutions needed for the Newton-Raphson method are obtained using a matrix of preconditioner/accelerator iterative methods. Because of the special way the governing equations are implemented, the model is capable of simulating many of the phenomena considered necessary for the sucessful simulation of field problems including entry pressure phenomena, entrapment, and preferential flow paths. The model is verified by comparing it with several exact analytic test solutions and three soil flume experiments involving the introduction and movement of light nonaqueous-phase liquid (LNAPL) or dense nonaqueous-phase liquid (DNAPL) in heterogeneous sand containing a watertable. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

10.
This paper deals with the computational aspects of nonaqueous phase liquid (NAPL) dissolution front instability in two-dimensional fluid-saturated porous media of finite domains. After the governing equations of an NAPL dissolution system are briefly described, a combination of the finite element and finite difference methods is proposed to solve these equations. In the proposed numerical procedure, the finite difference method is used to discretize time, while the finite element method is used to discretize space. Two benchmark problems, for which either analytical results or previous solutions are available, are used to verify the proposed numerical procedure. The related simulation results from these two benchmark problems have demonstrated that the proposed numerical procedure is useful and applicable for simulating the morphological evolution of NAPL dissolution fronts in two-dimensional fluid-saturated porous media of finite domains. As an application, the proposed numerical procedure has been used to simulate morphological evolution processes for three kinds of NAPL dissolution fronts in supercritical NAPL dissolution systems. It has been recognized that: (1) if the Zhao number of an NAPL dissolution system is in the lower range of the supercritical Zhao numbers, the fundamental mode is predominant; (2) if the Zhao number is in the middle range of the supercritical Zhao numbers, the (normal) fingering mode is the predominant pattern of the NAPL dissolution front; and (3) if the Zhao number is in the higher range of the supercritical Zhao numbers, the fractal mode is predominant for the NAPL dissolution front.  相似文献   

11.
Solute transport experiments were conducted in a one-dimensional saturated column using dissolved methoxy-nonafluorobutane (HFE-7100), a Novec engineered fluid developed by the 3M Corporation, as the solute. Novec engineered fluids are considered dense non-aqueous phase liquids (DNAPLs) because they are immiscible with water and have a specific gravity greater than one. The HFE-7100 fluid is safer and environmentally friendlier than common DNAPL contaminants such as tetrachloroethylene (PCE) or trichloroethylene (TCE); thus, it is an ideal substitute DNAPL for laboratory groundwater contamination research. Three sets of solute transport experiments were conducted. The first set of experiments was conducted in a glass-bead-packed column using dissolved HFE-7100 as the solute. The second set of experiments was conducted in a sand-packed column using dissolved HFE-7100 as the solute. The third set of experiments was conducted in a sand-packed column using dissolved PCE as the solute. The dissolved HFE-7100 column breakthrough concentrations were compared with dissolved PCE breakthrough concentrations. Results show that the one-dimensional solute transport equation was successful in describing the transport behavior of dissolved HFE-7100. This study demonstrates that the HFE-7100 fluid can be used as a safer substitute DNAPL for groundwater contaminant dissolution and transport research.  相似文献   

12.
选用四氯乙烯(PCE)作为典型DNAPL污染物,以NaCl作为地下水中溶解盐代表,研究盐度对DNAPL在饱和多孔介质中运移和分布的影响。通过批次实验测定NaCl水溶液/石英砂/PCE三相体系下的接触角和界面张力,结果表明,PCE在石英砂表面的接触角随着水中NaCl浓度的增大而减小,而PCE和NaCl水溶液的界面张力随着NaCl浓度的增大而增大,尤其当氯化钠浓度较高时(>0.1 mol/L),影响程度更为显著。在此基础上,采用透射光法监测不同介质情景下DNAPL在二维砂箱中的运移和分布,定量测定DNAPL在介质中的饱和度。实验结果表明,地下水盐度的增加将促进DNAPL的垂向入渗,减少被截留在运移路径上的DNAPL量,使得DNAPL运移路径及累积形成的池状DNAPL(pool)向水流方向偏移。在均质多孔介质和含有透镜体的非均质多孔介质中,随着盐度的增加,DNAPL在横向和垂向上的展布均呈现出增加趋势,导致污染源区变大,且介质中以离散状存在的DNAPL量明显增加。  相似文献   

13.
Organic contaminants in aquifers are often present as non-aqueous phase liquids (NAPL), which are long-lasting sources for groundwater contamination. The existing NAPL mass is an important parameter for the persistence of the source, but its determination is difficult. One possible detection method is based on the ideal multicomponent dissolution theory, using aqueous concentrations downstream of a fully mixed NAPL source to calculate its mass. In this publication, the applicability of this method is tested for a source size of about 5 m, using numerical methods. In contrast to fully mixed source zones, on this scale the NAPL sources are not in contact with each other, do not mix and develop independently over time. Highly soluble NAPL components can be depleted or the NAPL phase can be completely exhausted locally, while in other portions of the source zone NAPL is still present with all its components. Hence, the interpretation of the resulting aqueous concentrations downstream using the ideal dissolution theory leads to erroneous NAPL masses of several orders of magnitude in the investigated scenarios.  相似文献   

14.
The planned high-level nuclear waste repository at Forsmark, Sweden, will accommodate 6,824 containers with a total of 13,920 tonnes of uranium in burnt fuel at approximately 400 m depth in a fractured-granite aquifer. The transport of radionuclides, which may be released from the disposed waste, is simulated with the TOUGHREACT code for a three-dimensional model with 305,571 elements. The model performs coupled flow-transport simulations. It aims to achieve more realistic simulations of contaminant transport than the commonly used decoupled procedure consisting of three-dimensional flow and one-dimensional transport simulations. The model has a relatively small problem size because it is designed as a double-porosity model (one matrix continuum) that is the parameterised equivalent of a much larger multiple-interacting continua (MINC) model, i.e. a model with a finely discretised matrix (several matrix continua). The parameterisation is performed with two-dimensional models. Only one or two variables among three variables (diffusive transport distance between fracture and matrix, retardation factor and effective diffusivity) have to be parameterised. The results obtained with the parameterised three-dimensional model are very close to those that can be obtained with a much larger MINC model but may be quite different from those that can be obtained with the conventional decoupled procedure.  相似文献   

15.
多孔介质中非水相流体运移的数值模拟   总被引:5,自引:0,他引:5  
针对多孔介质中水、气和非水相流体(NAPLs)的多相流动特点,建立了非水相流体(NAPLs)污染物迁移模型,分析了非水相流体在土壤非饱和区和地下水系统中的运移规律。通过有限元数值解对轻非水相流体和重非水相流体在土壤系统中的迁移过程进行模拟,得到了污染物的时空分布特征和污染范围。计算结果表明,数值模拟方法能够合理地描述非水相流体的运移过程和污染特征。土体渗透性和污染物残余饱和度是其重要影响因素。  相似文献   

16.
基于重力流剖面的野外观察、露头解剖及镜下鉴定等分析手段,对四川盆地北部下寒武统仙女洞组台缘斜坡碳酸盐 岩重力流沉积及发育机制进行了研究。研究区位于仙女洞组,主要沉积粉砂质泥岩、生屑泥晶灰岩、藻灰岩等3种岩石类 型;根据层面上产出形态的不同,将该区碳酸盐岩重力流沉积分为似瘤状碳酸盐岩重力流沉积和角砾型碳酸盐岩重力流沉 积2类。结合露头区重力流沉积物粒度及岩性变化,将碳酸盐岩重力流沉积由下至上划分出5个发育期次,期次内部重力流 沉积物由细变粗,纵向上呈现出明显的叠置关系,与仙女洞组时期所经历的海退环境大致吻合。地震、风暴浪等触发机制 导致台缘斜坡上部松散沉积的灰泥丘块体发生破碎并沿斜坡发生滑塌,伴随水体注入,大块砾石在沉积物-水体混合的环 境中发生破碎搅动,形成大小不等的块体,深水底流等作用对未固结或弱固结的砾屑灰岩进行溶蚀、改造,最终形成了层 面形态特征不同的2类似瘤状碳酸盐岩重力流沉积。角砾型碳酸盐岩重力流沉积则主要是未破碎的巨型灰泥丘块体经搬运 和短距离滑塌,最终与似瘤状砾屑灰岩共同沉积而成。  相似文献   

17.
We shall consider diffusion or single-phase flow in a multiscale porous medium which represents an infinite set of self-similar double-porosity media. At each scale, the medium consists of a highly permeable network of connected channels and low-permeable blocks. The characteristic scale of heterogeneity is ε at the highest level of hierarchy, wherein ε is a small parameter. The ratio between the channel and block permeability at each scale is ε 2. The process analyzed is described using a diffusion equation with an oscillating multiscale diffusion parameter. The macroscale behavior is of interest. The transition to the macroscale is performed by means of the two-scale homogenization procedure. One step of averaging at each level of hierarchy leads to the appearance of the memory terms in the averaged equation. The successive averaging steps lead to progressive memory accumulation, so at each step of averaging, the macroscale model changes its type, and even the result of the second step is unknown a priori. The objective was to determine the macroscopic limit model for the infinite number of scales. By the method of induction, we obtained the macroscale model for an arbitrary number of scales and its limit for the infinite hierarchy. The limit model represents the system of two equations with memory terms. The kernel of the memory operator is the solution of a nonlinear integro-differential equation. Its solution is obtained through Laplace transform.  相似文献   

18.
非均质介质的空间维度变化对重非水相流体(DNAPL) 的运移具有重要的影响。在充分考虑地质体的空间连续 性、不对称性以及各向异性等特征的基础上,采用基于马尔可夫链的转移概率(transition probability) 模型来构建非均质 随机场。该文通过TMVOC-MP软件来模拟DNAPL在非均质介质中的运移规律,探讨非均质随机场的水平空间连续性、 空间维度变化以及侧向运移过程对DNAPL运移的影响。结果表明,介质的水平空间连续性越好,DNAPL在水平方向的 迁移范围越大,在垂向的迁移范围越小;相比于三维模型,二维模型中DNAPL在水平方向的展布更大、在透镜体上的蓄 积量更多,在实际应用中以二维模型代替三维模型会加大模拟结果与实际污染情况之间的误差;侧向运移过程削弱了单 个平面的非均质性对DNAPL运移的控制,当存在侧向运移时,DNAPL绕过透镜体所运移的距离以及在透镜体上的蓄积 量会相应减小。  相似文献   

19.
Water table dynamics, dissolved oxygen (DO) content, electrical resistivity (ER) in monitoring wells and air pressure in the vadose zone are monitored in air sparging (AS) accompanied by soil vapor extraction (SVE) at a hydrocarbon-contaminated groundwater site in Oman, where a diesel spillover affected a heterogeneous unconfined aquifer. The formation of a groundwater mound at the early stage of air injection and potential lateral migration of contaminants from the mound apex called for an additional hydrodynamic barrier constructed as a pair of pump-and-treat (P&T) wells whose recirculation zone encompassed the AS and SVE wells. In all monitored piezometers the phreatic surface showed a rapid and distinct peak, which is attributed to the time of air breakthrough from the injection point to the vadose zone and a relatively mild recession limb interpreted as a decay of the mound. Tracer tests showed a layer of a relatively low hydraulic conductivity at an intermediate depth of the screened interval of the wells. Increased levels of DO and borehole air pressure that have been observed (as far as 50 m away) are likely mitigated by SVE and P&T. Radius of influence can be indirectly inferred from ER and DO changes in the AS operation zone. Salt tracer tests have shown that groundwater velocity within the AS zone decreases with the increase of air injection rate.  相似文献   

20.
In this study, the presence of nonaqueous phase liquids (NAPL) in sandy soils are detected using a TDR probe system and the eigendecomposition method of analysis. As a demonstration, five NAPLs with different physicochemical properties (acetone, benzene, heptane, trichloroethylene, and xylene; Table 1) were used. Samples were prepared in such a way that the soil pore fluid has different contents of deionized water and NAPLs. For each experiment, a pulse signal with known characteristics was used and reflected signals were captured by an oscilloscope and analyzed using the eigendecomposition method. Autoregressive modeling and singular value decomposition were used to calculate the eigenvalues. The most significant eigenvalues were identified based on their power spectrum. The relative eigenvalue of the first mode (Eow), which is a measure of the power carried by the signal, was calculated and correlated to NAPL type and content, and octanol water partition coefficient (log Kow). The results indicated that for the same NAPL content, as log Kow increases, Eow decreases due to increase of hydrophobicity. For the same log Kow, as the organic content in soil pore fluid increases, Eow increases due to decrease of dielectric properties of the pore fluids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号