首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Chemical and mineralogical studies of fresh and hydrothermally altered rhyolitic material in Upper and Lower Geyser Basins, Yellowstone National Park, show that all the altered rocks are enriched in Cs and that Cs is selectively concentrated in analcime. The Cs content of unaltered rhyolite lava flows, including those from which the altered sediments are derived, ranges from 2.5 to 7.6 ppm. The Cs content of analcime-bearing altered sedimentary rocks is as high as 3000 ppm, and in clinoptilolite-bearing altered sedimentary rocks Cs content is as high as 180 ppm. Altered rhyolite lava flows which were initially vitrophyres, now contain up to 250 ppm Cs, and those which were crystallized prior to hydrothermal alteration contain up to 14 ppm. Mineral concentrates of analcime contain as much as 4700 ppm Cs. The Cs must have been incorporated into the analcime structure during crystallization, rather than by later cation substitution, because analcime does not readily exchange Cs. The CsCl of the fluids circulating through the hydrothermal system varies, suggesting that Cs is not always a conservative ion and that Cs is lost from upflowing thermal waters due to water-rock interaction resulting in crystallization of Cs-bearing analcime.The source of Cs for Cs enrichment of the altered rocks is from leaching of rhyolitic rocks underlying the geyser basins, and from the top of the silicic magma chamber that underlies the area.Analcime is an important natural Cs sink, and the high Cs concentrations reported here may prove to be an important indicator of the environment of analcime crystallization.  相似文献   

2.
An initial phase of an extensive geochemical study of pegmatites from the Black Hills, South Dakota, indicates potassium feldspar composition is useful in interpreting petrogenetic relationships among pegmatites and among pegmatite zones within a single pegmatite. The KRb and RbSr ratios and Li and Cs contents of the feldspars within each zoned pegmatite, to a first approximation, are consistent with the simple fractional crystallization of the potassium feldspar from a silicate melt from the wall zone to the core of the pegmatites. Some trace element characteristics (i.e. Cs) have been modified by subsolidus reequilibration of the feldspars with late-stage residual fluid.KRb ratios of the potassium feldspar appear to be diagnostic of the pegmatite mineral assemblage. The relationship between KRb and mineralogy is as follows: Harney Peak Granite (barren pegmatites) > 180; Li-Fe-Mn phosphate-bearing pegmatites = 90?50; spodumene-bearing pegmatites = 60?40; pollucitebearing pegmatites < 30. Although the KRb ratios suggest that the pegmatites studied are genetically related by fractional crystallization to each other and the Harney Peak Granite, overlapping RbSr ratios and the general increase in Sr and Ba with decreasing KRb indicate the genetic relationship is much more complex and may also be dependent upon slight variations in source (chemistry and mineralogy) material composition and degrees of partial melting.  相似文献   

3.
Weathered quartz grus and stream transported quartz of the Harney Peak Granite, Black Hills, South Dakota, contain low concentrations of Rb (generally 0.3–6.8 ppm) and Sr (0.2–2.0 ppm) and variable Sr isotopic ratios (0.759–1.070).Six of seven single grains of large composite quartz grus which recently entered the weathering environment define an apparent isochron age (about 1800 Myr) and initial 87Sr86Sr ratio (0.7066) that approximate the whole-rock isochron age (1707 Myr) and initial ratio (0.7143) of the Harney Peak Granite. Apparently the Rb-Sr systematics of these grains were not significantly altered during initial weathering. Leached fluid inclusion material from a ca. 2 g aggregate of composite quartz grains contains very little Rb or Sr (0.019 and 0.17 μg, respectively) and has a very low 87Sr86Sr ratio (0.739). The Rb and Sr content of the quartz grains appears to be concentrated in minute, heterogeneously-distributed mineral inclusions.Five aggregates of more completely weathered, small non-composite quartz grains produce a widely scattered pattern on an isochron diagram with all samples plotting below the 1707 Myr isochron. Examination by SEM of these grains shows solution and precipitation features on their relatively large effective surface areas. The differential precipitation of Rb is believed to have been the major perturbating chemical process during weathering.Three aggregates of stream quartz grains define an apparent isochron age of 1777 Myr and an initial 87Sr86Sr ratio of 0.720 that suggest the initial ‘igneous’ Rb-Sr characteristics of the stream quartz were re-attained during their transportation, probably as a result of removal of the outer weathered surface by abrasion. The apparent resistance to chemical weathering of stream quartz and quartz which has just entered the weathering environment suggests that this mineral may be extremely useful in studies of provenance and the geochronology of strongly weathered terranes.  相似文献   

4.
Alteration of basaltic glass to palagonite is characterized by a nearly isomolar exchange of SiO2, Al2O3, MnO, MgO, CaO, Na2O, P2O5, Zn, Cu, Ni, Cr, Hf, Sc, Co and REE for H2O and K2O, whilst TiO2 and FeO are passively accumulated during removal of the remaining cations. The network forming cations Al and Si are removed from the glass in proportion to the gain in Ti and Fe, whilst the other cations do not show a significant relationship to the amount of Ti and Fe accumulation. Sr isotopic data show that during palagonite formation approximately 85% of the basaltic Sr is lost to the hydrous solutions and 40% of seawater Sr is added to the glass, yielding an average loss of the same order of magnitude as of the network forming cations. Losses and gains of oxides yield an average increase of +105% TiO2.K, Rb, and Cs show high increases, but KRb and KCs ratios indicate two different alteration processes: (1) formation of palagonite involves a drastic decrease in these ratios, indicating structural similarities between palagonite and smectite; (2) surface alteration of glass is characterized by an increase in KRb and KCs ratios, probably best interpreted as sorption of alkalies in ratios approximating those of seawater.The total fluxes involved in alteration of glass in the upper portion of the oceanic crust are estimated from the modal abundance of palagonite in the oceanic crust and the abundance of the vein materials smectite and carbonate. Smectite and carbonates act as a sink for a significant portion of the elements liberated up during alteration of basaltic glass except for Na and Al, which are probably taken up by zeolites and/or albite, possibly hidden in the macroscopic estimate of carbonate. Formation of the observed quantity of secondary phases requires additional sources for Si, Fe. Ca and K. K is provided in excess from the inflowing seawater at reasonable water/rock ratios. The remaining excess Ca, Si and Fe required may be derived by alteration of interstitial glass and breakdown of anorthite rich plagioclase and titano-magnetite, and/or by supply of deeper seated metamorphic reactions.  相似文献   

5.
Gold mineralization in the Velvet District occurs in an eastward dipping sequence of late Tertiary rhyolitic ash-flow tuffs, flows, and tuffaceous sediments in northwestern Nevada. Minor gold and silver concentrations are associated with irregular zones of brecciation, argillic alteration, and quartz veining along north-northeast trending normal faults. Reaction of mineralizing fluids with wallrock produced an argillic alteration assemblage of illite, mixed-layer clays, smectite, and kaolinite. Illite alteration and highest gold concentrations appear to be associated with zones of high water/rock ratios. Kaolinite, smectite, alunite, and opal are postulated to have formed during a steam-dominated episode of alteration.Fluid inclusion studies indicate that the quartz veins were deposited in the temperature range 230 to 280°C from fluids which had salinities equivalent to 0.2–0.8 weight percent NaCl. δ 18O of quartz veins varies from ?2.5 to +6.7 ‰ and indicates that the ore fluid must have been Tertiary meteroric water. Stable isotope data appear to define a zone of concentrated fluid flow and potential subsurface mineralization in the southeastern part of the district. Fluid inclusion and isotope studies can be used in combination with more standard geochemical, geophysical, and geological information to provide site-specific targets for epithermal metal concentrations.  相似文献   

6.
Volcanic rocks in the Wairakei geothermal field have undergone extensive oxygen isotope exchange with the thermal waters, resulting in an O18-depletion averaging about 4%. A lower limit on the ratio of the mass of water to rock in the exchange system is 4·3, at least ten times greater than the corresponding figure for the Salton Sea geothermal system. Carbonates, present as alteration products in most samples, are found to be in equilibrium with waters at present-day temperatures in some wells, and to record higher ‘fossil’ temperatures in others. Quartz phenocrysts and xenocrysts remain unexchanged, and only new hydrothermal quartz is in isotopic equilibrium with geothermal solutions.  相似文献   

7.
Hydrothermal alteration, involving chiefly chlorite and illite, is extensively distributed within host rocks of the Pleistocene Hishikari Lower Andesites (HLA) and the Cretaceous Shimanto Supergroup (SSG) in the underground mining area of the Hishikari epithermal gold deposit, Kagoshima, Japan. Approximately 60% of the mineable auriferous quartz‐adularia veins in the Honko vein system occur in sedimentary rocks of the SSG, whereas all the veins of the Yamada vein system occur in volcanic rocks of the HLA. Variations in the abundance and chemical composition of hydrothermal minerals and magnetic susceptibility of the hydrothermally altered rocks of the HLA and SSG were analyzed. In volcanic rocks of the HLA, hydrothermal minerals such as quartz, chlorite, adularia, illite, and pyrite replaced primary minerals. The amount of hydrothermal minerals in the volcanic rocks including chlorite, adularia, illite, and pyrite as well as the altered and/or replaced pyroxenes and plagioclase phenocrysts increases toward the veins in the Honko vein system. The vein‐centered variation in mineral assemblage is pronounced within up to 25 m from the veins in the peripheral area of the Honko vein system, whereas it is not as apparent in the Yamada vein system. The hydrothermal minerals in sandstone of the SSG occur mainly as seams less than a few millimeters thick and are sporadically observed in halos along the veins and/or the seams. The alteration halos in sandstone of the SSG are restricted to within 1 m of the veins. In the peripheral area of the Honko vein system, chlorite in volcanic rocks is characterized by increasing in Al in its tetrahedral layer and the Fe/Fe + Mg ratio toward the veins, while illite in volcanic rocks has relatively low K and a restricted range of Fe/Fe + Mg ratios. Temperature estimates derived from chlorite geothermometry rise toward the veins within the volcanic rocks. The magnetic susceptibility of tuff breccia of the HLA varies from 21 to less than 0.01 × 10?3 SI within a span of 40 m from the veins and has significant variation relative to that of andesite (27–0.06 × 10?3 SI). The variation peripheral to the Honko vein system correlates with an increase in the abundance of hematite pseudomorphs after magnetite, the percentage of adularia and chlorite with high Fe/Fe + Mg ratios, and the degree of plagioclase alteration with decreasing distance to the veins. In contrast, sedimentary rocks of the SSG maintain a consistent magnetic susceptibility across the alteration zone, within a narrow range from 0.3 to 0.2 × 10?3 SI. Magnetic susceptibility of volcanic rocks of the HLA, especially tuff breccia, could serve as an effective exploration tool for identifying altered volcanic rocks.  相似文献   

8.
Size fractions <5 μm of Fithian illite were treated with 1 N HCl, H+- from cation-exchange resin, and 5% NH4-EDTA-solution, and analyzed for their Rb-Sr isotopic composition. In comparison to the effects of HCl, the ion-exchange resin leached the same amount of Sr, but significantly less Rb and radiogenic 87Sr from poorly-crystallized 1 M illite.An age of 284 ± 8 Ma (I.R. 0.7109 ± 6 is more or less in agreement with the Missourian (Stephanian) age of deposition. The agreement is fortuitous because of the presence of small amounts of detrital 2 M illite and kaolinite, thus the true age of diagenesis might be somewhat less.87Sr86Sr ratio measurements of Tithonian Solnhofen limestone demonstrate that, even though the silicate component constitutes less than 5% of the total, the majority of the radiogenic 87Sr is leached from “broken-bond” surfaces of the nearly pure kaolinite-residues during the HCl treatment. Ion-exchange and EDTA treatment can be useful in this situation to obtain a precise separation of environmental Sr (in carbonate) from radiogenic 87Sr (in silicates), and an adequate spread of RbSr values from argillaceous fine fractions in the construction of isochrons.  相似文献   

9.
RbSr whole rock analyses have been performed on 2 CI and 3 CM chondrites. Four of these stones (Ivuna, Orgueil, Cold Bokkeveld and Erakot) were previously studied in this laboratory and were shown to be discordant from a 4.6 Gyr isochron. The fifth, Murchison, was not previously studied. The new data support the discordance of the first four stones, and indicate that Murchison is also discordant. Studies of Sr isotope ratios in unspiked Orgueil show that the discordance is not due to inhomogeneities in the Sr84Sr86 ratio caused by incomplete mixing of nucleosynthesis products.In order to gauge the effects of weathering, two leaching experiments were performed on fresh, interior samples of Murchison; one for a period of 1.5 hr and the other for 117 hr. The results indicate that the relative solubility of nonradiogenic Sr is approximately twice that of Rb and radiogenic Sr is more soluble than the nonradiogenic Sr. This gives the residue a lower model age than the whole rock both by increasing the RbSr ratio and by decreasing the Sr87Sr86 ratio. This result is in contrast to that expected from studies of ordinary chondrite finds, which generally show higher model ages than falls. The constancy of KRb and KSr ratios between the two leaching experiments, and their difference from the unaltered whole rock ratios suggest that the bulk ratios are produced by dissolution of a single phase, and the higher radiogenic Sr content by selective leaching of other phases.  相似文献   

10.
The Asachinskoe epithermal Au‐Ag deposit is a representative low‐sulfidation type of deposit in Kamchatka, Russia. In the Asachinskoe deposit there are approximately 40 mineralized veins mainly hosted by dacite–andesite stock intrusions of Miocene–Pliocene age. The veins are emplaced in tensional cracks with a north orientation. Wall‐rock alteration at the bonanza level (170–200 m a.s.l.) consists of the mineral assemblage of quartz, pyrite, albite, illite and trace amounts of smectite. Mineralized veins are well banded with quartz, adularia and minor illite. Mineralization stages in the main zone are divided into stages I–IV. Stage I is relatively barren quartz–adularia association formed at 4.7 ± 0.2 Ma (K‐Ar age). Stage II consists of abundant illite, Cu‐bearing cryptomelane and other manganese oxides and hydroxides, electrum, argentite, quartz, adularia and minor rhodochrosite and calcite. Stage III, the main stage of gold mineralization (4.5–4.4 ± 0.1–3.1 ± 0.1 Ma, K‐Ar age), consists of a large amount of electrum, naumannite and Se‐bearing polybasite with quartz–adularia association. Stage IV is characterized by hydrothermal breccia, where electrum, tetrahedrite and secondary covellite occur with quartz, adularia and illite. The concentration of Au+Ag in ores has a positive correlation with the content of K2O + Al2O3, which is controlled by the presence of adularia and minor illite, and both Hg and Au also have positive correlations with the light rare‐earth elements. Fluid inclusion studies indicate a salinity of 1.0–2.6 wt% NaCl equivalent for the whole deposit, and ore‐forming temperatures are estimated as approximately 160–190°C in stage III of the present 218 m a.s.l. and 170–180°C in stage IV of 200 m a.s.l. The depth of ore formation is estimated to be 90–400 m from the paleo‐water table for stage IV of 200 m a.s.l., if a hydrostatic condition is assumed. An increase of salinity (>CNaCl≈ 0.2 wt%) and decrease of temperature (>T ≈ 30°C) within a 115‐m vertical interval for the ascending hydrothermal solution is calculated, which is interpreted as due to steam loss during fluid boiling. Ranges of selenium and sulfur fugacities are estimated to be logfSe2 = ?17 to ?14.5 and logfS2 = ?15 to ?12 for the ore‐forming solution that was responsible for Au‐Ag‐Se precipitation in stage III of 200 m a.s.l. Separation of Se from S‐Se complex in the solution and its partition into selenides could be due to a relatively oxidizing condition. The precipitation of Au‐Ag‐Se was caused by boiling in stage III, and the precipitation of Au‐Ag‐Cu was caused by sudden decompression and boiling in stage IV.  相似文献   

11.
Concentrations of potassium and rubidium are reported for 62 Precambrian shield whole-rock samples belonging to the pyroxene granulite facies of world-wide distribution. Compared with the Main Trend established by Shaw (1968) for igneous and quasi-igneous rocks of the upper crust, the high-grade metamorphic granulites exhibit a similar correlation but with a measurable depletion in Rb for a given K content. The Metamorphic Trend may be described by the equations: log10 (ppm Rb) = 1.136 log10 (per cent K) + 1.495 or ppm Rb = 31.28 (per cent K)1.136. The square of the product moment correlation coefficient shows that 80 per cent of the variation in Rb is associated with variation in K.All suites studied have initial 87Sr86Sr ratios less than 0.707. This low value argues against repeated extraction of Rb and K through time on a regional scale. Rather, the major depletion in these lithophile elements occurred in the early stages of crustal evolution.  相似文献   

12.
New analyses of K, Rb, Sr and Ba contents and the 87Sr86Sr ratios of eight amphiboles, one phlogopite, two diopsides and one host alkalic basalt for an amphibole are reported: The samples are mostly inclusions in alkalic basalts and occur in association with peridotite inclusions. Two of the samples are from alpine-type peridotite bodies — one from the Etang de Lhers massif in the French Pyrenees and the other from the Finero massif in the Ivrea zone in northern Italy. The kaersutites come from the following localities: Hoover Dam, Arizona; Deadman Lake, California; Massif Central, France; Queensland; Spring Mountain, New South Wales.The data indicate that kaersutitic amphiboles are genetically unrelated to their host basalts. The isotopic and trace element data of these amphiboles further strengthens the suggestion of BASU and MURTHY (1977) that kaersutites play a significant role in ocean ridge basalt genesis. In addition, pargasitic amphibole with higher 87Sr86Sr ratios, if present, may be important in the source regions of alkalic basalts.The bulk amphibole lherzolite from Lherz has the KRbratio and 87Sr86Sr ratio appropriate for source material of ridge tholeiites. If the diopside and the amphibole in this rock had isotopically equilibrated under upper mantle conditions, the data show the time of last equilibration to be approximately 735 m.y., in contrast to the young emplacement age of the ultramafic massif.The coexisting phlogopite and diopside in the spinel lherzolite inclusion from Kilbourne Hole, New Mexico, show, surprisingly, isotopic equilibration under upper mantle conditions despite their drastically different RbSr ratios. The data show that the phlogopite must have formed very recently in the upper mantle. This phlogopite also has a high KRb ratio (1133), contrary to the commonly held view that mantle phlogopites have low KRb ratios. The coexisting diopside shows high K content (778 ppm) and a lower KRb ratio than the phlogopite. This phlogopite lherzolite has trace elemental and isotopic characteristics that may be adequate for the origin of alkalic basalts upon partial melting.  相似文献   

13.
14.
Red-staining of rocks due to fluid–rock interaction during hydrothermal circulation in fractures is a common feature in crystalline sequences. In this study, red-stained metagranitic rock adjacent to fractures in Forsmark, central Sweden, has been studied with emphasis on the mineral reactions and associated element mobility occurring during the alteration. The main mineral reactions associated with the hydrothermal alteration are an almost complete saussuritization of plagioclase accompanied by total chloritization of biotite. Magnetite has been partly replaced by hematite whereas quartz and K-feldspar were relatively unaffected by the hydrothermal alteration. We show that redistribution of elements on the whole rock scale was very limited and is mainly manifested by enrichment of Na2O and volatiles and depletion of CaO, FeO and SiO2 in the red-stained rock. However, on the microscale, element redistribution was more extensive, with both intragranular and intergranular migration of e.g. Ca, K, Na, Al, Si, Fe, Ba, Cs, Rb, Sr, Ti and REEs. The altered rock shows a shift towards higher total oxidation factors, but the change is smaller than 1σ and the red-staining of the rock is due to hematite dissemination rather than a significant oxidation of the rock. An increase in the connected porosity is also observed in the altered rock.  相似文献   

15.
Cameronet al. (1981) proposed a “Free Line Model” for calculating formation ages for rock systems that have undergone local scale homogenization by 87Sr migration. This model is valid only if the variation in the 87Rb86Sr ratio is independent of the variation in Sr-content within the rock system. If Sr increases linearly with increasing 87Rb86Sr the calculated age will be too high. If Sr decreases linearly with increasing 87Rb86Sr, the calculated age will be systematically too low. If the rate of change in Sr with increasing 87Rb86Sr varies systematically through a rock system the “isochron” will be curved and the calculated ages will be younger or older than the real age, depending on the position of samples in relation to the curvature of the “isochron.” This problem with the “Free Line Model” is inherited in both the “Bulk Earth Model 1” and the “Bulk Earth Model 2.”  相似文献   

16.
The distribution of trace amounts of Na, Rb and Cs, between muscovite, phlogopite, sanidine and hydrothermal solution have been studied by ion exchange in a temperature range from 400 to 800°C.These distributions have been expressed with a partition ratio Paq?mx = (XK)aq(XK)m (where X is Na, Rb or Cs).In the case of Na and Cs in muscovite, even for the dilute solutions, the ratio Paq?mx is not the equilibrium constant kx of exchange reactions. In other cases, Paq?mx does not depend on the trace alkali ion concentration in silicates (X) and is equal to kx. Variations of Px or kx with T are greater for Na and Cs than for Rb. Generally, kx decreases with increase in T. The function log Px = f(1T) is not linear for Na or Cs, but in the case of Rb, f(1T) is linear and the standard enthalpy and entropy of exchange reactions have been estimated by applying the Arrhenius relation.The distribution relations obtained between silicate and vapour phase permit the determination of distributions of Na, Rb and Cs between two minerals mI and mII, relative to K. These have been expressed with the partition ratio Qx =(XK)mI(XK)mII. Variations of Qx with T are not remarkable, and even for Rb between phlogopite and feldspar are negligible. Nevertheless, one may use the distributions of Rb and Cs between muscovite and feldspar for geothermometry. Experimental results have been applied to some rocks by effecting corrections from the major element composition of the natural minerals. Estimated temperatures are near to 400°C in the granites and pegmatite studied here.  相似文献   

17.
By the example of the Orlovka massif of Li-F granites in Eastern Transbaikalia, the major- and trace-element (Li, Be, B, Ta, Nb, W, REE, Y, Zr, and Hf) compositions of the parental melt and the character of its variations during the formation of the differentiated rock series were quantitatively estimated for the first time on the basis of electron and ion microprobe analysis and Raman spectroscopy of rehomogenized glasses of melt inclusions in quartz. It was shown that the composition of the Orlovka melt corresponded to a strongly evolved alumina-saturated granitoid magma (A/CNK = 1.12–1.55) rich in normative albite, poor in normative quartz, and similar to ongonite melts. This magma was strongly enriched in water (up to 9.9 ± 1.1 wt %) and fluorine (up to 2.8 wt %). Most importantly, this massif provided the first evidence for high B2O3 contents in melts (up to 2.09 wt %). The highest contents of trace elements were observed in the melt from pegmatoid bodies in the amazonite granites of the border zone: up to 5077 ppm Li, 6397 ppm Rb, 313 ppm Cs, 62 ppm Ta, 116 ppm Nb, and 62 ppm W. Compared with the daughter rock, the Orlovka melt was depleted at all stages of formation in SiO2 (by up to 6 wt %), Na2O (by up to 2.5 wt %), and, to a smaller extent, in Ti, Fe, Mg, Sr, and Ba, but was enriched in Mn, Rb, F, B, and H2O.  相似文献   

18.
Sixty-nine analyses are given for NH4 in minerals of metamorphic and granitic rocks mostly from the Ryoke belt, Japan. The distribution of NH4 in coexisting minerals is quite systematic, suggesting that NH4 is one of the stable geochemical components in high temperature processes.Biotite has the highest content of NH4, followed by muscovite, K-feldspar and plagioclase. Pure quartz is almost free from NH4. Calcic plagioclase contains less NH4 than does sodic plagioclase. The partition coefficients DPlBi, DKfBi and DKfBi are, on the average, 0.11, 0.38 and 0.43 respectively. The fractionation of NH4 in these minerals is quite similar to that of Rb but much smaller than that of Cs.Distribution of NH4 as well as those of Rb and Cs appears to be explained by its ionic radius and the shortest cation-O distances in alkali positions of minerals.  相似文献   

19.
The availability of fluids and drill cuttings from the active hydrothermal system at Roosevelt Hot Springs allows a quantitative comparison between the observed and predicted alteration mineralogy, calculated from fluid-mineral equilibria relationships. Comparison of all wells and springs in the thermal area indicates a common reservoir source, and geothermometer calculations predict its temperature to be higher (288°C ± 10°) than the maximum measured temperature of 268°C.The composition of the deep reservoir fluid was estimated from surface well samples, allowing for steam loss, gas release, mineral precipitation and ground-water mixing in the well bore. This deep fluid is sodium chloride in character, with approximately 9700 ppm dissolved solids, a pH of 6.0, and gas partial pressures of O2 ranging from 10?32 to 10?35 atm, CO2 of 11 atm, H2S of 0.020 atm and CH4 of 0.001 atm.Comparison of the alteration mineralogy from producing and nonproducing wells allowed delineation of an alteration pattern characteristic of the reservoir rock. Theoretical alteration mineral assemblages in equilibrium with the deep reservoir fluid, between 150° and 300°C, in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-H4SiO4-H2O-H2S-CO2-HCl, were calculated. Minerals theoretically in equilibrium with the calculated reservoir fluid at >240°C include sericite, K-feldspar, quartz, chalcedony, hematite, magnetite and pyrite. This assemblage corresponds with observed higher-temperature (>210°C) alteration assemblage in the deeper parts of the producing wells. The presence of montmorillonite and mixed-layer clays with the above assemblage observed at temperatures <210°C corresponds with minerals predicted to be in equilibrium with the fluid below 240°C.Alteration minerals present in the reservoir rock that do not exhibit equilibrium with respect to the reservoir fluid include epidote, anhydrite, calcite and chlorite. These may be products of an earlier hydrothermal event, or processes such as boiling and mixing, or a result of errors in the equilibrium calculations as a result of inadequate thermochemical data.  相似文献   

20.
Chemico-mineralogical attributes of authigenic clays associated with the altered volcanic tuffs that occur in the Palaeoproterozoic Porcellanite Formation contain evidences of hydrothermal alteration and diagenetic processes in a marine environment. Previous sedimentological and geochemical studies on Porcellanite Formation were restricted to the Chopan area, but, the details related to provenance, nature and source of volcanism archived in these clays have not been ascertained. In order to understand these aspects, present study on these authigenic clays were carried out. Clay minerals represent dominance of illite with subordinate amount of montmorillonite. Moreover, low abundance of kaolinite is also noticed. The illite fibers and plates associated with the kaolinite indicate illitization. The kaolinite to illite transformation is favoured by incorporation of K+ ions, derived from the K-feldspar dissolution and its overgrowth. Major oxide contents of these clays and their ratios when plotted over diagrams marked with standard illite, kaolinite, smectite and chlorite compositional fields show clustering within or close to the illite field. Thermodynamic components calculated for these clays when plotted over AR23+AlSi3O10(OH)2 − R23+Si4O10(OH)2 − AR2+R3+Si4O10(OH)2 ternary diagram, data plots lie within the illite, mixed layer I/S and smectite fields. Binary major oxide data plots between bulk rock and authigenic clay compositions showed felsic affinity. Montmorillonite and illite predominated in the eastern and western marginal areas of the Vindhyan Basin, respectively. However, former resulted from the hydrothermal alteration of volcanic glass associated with the ferruginous breccia and altered tuffs and remnants of the volcanic vents, whereas, later is associated with the tuffaceous beds. Owing to the adsorption, Ba, Rb and Sr is enriched in clays comparing to the bulk rock composition. Low (< 15 ppm) Sc values suggested major contribution from the felsic component. Also, low Rb/Sr and Th/U values revealed moderate insitu weathering. The dominance of K-feldspar alteration and insitu weathering is also evident from clustering of clay data plots in the A-CN-K ternary diagram. Pronounced negative Eu anomaly together with higher LREE/HREE values associated with these clay minerals implied proximity to source and their possible derivation from the silicified felsic tuffs available in the provenance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号