首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Stable isotopes combined with pre-existing 40Ar/39Ar thermochronology at the Gavilan Hills and Orocopia Mountains in southeastern California record two stages of fluid–rock interaction: (1) Stage 1 is related to prograde metamorphism as Orocopia Schist was accreted to the base of the crust during late Cretaceous–early Cenozoic Laramide flat subduction. (2) Stage 2 affected the Orocopia Schist and is related to middle Cenozoic exhumation along detachment faults. There is no local evidence that schist-derived fluids infiltrated structurally overlying continental rocks. Mineral δ18O values from Orocopia Schist in the lower plate of the Chocolate Mountains fault and Gatuna normal fault in the Gavilan Hills are in equilibrium at 490–580°C with metamorphic water (δ18O = 7–11‰). Phengite and biotite δD values from the Orocopia Schist and upper plate suggest metamorphic fluids (δD ~ –40‰). In contrast, final exhumation of the schist along the Orocopia Mountains detachment fault (OMDF) in the Orocopia Mountains was associated with alteration of prograde biotite and amphibole to chlorite (T ~ 350–400°C) and the influx of meteoric-hydrothermal fluids at 24–20 Ma. Phengites from a thin mylonite zone at the top of the Orocopia Schist and alteration chlorites have the lowest fluid δD values, suggesting that these faults were an enhanced zone of meteoric fluid (δD < –70‰) circulation. Variable δD values in Orocopia Schist from structurally lower chlorite and biotite zones indicate a lesser degree of interaction with meteoric-hydrothermal fluids. High fluid δ18O values (6–12‰) indicate low water–rock ratios for the OMDF. A steep thermal gradient developed across the OMDF at the onset of middle Cenozoic slip likely drove a more vigorous hydrothermal system within the Orocopia Mountains relative to the equivalent age Gatuna fault in the Gavilan Hills.  相似文献   

2.
The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong‘er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E),polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90%c,δ^13CCO2=2.0‰ and δ^18O=9‰ at 373℃, and are deeply sourced; the L-stage fluids, with δD=-70‰, δ^13C CO2=-1.3%c and δ^18O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, δ^13C CO2=0.1%c and δ^18O2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the Estage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong‘er Group, show that these units cannot generate fluids with the measured isotopic composition (high δ^180 and δ^13C ratios and low δD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong‘er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong‘er terrane along the Machaoying fault.Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.  相似文献   

3.
《International Geology Review》2012,54(13):1443-1463
Fluid inclusions hosted by quartz veins in high-pressure to ultrahigh-pressure (HP-UHP) metamorphic rocks from the Chinese Continental Scientific Drilling (CCSD) Project main drillhole have low, varied hydrogen isotopic compositions (δD?=??97‰ to??69‰). Quartz δ18O values range from??2.5‰ to 9.6‰; fluid inclusions hosted in quartz have correspondingly low δ18O values of??11.66‰ to 0.93‰ (T h?=?171.2~318.8°C). The low δD and δ18O isotopic data indicate that protoliths of some CCSD HP-UHP metamorphic rocks reacted with meteoric water at high latitude near the surface before being subducted to great depth. In addition, the δ18O of the quartz veins and fluid inclusions vary greatly with the drillhole depth. Lower δ18O values occur at depths of ~900–1000 m and ~2700 m, whereas higher values characterize rocks at depths of about 1770 m and 4000 m, correlating roughly with those of wall-rock minerals. Given that the peak metamorphic temperature of the Dabie-Sulu UHP metamorphic rocks was about 800°C or higher, much higher than the closure temperature of oxygen isotopes in quartz under wet conditions, such synchronous variations can be explained by re-equilibration. In contrast, δD values of fluid inclusions show a different relationship with depth. This is probably because oxygen is a major element of both fluids and silicates and is much more abundant in the quartz veins and silicate minerals than is hydrogen. The oxygen isotope composition of fluid inclusions is evidently more susceptible to late-stage re-equilibration with silicate minerals than is the hydrogen isotope composition. Therefore, different δD and δ18O patterns imply that dramatic fluid migration occurred, whereas the co-variation of oxygen isotopes in fluid inclusions, quartz veins, and wall-rock minerals can be better interpreted by re-equilibration during exhumation.

Quartz veins in the Dabie-Sulu UHP metamorphic terrane are the product of high-Si fluids. Given that channelized fluid migration is much faster than pervasive flow, and that the veins formed through precipitation of quartz from high-Si fluids, the abundant veins indicate significant fluid mobilization and migration within this subducted continental slab. Many mineral reactions can produce high-Si fluids. For UHP metamorphic rocks, major dehydration during subduction occurred when pressuretemperature conditions exceeded the stability of lawsonite. In contrast, for low-temperature eclogites and other HP metamorphic rocks with peak metamorphic P–T conditions within the stability field of lawsonite, dehydration and associated high-Si fluid release may have occurred as hydrous minerals were destabilized at lower pressure during exhumation. Because subduction is a continuous process whereas only a minor fraction of the subducted slabs returns to the surface, dehydration during underflow is more prevalent than exhumation even in subducted continental crust, which is considerably drier than altered oceanic crust.  相似文献   

4.
Upper Visean limestones in the Campine Basin of northern Belgium are intensively fractured. The largest and most common fractures are cemented by non-ferroan, dull brown-orange luminescent blocky calcite. First melting temperatures of fluid inclusions in these calcites are around -57°C, suggesting that precipitation of the cements occurred from NaCl-CaCl2-MgCl2 fluids. The final melting temperatures (Tmice) are between -5 and -33°C. The broad range in the Tmice data can be explained by the mixing of high salinity fluids with meteoric waters, but other hypotheses may also be valid. Homogenization temperatures from blocky calcite cements in the shelf limestones are interpreted to have formed between 45 and 75°C. In carbonates which were deposited close to and at the shelf margin, precipitation temperatures were possibly in the range 70-85°C and 72-93°C, respectively. On the shelf, the calcites have a δ18O around -9.3‰ PDB and they are interpreted to have grown in a fluid with a δ18O between −3.5 and +1.0‰ SMOW. At the shelf margin, blocky calcites (δ18O∼ - 13.5‰ PDB) could have precipitated from a fluid with a δ18O betweenn -4.0 and -1.1‰ SMOW. The highest oxygen isotopic compositions are comparable to those of Late Carboniferous marine fluids (δ18O= - 1‰ SMOW). The lowest values are more positive than a previously reported composition for Carboniferous meteoric waters (δ18O= -7‰ SMOW). Precipitation is likely to have occurred in marine-derived fluids, which mixed with meteoric waters sourced from near the Brabant Massif. Fluids with a similar negative oxygen isotopic composition and high salinity are actually present in Palaeozoic formations. The higher temperature range in the limestones near the shelf margin is explained by the upward migration of fluids from the ‘basinal’ area along fractures and faults into the shelf.  相似文献   

5.
DH and 18O16O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramatic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O- isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/metamorphic history. Lizardite serpentinites (δD ~ ? 105‰; δ18O ~ + 6.2‰) record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related (dynamothermal) metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir (δD ~ ? 45‰). The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites (δD ~ ? 62‰; δ18O ~ + 8‰) and greenschist metaspilites (δD ~ ? 57‰; δ18O ~ + 7.3‰) with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite (δD ~ ? 62‰) and non-metamorphic lizardite δD ~ ? 105‰) end members.  相似文献   

6.
Fluid inclusions trapped in quartz veins hosted by a leucogneiss from the southern part of the Naxos Metamorphic Core Complex (Attic‐Cycladic‐Massif, Greece) were studied to determine the evolution of the fluid record of metamorphic rocks during their exhumation across the ductile/brittle transition. Three sets of quartz veins (V‐M2, V‐BD & V‐B) are distinguished. The V‐M2 and V‐BD are totally or, respectively, partially transposed into the foliation of the leucogneiss. They formed by hydrofracturing alternating with ductile deformation accommodated by crystal‐plastic deformation. The V‐B is discordant to the foliation and formed by fracturing during exhumation without subsequent ductile transposition. Fluids trapped during crystal–plastic deformation comprise two very distinct fluid types, namely a CO2‐rich fluid and a high‐salinity brine, that are interpreted to represent immiscible fluids generated from metamorphic reactions and the crystallization of magmas respectively. They were initially trapped at ~625 °C and 400 MPa and then remobilized during subsequent ductile deformation resulting in various degrees of mixing of the two end‐members with later trapping conditions of ~350 °C and 140 MPa. In contrast, brittle microcracks contain aqueous fluids trapped at 250 °C and 80 MPa. All veins display a similar δ13C pointing to carbon that was trapped at depth and then preserved in the fluid inclusions throughout the exhumation history. In contrast, the δD signature is marked by a drastic difference between (i) V‐M2 and V‐BD veins that are dominated by carbonic, aqueous‐carbonic and high‐salinity fluids of metamorphic and magmatic origin characterized by δD between ?56‰ and ?66‰, and (ii) V‐B veins that are dominated by aqueous fluids of meteoric origin characterized by δD between ?40‰ and ?46‰. The retrograde PT pathway implies that the brittle/ductile transition separates two structurally, chemically and thermally distinct fluid reservoirs, namely (i) the ductile crust into which fluids originating from crystallizing magmas and fluids in equilibrium with metamorphic rocks circulate through a geothermal gradient of 30 °C km?1 at lithostatic pressure, and (ii) the brittle upper crust through which meteoric fluids percolate through a high geothermal gradient of 55 °C km?1 at hydrostatic pressure.  相似文献   

7.
The Bairendaba vein-type Ag–Pb–Zn deposit, hosted in a Carboniferous quartz diorite, is one of the largest polymetallic deposits in the southern Great Xing'an Range. Reserves exceeding 8000 tonnes of Ag and 3 million tonnes of Pb?+?Zn with grades of 30 g/t and 4.5% have been estimated. We identify three distinct mineralization stages in this deposit: a barren pre-ore stage (stage 1), a main-ore stage with economic Ag–Pb–Zn mineralization (stage 2), and a post-ore stage with barren mineralization (stage 3). Stage 1 is characterized by abundant arsenopyrite?+?quartz and minor pyrite. Stage 2 is represented by abundant Fe–Zn–Pb–Ag sulphides and is further subdivided into three substages comprising the calcite–polymetallic sulphide stage (substage 1), the fluorite–polymetallic sulphide stage (substage 2), and the quartz–polymetallic sulphide stage (substage 3). Stage 3 involves an assemblage dominated by calcite with variable pyrite, galena, quartz, fluorite, illite, and chlorite. Fluid inclusion analysis and mineral thermometry indicate that the three stages of mineralization were formed at temperatures of 320–350°C, 200–340°C, and 180–240°C, respectively. Stage 1 early mineralization is characterized by low-salinity fluids (5.86–8.81 wt.% NaCl equiv.) with an isotopic signature of magmatic origin (δ18Ofluid = 10.45–10.65‰). The main ore minerals of stage 2 precipitated from aqueous–carbonic fluids (4.34–8.81 wt.% NaCl equiv.). The calculated and measured oxygen and hydrogen isotopic compositions of the ore-forming aqueous fluids (δ18Ofluid = 3.31–8.59‰, δDfluid?=??132.00‰ to??104.00‰) indicate that they were derived from a magmatic source and mixed with meteoric water. Measured and calculated sulphur isotope compositions of hydrothermal fluids (δ34S∑S?=??1.2–3.8‰) indicate that the ore sulphur was derived mainly from a magmatic source. The calculated carbon isotope compositions of hydrothermal fluids (δ13Cfluid?=??26.52‰ to??25.82‰) suggest a possible contribution of carbon sourced from the basement gneisses. The stage 3 late mineralization is dominated (1.40–8.81 wt.% NaCl equiv.) by aqueous fluids. The fluids show lower δ18Ofluid (?16.06‰ to??0.70‰) and higher δDfluid (?90.10‰ to??74.50‰) values, indicating a heated meteoric water signature. The calculated carbon isotope compositions (δ13Cfluid?=??12.82‰ to??6.62‰) of the hydrothermal fluids in stage 3 also suggest a possible contribution of gneiss-sourced carbon. The isotopic compositions and fluid chemistry indicate that the ore mineralization in the Bairendaba deposit was related to Early Cretaceous magmatism.  相似文献   

8.
Models of fluid/rock interaction in and adjacent to the Alpine Fault in the Hokitika area, South Island, New Zealand, were investigated using hydrogen and other stable isotope studies, together with field and petrographic observations. All analysed samples from the study area have similar whole‐rock δD values (δDWR = ?56 to ?30‰, average = ?45‰, n = 20), irrespective of rock type, degree of chloritization, location along the fault, or across‐strike distance from the fault in the garnet zone. The green, chlorite‐rich fault rocks, which probably formed from Australian Plate precursors, record nearly isothermal fluid/rock interaction with a schist‐derived metamorphic fluid at high temperatures near 450–500°C (δD of water in equilibrium with the green fault rocks (δDH2O, green) ≈ ?18‰; δD of water in equilibrium with the greyschists and greyschist‐derived mylonites (δDH2O, grey) ≈ ?19‰ at 500°C; δDH2O, green ≈ ?17‰; δDH2O, grey ≈ ?14‰ at 450°C). There is no indication of an influx of a meteoric or mantle‐derived fluid in the Alpine Fault Zone in the study area. The Alpine Fault Zone at the surface shows little evidence of late‐stage retrogression or veining, which might be attributed to down‐temperature fluid flow. It is probable that prograde metamorphism in the root zone of the Southern Alps releases metamorphic fluids that at some region rise vertically rather than following the trace of the Alpine Fault up to the surface, owing to the combined effects of the fault, the disturbed isotherms under the Southern Alps, and the brittle–ductile transition. Such fluids could mix with meteoric fluids to deposit quartz‐rich, possibly gold‐bearing veins in the region c. 5–10 km back from the fault trace. These results and interpretations are consistent with interpretations of magnetotelluric data obtained in the South Island GeopHysical Transects (SIGHT) programme.  相似文献   

9.
《Geochimica et cosmochimica acta》1999,63(11-12):1787-1804
Rift-related lavas of the North Shore Volcanic Group (NSVG) are intruded by plutonic rocks of the Duluth Complex along the unconformity between the NSVG and the underlying Proterozoic metasedimentary rocks (Animikie Group) and Archean volcano-sedimentary and plutonic rocks. Heat associated with the emplacement of the mafic intrusions generated fluid flow in the overlying plateau lavas. δ18O values for whole rocks from the NSVG and hypabyssal sills range from 5.5 to 17.7‰ and 5.3 to 11.5‰, respectively, and most values are higher than those considered “normal” for basaltic rocks (5.4 to 6.0‰). In general, there is a positive correlation between whole rock δ18O and water content, which suggests that elevated δ18O values are related primarily to secondary mineral growth and isotopic exchange during hydrothermal alteration and metamorphism. δ18OH2O values computed from amygdule-filling minerals such as smectite, chlorite, and epidote found in low- to high-temperature metamorphic zones range from ∼−1 to 6‰ with an average value of ∼3‰. Smectite in the lower-grade zones gives computed δDH2O values between −26 and −83‰, whereas epidote in the higher-grade zones gives δDH2O values of −15 to 6‰. Fluid isotopic compositions computed from epidote and smectite values are suggestive of the involvement of at least two fluids during the early stages of amygdule filling. Fluid δD and δ18O values determined from epidote at the higher metamorphic grades indicate that seawater dominated the deeper portions of the system where greenschist facies assemblages and elevated δ18O values were produced in flow interiors, as well as margins. Smectite isotopic compositions suggest that meteoric water was predominant in the shallower portions of the system. The increase in δ18O values of massive flow interiors with depth is interpreted as a result of rock interaction with a fluid of constant oxygen isotopic composition with increasing temperature. The stable isotopic data are supportive of previous suggestions that seawater was involved in the hydrothermal system associated with the Midcontinent Rift. Although the origin of the seawater remains problematic, it appears that marine incursions may have occurred during the late stages of Portage Lake volcanism, and periodically thereafter.  相似文献   

10.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

11.
U-Pb age and isotope-geochemical features were determined for zircon from kyanite gneisses and amphibolites of the Chupa Sequence of the Belomorian mobile belt (BMB) of the Fennoscandian shield. The cores of the zircon from the gneisses marks the Neoarchean events within 2700–2800 Ma known in the BMB, while those of the amphibolites correspond to the age of magmatic crystallization (2775 ± 12 Ma). The inner rims of zircon from the amphibolites and gneisses likely record two different Neoarchean metamorphic events (2650 ± 8 and 2599 ± 10 Ma, respectively). The outer rims record Paleoproterozoic metamorphism with an age of 1890 Ma, which formed the modern appearance and mineral assemblages of the rock association. The value of δ18O in the zircon from the gneiss is 8.6‰ in cores, slightly decreases to 8.0‰ in inner rims, and sharply decreases to 3.9‰ in outer rims. The value of δ18O in the zircon from the amphibolite is around 6.2‰ in cores, increases up to 8.6 in inner rims, and decreases to 5.2‰ in outer rims. A significant decrease of δ18O is likely related to the anomalous composition of Svecofennian metamorphic fluid restricted to local shear zones. The geochemical features of the zircons in combination with their morphology and anatomy make it possible to distinguish zircon generations of different age and change in metamorphic environments.  相似文献   

12.
The lower Austroalpine orthogneiss-micachist complex of the Sopron-Fertörákos area of W. Hungary contains Mg-chlorite-muscovite-quartzphyllites (leuco- phyllite) and Mg-chlorite-bearing kyanite quartzites whose chemical compositions differ greatly from their surrounding rocks. Formation of leucophyllites took place in shear zones and was associated with depletion in alkalies and iron and enrichment of magnesium and H2O. Mg-zonation of relict igneous muscovites of leucophyllites and changes in the whole rock chemical compositions suggest Mg-metasomatism. Material gains and losses have been assessed using the composition-volume relationship approach. Proceeding from metagranite through transition rocks to leucophyllites, MgO, H2O, FeO, and alkalies show continuously increasing dispersion in isocon plots with Mg-enrichment even in sheared gneiss not in contact with leucophyllite. The metasomatic processes that formed the Mg-rich rocks may be similar to those responsible for the formation of high pressure whiteschists in the Central and Western Alps. The geochemical characteristics of the Dora Maira whiteschists (Italy) and their country gneisses are very similar to those of the Sopron leucophyllites, supporting the theory that Mg-metasomatism produced the whiteschist chemistry. On the basis of oxygen isotope compositions of relict igneous muscovites, the precursor granitic rock had a δ18O value around 13‰ proving its crustal anatectic origin. The leucophyllites have whole rock oxygen isotope compositions around 8.5‰ which is in conflict with the theory of an Mg-rich sedimentary protolith. Rather, the low δ18O values reflect fluid/rock interaction with a low δ18O fluid. Quartz-mineral oxygen isotope fractionations yield a metamorphic temperature of 560 ± 30 °C which agrees with earlier estimates from mineral stabilities. Silicon contents of phengites correspond to a metamorphic pressure of ~13 GPa at this temperature indicating eclogite facies metamorphism. The fluids in equilibrium with leucophyllites had oxygen isotope compositions around 7.9‰, similar to those calculated for the ultrahigh pressure Dora Maira whiteschists (7.6‰), further supporting the genetic link between the leucophyllites and whiteschists. Hydrogen isotope compositions of mixed white mica + chlorite samples from leucophyllites range from ?40 to ?35‰, correlating with chlorite contents. The calculated endmember chlorite and white mica have δD values of ?30 and ?40‰, respectively. The similar δD values of the white micas in leucophyllites, gneisses and metagranites suggest an overall equilibration with respect to H isotopes. The calculated δD value of the fluid is approximately 0‰, suggesting a seawater origin. This conclusion was also reached for the Dora Maira whiteschists. A possible fluid source that satisfies both metasomatic and isotopic data is dehydration of hydrothermally altered oceanic crust. The mafic–ultramafic complex of the Alpine Penninic unit underlying the Austroalpine nappes is a likely candidate. The subduction and subsequent dehydration of the ophiolite series would supply the Mg-rich fluids whose migration brought about the metasomatic alteration of the overlying gneiss-micaschist complexes.  相似文献   

13.
The Quadrilátero Ferrífero, Brazil, is presently the largest accumulation of single itabirite-hosted iron ore bodies worldwide. Detailed petrography of selected hypogene high-grade iron ore bodies at, e.g. the Águas Claras, Conceição, Pau Branco and Pico deposits revealed different iron oxide generations, from oldest to youngest: magnetite → martite (hematite pseudomorph after magnetite) → granoblastic (recrystallised) → microplaty (fine-grained, <100 μm) → specular (coarse-grained, >100 μm) hematite. Laser-fluorination oxygen isotope analyses of selected iron ore species showed that the δ18O composition of ore-hosted martite ranges between ?4.4 and 0.9?‰ and is up to 11?‰ depleted in 18O relative to hematite of the host itabirite. During the modification of iron ore and the formation of new iron oxide generations (e.g. microplaty and specular hematite), an increase of up to 8?‰ in δ18O values is recorded. Calculated δ18O values of hydrothermal fluids in equilibrium with the iron oxide species indicate: (1) the involvement of isotopically light fluids (e.g. meteoric water or brines) during the upgrade from itabirite-hosted hematite to high-grade iron ore-hosted martite and (2) a minor positive shift in δ18Ofluid values from martite to specular hematite as result of modified meteoric water or brines with slightly elevated δ18O values and/or the infiltration of small volumes of isotopically heavy (metamorphic and/or magmatic) fluids into the iron ore system. The circulation of large fluid volumes that cause the systematic decrease of 18O/16O ratios from itabirite to high-grade iron ore requires the presence of, e.g. extensive faults and/or large-scale folds.  相似文献   

14.
The study of oxygen and carbon isotopic ratios has gained importance to determine the origin of ore-bearing fluids, carbon origin, and also to determine the formation temperature of non-sulfide Pb and Zn minerals. In order to determine the origin of fluids and carbon existing in Zn carbonate minerals in Chah-Talkh deposit, initially the amounts of δ18OSMOW and δ13CPDB changes in various zinc minerals in important deposits in Iran and the world were studied, and then by comparing these values in Chah-Talkh deposit with those of other deposits, the origin of fluids responsible for ore forming, carbon, and formation temperature of Chah-Talkh deposit was determined. The range of δ18OSMOW changes in smithsonite mineral in non-sulfide lead and zinc deposits varies from 18.3 to 31.6 ‰, and δ18OSMOW in hydrozincite mineral varies from 7.8 to 27 ‰. Due to the impossibility of smithsonite sampling from Chah-Talkh deposit (due to it being fine-grained and dispersed), hydrozincite minerals which have high isotopic similarities with smithsonite are used for the isotopic analysis of carbon and oxygen. The range of δ18OSMOW changes in hydrozincite mineral of Chah-Talkh deposit varies from 7.8 to 15.15 ‰, which places in the domain of metamorphic water. The extensiveness of δ18OSMOW changes in Chah-Talkh indicates the role of at least two fluids in the formation of non-sulfide minerals. The obtained formation temperature of non-sulfide minerals (hydrozincite) in Chah-Talkh deposit is 70 to 100 °C, which indicates the role of metamorphic fluids in the formation of deposit. Complete weathering of sulfide minerals to a depth of 134 m confirms the role of rising metamorphic fluids in the formation of non-sulfide minerals. The δ13CPDB values of Chah-Talkh deposit are set in the range of atmospheric CO2 and carbonate rocks, in which the existence of atmospheric CO2 indicates the role of atmospheric fluids, and the existence of carbonate carbon rock indicates of the role of metamorphic fluids in the precipitation of non-sulfide Zn minerals.  相似文献   

15.
We discuss water oxygen isotopes (δ18Ow) and carbon isotopes of dissolved inorganic carbon (δ13CDIC) of brine‐enriched shelf water (BSW) from Storfjorden (southern Svalbard) in comparison to Recent benthic foraminiferal δ18Oc and δ13Cc calcified in the same water. We determined relatively high δ18Ow values of 0.15±0.03‰ VSMOW in BSW below sill depth at temperatures below ?1.8 °C, and high δ18Oc values of 3.90±0.18‰ VPDB. Such high BSW δ18Ow cannot significantly deplete 18Ow contents of Arctic Ocean deep water; furthermore, such high δ18Oc cannot be distinguished from δ18Oc values of 3.82±0.12‰, calcified in warmer Arctic and Nordic seas intermediate and deeper waters. Today, in Storfjorden low benthic δ13Cc and high δ18Oc reflect the low δ13CDIC and relatively high δ18Ow of BSW. High benthic δ18Oc is in contrast to expected low δ18Oc as brine rejection is widely thought to predominantly take place in surface water diluted by meteoric water with very low δ18Ow. Low epibenthic δ13Cc values of 0.50±0.12‰ partly reflect low δ13CDIC caused by enhanced uptake of atmospheric low δ13CCO2 decreased by anthropogenic activities. An adjustment for preindustrial higher values would increase δ13Cc by about 0.6‰. Therefore, in Storfjorden brine formed before the industrial era would be characterized by both high δ13Cc as well as high δ18Oc values of benthic foraminiferal calcite. Our data may cast doubt on scenarios that explain negative excursions in benthic foraminiferal stable isotope records from the Atlantic Ocean during cold stadials in the last glacial period by enhanced brine formation in Nordic seas analogously to modern processes in Storfjorden.  相似文献   

16.
Oscillatory zoning in low δ18O skarn garnet from the Willsboro wollastonite deposit, NE Adirondack Mts, NY, USA, preserves a record of the temporal evolution of mixing hydrothermal fluids from different sources. Garnet with oscillatory zoning are large (1–3 cm diameter) euhedral crystals that grew in formerly fluid filled cavities. They contain millimetre‐scale oscillatory zoning of varying grossular–andradite composition (XAdr = 0.13–0.36). The δ18O values of the garnet zones vary from 0.80 to 6.26‰ VSMOW and correlate with XAdr. The shape, pattern and number of garnet zones varies from crystal to crystal, as does the magnitude of the correlated chemistry changes, suggesting fluid system variability, temporal and/or spatial, over the time of garnet growth. The zones of correlated Fe content and δ18O indicate that a high Fe3+/Al, high δ18O fluid mixed with a lower Fe3+/Al and δ18O fluid. The high δ18O, Fe enriched fluids were likely magmatic fluids expelled from crystallizing anorthosite. The low δ18O fluids were meteoric in origin. These are the first skarn garnet with oscillatory zoning reported from granulite facies rocks. Geochronologic, stable isotope, petrologic and field evidence indicates that the Adirondacks are a polymetamorphic terrane, where localized contact metamorphism around shallowly intruded anorthosite was followed by a regional granulite facies overprint. The growth of these garnet in equilibrium with meteoric and magmatic fluids indicates an origin in the shallow contact aureole of the anorthosite prior to regional metamorphism. The zoning was preserved due to the slow diffusion of oxygen and cations in the large garnet and protection from deformation and recrystallization in zones of low strain in thick, rigid, garnetite layers. The garnet provide new information about the hydrothermal system adjacent to the shallowly intruded massif anorthosite that predates regional metamorphism in this geologically complex, polymetamorphic terrane.  相似文献   

17.
The Semail ophiolite located in the eastern part of the Arabian platform preserves remnants of ocean plate stratigraphy and related metamorphic sole. To understand the petro-tectonic evolution of a metamorphic sole during subduction to obduction processes, here we investigate the garnet metagabbros from the metamorphic sole and the tonalites which intruded the mantle section of the Khor Fakkan Block. We present results from petrology, geochemistry, zircon U-Pb, Hf and O isotope analyses and phase equilibria modeling. The garnet metagabbro samples have E-MORB-type enriched-mantle compositions with zircon dates of ca. 89–96 Ma, and positive εHf(t) values ranging from 5.6 to 10.0. The tonalite is peraluminous with those range of ca. 87–92 Ma, and a range of positive εHf(t) values of 5.1–10.0. The similarity in εHf values from both the garnet metagabbro and tonalite samples suggests a strong relevance to their mantle source, indicating the role of subducted material during their formation. In contrast, the δ18O(zircon) values show distinctly different values of high δ18O(zircon) of ~13–16‰ for the tonalite and ~ 5–8‰ for the metagabbro samples, reflecting variations in the role of surface-derived source materials. The phase equilibria modeling of the garnet metagabbro shows high-pressure amphibolite facies metamorphism that preceded the peak granulite facies metamorphism, followed by lower pressure hydration and decompression. This clockwise P-T path might reflect partial melting and differentiation of mantle wedge section above subducted slab. Our results provide insights into the complex processes within a supra-subduction zone, implying differences in degree of partial melting of the ocean plate stratigraphic sequences including recycled oceanic slab and surface-derived marine sediments that were subsequently interacted with hydrothermally altered mantle at a mantle wedge during subduction to obduction processes that formed the Semail ophiolite during the Upper Cretaceous.  相似文献   

18.
At Naxos, Greece, a migmatite dome is surrounded by schists and marbles of decreasing metamorphic grade. Sillimanite, kyanite, biotite, chlorite, and glaucophane zones are recognized at successively greater distances from the migmatite dome. Quartz-muscovite and quartz-biotite oxygen isotope and mineralogie temperatures range from 350 to 700°C.The metamorphic complex can be divided into multiple schist-rich (including migmatites) and marblerich zones. The δ18O values of silicate minerals in migmatite and schist units and quartz segregations in the schist-rich zones decrease with increase in metamorphic grades. The calculated δ18OH2O values of the metamorphic fluids in the schist-rich zones decrease from about 15‰ in the lower grades to an average of about 8.5‰ in the migmatite.The δD values of OH-minerals (muscovite, biotite, chlorite, and glaucophane) in the schist-rich zones also decrease with increase in grade. The calculated δDH2O values for the metamorphic fluid decrease from ?5‰ in the glaucophane zone to an average of about ?70‰ in the migmatite. The δD values of water in fluid inclusions in quartz segregations in the higher grade rocks are consistent with this trend.Theδ18O values of silicate minerals and quartz segregations in marble-rich zones are usually very large and were controlled by exchange with the adjacent marbles. The δD values of the OH minerals in some marble-rich zones may reflect the value of water contained in the rocks prior to metamorphism.Detailed data on 20 marble units show systematic variations of δ18O values which depend upon metamorphic grade. Below the 540°C isograd very steep δ18O gradients at the margins and large δ18O values in the interior of the marbles indicate that oxygen isotope exchange with the adjacent schist units was usually limited to the margins of the marbles with more exchange occurring in the stratigraphic bottom than in the top margins. Above the 540°C isograd lower δ18O values occur in the interior of the marble units reflecting a greater degree of recrystallization and the occurrence of Ca-Mg-silicates.Almost all the δ13C values of the marbles are in the range of unaltered marine limestones. Nevertheless, the δ13C values of most marble units show a general correlation with δ18O values.The CO2H2O mole ratio of fluid inclusions in quartz segregations range from 0.01 to 2. Theδ13C values of the CO2 range from ?8.0 to 3.6‰ and indicate that at some localities CO2 in the metamorphic fluid was not in carbon isotopic equilibrium with the marbles.  相似文献   

19.
The Houxianyu borate deposit in northeastern China is one of the largest boron sources of China, hosted mainly in the Paleoproterozoic meta-volcanic and sedimentary rocks (known as the Liaohe Group) that are characterized by high boron concentrations. The borate ore-body has intimate spatial relationship with the Mg-rich carbonates/silicates of the Group, with fine-grained gneisses (meta-felsic volcanic rocks) as main country rocks. The presence of abundant tourmalinites and tourmaline-rich quartz veins in the borate orebody provides an opportunity to study the origin of boron, the nature of ore-forming fluids, and possible mineralization mechanism. We report the chemical and boron isotopic compositions of tourmalines from the tourmaline-rich rocks in the borate deposit and from the tourmaline-bearing fine-grained gneisses.Tourmalines from the fine-grained gneisses are chemically homogeneous, showing relatively high Fe and Na and low Mg, with δ11B values in a narrow range from +1.22‰ to +2.63‰. Tourmalines from the tourmaline-rich rocks, however, commonly show compositional zoning, with an irregular detrital core and a euhedral overgrowth, and have significantly higher Mg, REE (and more pronounced positive Eu anomalies), V (229–1852 ppm) and Sr (208–1191 ppm) than those from the fine-grained gneisses. They show varied B isotope values ranging from +4.51‰ to +12.43‰, which plot intermediate between those of the terrigenous sediments and arc rocks with low boron isotope values (as represented by the δ11B = +1.22‰ to +2.63‰ of the fine-grained gneisses of this study) and those of marine carbonates and evaporates with high boron isotope values. In addition, the rim of the zoned tourmaline shows notably higher Mg, Ti, V, Sn, and Pb, and REE (particularly LREEs), but lower Fe, Co, Cr, Ni, Zn, Mn, and lower δ11B values than the core. These data suggest that (1) the sources of boron of the borate ore-body are mainly the Paleoproterozoic meta-volcanic and sedimentary rocks, and (2) the ore-forming fluids should be the high temperature metamorphic fluids related to the amphibolite-facies metamorphism of the Paleoproterozoic foldbelt, which leach boron from the boron-rich meta-volcanic and sedimentary rocks of the Liaohe Group, and the boron-rich metamorphic fluids subsequently interacted with the marine Mg-rich carbonates and evaporates, forming borate deposit, the tourmaline overgrowth in the rim and the tourmaline-rich rocks.  相似文献   

20.
The Early Cretaceous Shihu gold deposit is located in the northern segment of the Taihang Tectonic belt, which extends across the central part of the North China Craton. The deposit is hosted predominantly by the Archean metamorphic crystalline units, and is spatially and temporally related to quartz diorite porphyry present extensively throughout the gold deposit. We studied the geology, geochronology and stable isotopic geochemistry. Zircon U–Pb LA–ICP–MS ages of the quartz diorite porphyry at deposit range from 134 ± 1 to 131 ± 2 Ma, which are coeval and probably genetically related to the mineralization. The majority of the sulfides of the gold deposit have δ34S values ranging from ?1 to 2‰, which suggest an homogeneous magmatic source. In addition, the isotopic compositions of δ18Ofluid and δ18Dfluid vary from 2.1 to 7.0‰ and ?93 to ?65‰, respectively, suggesting that the magmatic fluids mingled with meteoric water. The Pb isotopic analyses reveal that both the ore‐forming materials and the quartz diorite porphyry originated from the lower crust and may have been mixed with mantle material. The 87Sr/86Sri and 143Nd/144Nd (143Nd/144Nd)i ratios for the quartz diorite porphyry demonstrate that there was mixing of two end‐member (crust and the mantle) isotopic compositions. These results suggest that the ore‐forming fluids and materials were derived from lower‐crustal melting induced by mantle processes. Processes associated with the formation of the Shihu gold deposit differ significantly from those that characterize orogenic gold deposits, and instead are representative of formation in an intracontinental tectonic environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号