首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 439 毫秒
1.
Variscan shear zones in the Armorican Massif represent sites of strong fluid‐rock interaction. The hydrogen isotope composition of muscovite (δDMs) from syntectonic leucogranite allows to determine the source of fluids that infiltrated the footwall of three detachment zones and the South Armorican Shear Zone. Using temperatures of hydrogen isotope exchange estimated from microstructural data, we calculate the hydrogen isotope ratios of water (δDwater) present within the shear zones during high‐temperature deformation. A ~40‰ difference in δDwater values from deep to shallow crustal level reveals a mixing relationship between deep crustal fluids with higher δD values that range from ?34 to ?33‰, and meteoric fluids with δD values as low as ?74‰ in the upper part of detachment footwalls.  相似文献   

2.
Oxygen isotope ratios, whole rock major and trace element compositions, and petrological characteristics of 52 samples from nine distinct igneous lithologies in the lower plate of the Whipple Mountain metamorphic core complex of south-eastern California indicate that both mylonitic and non-mylonitic lithologies underwent exchange with surface-derived meteoric waters. Broadly granodioritic lithologies are characterized by whole rock δ18O values that range from 10.6 to 2.6‰. Isotopic compositions of quartz and feldspar mineral separates indicate that quartz has largely retained original igneous compositions but that feldspar has undergone variable and often large 18O-depletions (up to 6.5‰). Over 4 km of structural relief is exposed in lower plate gneisses below the Whipple detachment fault including non-mylonitic lithologies at shallow structural levels above the mylonite front, and mylonitic gneisses at intermediate to deep levels below the mylonite front. Coupled δ18Oqtz - δ18OFsp systematics of non-mylonitic and mylonitic andesite to rhyolite dykes from shallow and intermediate structural levels of the lower plate document two episodes of hydrothermal alteration: a high-temperature (>c.600d?C) episode involving a metamorphic or magmatic fluid with δ18O values ~ 7‰ and a low-temperature (c.350d?C) episode involving low-δ18O meteoric fluids. All the dykes that document exchange with meteoric fluids are non-mylonitic. Coupled δ18OFsp systematics of non-mylonitic and mylonitic granodioritic gneisses from above and below the mylonite front also document low-temperature (c. 350d? C) exchange with meteoric fluids. The data indicate that infiltration of meteoric fluids occurred as lower plate lithologies were juxtaposed against the base of the faulted upper plate. High-angle normal faults in the upper plate served as the conduits for the downward circulation of surface-derived fluids. Meteoric fluids were able to penetrate across the detachment fault into the lower plate. Uplift rates coupled with independent cooling rates indicate that surface-derived fluids penetrated to a depth of c.4km and possibly as deep as c.8km. Penetration of surface-derived fluid into the ductile deformation regime is not required to explain the low δ18O values observed in lower plate lithologies of the Whipple Mountain metamorphic core complex.  相似文献   

3.
The Walter‐Outalpa shear zone in the southern Curnamona Province of NE South Australia is an example of a shear zone that has undergone intensely focused fluid flow and alteration at mid‐crustal depths. Results from this study have demonstrated that the intense deformation and ductile shear zone reactivation, at amphibolite facies conditions of 534 ± 20 °C and 500 ± 82 MPa, that overprint the Proterozoic Willyama Supergroup occurred during the Delamerian Orogeny (c. 500 Ma) (EPMA monazite ages of 501 ± 16 and 491 ± 19 Ma). This is in contrast to the general belief that the majority of basement deformation and alteration in the southern Curnamona Province occurred during the waning stages of the Olarian Orogeny (c. 1610–1580 Ma). These shear zones contain hydrous mineral assemblages that cut wall rocks that have experienced amphibolite facies metamorphism during the Olarian Orogeny. The shear zone rock volumes have much lower δ18O values (as low as 1‰) than their unsheared counterparts (7–9‰), and calculated fluid δ18O values (5–8‰) consistent with a surface‐derived fluid source. Hydrous minerals show a decrease in δD(H2O) from ?14 to ?22‰, for minerals outside the shear zones, to ?28 to ?40‰, for minerals within the shear zones consistent with a contribution from a meteoric source. It is unclear how near‐surface fluids initially under hydrostatic pressure penetrate into the middle crust where fluid pressures approach lithostatic, and where fluid flow is expected to be dominantly upward because of pressure gradients. We propose a mechanism whereby faulting during basin formation associated with the Adelaidean Rift Complex (c. 700 Ma) created broad hydrous zones containing mineral assemblages in equilibrium with surface waters. These panels of fault rock were subsequently buried to depths where the onset of metamorphism begins to dehydrate the fault rock volumes evolving a low δ18O fluid that is channelled through shear zones related to Delamerian Orogenic activity.  相似文献   

4.
The Yaoling tungsten deposit is a typical wolframite quartz vein‐type tungsten deposit in the South China metallogenic province. The wolframite‐bearing quartz veins mainly occur in Cambrian to Ordovician host rocks or in Mesozoic granitic rocks and are controlled by the west‐north‐west trending extensional faults. The ore mineralization mainly comprises wolframite and variable amounts of molybdenite, chalcopyrite, pyrite, fluorite, and tourmaline. Hydrothermal alteration is well developed at the Yaoling tungsten deposit, including greisenization, silicification, fluoritization, and tourmalinization. Three types of primary/pseudosecondary fluid inclusions have been identified in vein quartz, which is intimately intergrown with wolframite. These include two‐phase liquid‐rich aqueous inclusions (type I), two‐ or three‐phase CO2‐rich inclusions (type II), and type III daughter mineral‐bearing multiphase high‐salinity aqueous inclusions. Microthermometric measurements reveal consistent moderate homogenization temperatures (peak values from 200 to 280°C), and low to high salinities (1.3–39 wt % NaCl equiv.) for the type I, type II, and type III inclusions, where the CO2‐rich type II inclusions display trace amounts of CH4 and N2. The ore‐forming fluids are far more saline than those of other tungsten deposits reported in South China. The estimated maximum trapping pressure of the ore‐forming fluids is about 1230–1760 bar, corresponding to a lithostatic depth of 4.0–5.8 km. The δDH2O isotopic compositions of the inclusion fluid ranges from ?66.7 to ?47.8‰, with δ18OH2O values between 1.63 and 4.17‰, δ13C values of ?6.5–0.8‰, and δ34S values between ?1.98 and 1.92‰, with an average of ?0.07‰. The stable isotope data imply that the ore‐forming fluids of the Yaoling tungsten deposit were mainly derived from crustal magmatic fluids with some involvement of meteoric water. Fluid immiscibility and fluid–rock interaction are thought to have been the main mechanisms for tungsten precipitation at Yaoling.  相似文献   

5.
Gold mineralization of the Seolhwa mine occurs in a single stage of massive quartz veins which filled the north‐east‐trending fault shear zones in the Jurassic granitoid of 161 Ma within the Gyeonggi Massif. The vein quartz contains three main types of fluid inclusions at 25°C: (i) aqueous type I inclusions (0–15 wt.% NaCl) containing small amounts of CO2; (ii) gas‐rich (more than 70 vol. %), vapor‐homogenizing, aqueous type II inclusions; and (iii) low‐salinity (less than 5 wt.% NaCl), liquid CO2‐bearing, type III inclusions. The H2O‐CO2‐CH4‐N2‐NaCl inclusions represent immiscible fluids trapped earlier along the solvus curve in the temperature range 250–430°C at pressures of ~1 kb. Detailed fluid inclusion chronologies suggest a progressive decrease in pressure during the mineralization. Aqueous inclusion fluids represent either later fluids evolved through extensive fluid unmixing from a homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluid due to decreases in temperature and pressure, or the influence of deep circulated meteoric waters. Initial fluids were homogeneous H2O‐CO2‐CH4‐N2‐NaCl fluids as follows: 250° to 430°C, 16–62 mol% CO2, 5–14 mol% CH4, 0.06–0.31 mol% N2 and salinities of 0.4–4.9 wt.% NaCl. The T‐X data for the Seolhwa mine suggest that the hydrothermal system has been probably located nearer to the granitic melt, which facilitated the CH4 formation and resulted in a reduced fluid state indicated by the predominance of pyrrhotite. Measured and calculated isotopic compositions of the hydrothermal fluids [δ18O = 5.3–6.5‰; δD =?69 to ?84‰] provide evidence of the CH4‐H2O equilibria and further indicate that the auriferous fluids were magmatically derived. Both the dominance of δ34S values of sulfides close to the meteoric reference (?0.6–1.4‰; δ34SΣS values of 0.3–1.1‰) and the available δ13C data (?4‰) are consistent with their deep igneous source. The Seolhwa mine was probably formed by extensive fracturing and veining due to the thermal expansion of water derived from the Jurassic granitoid melt.  相似文献   

6.
The Yinchanggou-Qiluogou Pb-Zn deposit,located in the western Yangtze Block,southwest China,is hosted by the Upper Sinian Dengying Formation dolostone.Ore bodies occur in the Qiluogou anticline and the NS-and NNW-trending faults.Sulfide ores mainly consist of sphalerite,pyrite,galena and calcite,with subordinate dolomite and quartz.Seventeen ore bodies have been discovered to date and they have a combined 1.0 million tons of sulfide ores with average grades of 2.27wt%Zn and 6.89wt%Pb.The δD_(H2O-SMOW) and δ~(18)O_(H2O-SMOW) values of fluid inclusions in quartz and calcite samples range from-68.9‰ to-48.7‰ and 7.3‰ to 15.9‰,respectively,suggesting that H_2O in the hydrothermal fluids sourced from metamorphic water.Calcite samples have δ~(13)C_(PDB) values ranging from-6.2‰ to-4.1‰ and δ~(18)O_(SMOW) values ranging from 15.1‰ to 17.4‰,indicating C and O in the hydrothermal fluids likely derived from a mixed source of metamorphic fluids and the host carbonates.The δ~(34)S_(CDT) values of sulfide minerals range from 5.5‰ to 20.3‰,suggesting that thermal chemical reduction of sulfate minerals in evaporates were the most probable source of S in the hydrothermal fluids.The ~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb and ~(208)Pb/~(204)Pb ratios of sulfide minerals fall in the range of 18.11 to 18.40,15.66 to 15.76 and 38.25 to 38.88,respectively.The Pb isotopic data of the studied deposit plot near the upper crust Pb evolution curve and overlap with the age-corrected Proterozoic basement rocks and the Upper Sinian Dengying Formation hosting dolostone.This indicates that the Pb originated from a mixed source of the basement metamorphic rocks and the ore-hosting carbonate rocks.The ore geology and C-H-O-S-Pb isotopic data suggest that the YinchanggouQiluogou deposit is an unusual carbonate-hosted,strata-bound and epigenetic deposit that derived ore-forming materials from a mixed source of the underlying Porterozoic basements and the Sinian hosting carbonates.  相似文献   

7.
ABSTRACT

Stable isotopes combined with pre-existing 40Ar/39Ar thermochronology at the Gavilan Hills and Orocopia Mountains in southeastern California record two stages of fluid–rock interaction: (1) Stage 1 is related to prograde metamorphism as Orocopia Schist was accreted to the base of the crust during late Cretaceous–early Cenozoic Laramide flat subduction. (2) Stage 2 affected the Orocopia Schist and is related to middle Cenozoic exhumation along detachment faults. There is no local evidence that schist-derived fluids infiltrated structurally overlying continental rocks. Mineral δ18O values from Orocopia Schist in the lower plate of the Chocolate Mountains fault and Gatuna normal fault in the Gavilan Hills are in equilibrium at 490–580°C with metamorphic water (δ18O = 7–11‰). Phengite and biotite δD values from the Orocopia Schist and upper plate suggest metamorphic fluids (δD ~ –40‰). In contrast, final exhumation of the schist along the Orocopia Mountains detachment fault (OMDF) in the Orocopia Mountains was associated with alteration of prograde biotite and amphibole to chlorite (T ~ 350–400°C) and the influx of meteoric-hydrothermal fluids at 24–20 Ma. Phengites from a thin mylonite zone at the top of the Orocopia Schist and alteration chlorites have the lowest fluid δD values, suggesting that these faults were an enhanced zone of meteoric fluid (δD < –70‰) circulation. Variable δD values in Orocopia Schist from structurally lower chlorite and biotite zones indicate a lesser degree of interaction with meteoric-hydrothermal fluids. High fluid δ18O values (6–12‰) indicate low water–rock ratios for the OMDF. A steep thermal gradient developed across the OMDF at the onset of middle Cenozoic slip likely drove a more vigorous hydrothermal system within the Orocopia Mountains relative to the equivalent age Gatuna fault in the Gavilan Hills.  相似文献   

8.
DH and 18O16O ratios have been measured for whole-rock samples and mineral separates from the mafic and ultramatic rocks of the Cambro-Ordovician Highland Border Suite. The H- and O- isotopic compositions of these rocks record individual stages in a relatively complex 500 Myr old hydrothermal/metamorphic history. Lizardite serpentinites (δD ~ ? 105‰; δ18O ~ + 6.2‰) record a premetamorphic history and indicate that parent harzburgites, dunites, and pyroxenites were serpentinized through low-temperature interaction with meteoric waters during cooling. The other rocks of the Highland Border Suite record subsequent interaction with metamorphic fluids. Amphibolite facies hornblende schists were produced through thrust-related (dynamothermal) metamorphism of spilitic pillow lavas. During dehydration, D-enriched fluids were driven off from the spilites thus leaving the hornblende schists to equilibrate with a relatively D-depleted internal fluid reservoir (δD ~ ? 45‰). The expelled D-enriched fluids may have mixed with more typical Dalradian metamorphic waters which then exchanged with the remaining mafic rocks and lizardite serpentinites during greenschist facies regional metamorphism to produce antigorite serpentinites (δD ~ ? 62‰; δ18O ~ + 8‰) and greenschist metaspilites (δD ~ ? 57‰; δ18O ~ + 7.3‰) with similar H- and O-isotopic compositions. Serpentinites which have been only partially metamorphosed show intermediate H-isotopic compositions between that of metamorphic antigorite (δD ~ ? 62‰) and non-metamorphic lizardite δD ~ ? 105‰) end members.  相似文献   

9.
The Ciemas gold deposit is located in West Java of Indonesia,which is a Cenozoic magmatism belt resulting from the Indo-Australian plate subducting under the Eurasian plate.Two different volcanic rock belts and associated epithermal deposits are distributed in West Java:the younger late Miocene-Pliocene magmatic belt generated the Pliocene-Pleistocene epithermal deposits,while the older late Eocene-early Miocene magmatic belt generated the Miocene epithermal deposits.To constrain the physico-chemical conditions and the origin of the ore fluid in Ciemas,a detailed study of ore petrography,fluid inclusions,laser Raman spectroscopy,oxygen-hydrogen isotopes for quartz was conducted.The results show that hydrothermal pyrite and quartz are widespread,hydrothermal alteration is well developed,and that leaching structures such as vuggy rocks and extension structures such as comb quartz are common.Fluid inclusions in quartz are mainly liquid-rich two phase inclusions,with fluid compositions in the NaCl-H20 fluid system,and contain no or little CO_2.Their homogenization temperatures cluster around 240℃-320℃,the salinities lie in the range of 14-17 wt.%NaCl equiv,and the calculated fluid densities are 0.65-1.00 g/cm~3.The values of δ~(18)O_(H2O-VSMOW)for quartz range from +5.5‰ to +7.7‰,the δD_(VSMOW) of fluid inclusions in quartz ranges from-70‰ to-115‰.All of these data indicate that mixing of magmatic fluid with meteoric water resulted in the formation of the Ciemas deposit.A comparison among gold deposits of West Java suggests that Miocene epithermal ore deposits in the southernmost part of West Java were more affected by magmatic fluids and exhibit a higher degree of sulfldation than those of Pliocene-Pleistocene.  相似文献   

10.
The δ18O values of vein quartz of different stages from the Yinshan ore deposit are constant around 16‰ and the calculated δ18OH2O values attain 8‰± ; the δDH2O values of fluid inclu-sions in vein quartz are constant at about-60‰. From the surface down to 1200 m below the δ18O values of altered rocks gradually decrease from 15‰± to 11‰± . Various water-rock inversion calculations indicate that the ore fluids were formed by the interaction between meteoric water and phyllite at 350℃ and the effective W/ R value of around 0.1. When the water-rock exchange in the upper mineralization system took place, the effective W / R value increased to 5.0 or more. As a result, an evolution and mineralization model of a buffered open system with two-stage water-rock interactions is proposed in this study.  相似文献   

11.
Sodic–calcic alteration is common in mineralized hydrothermal systems, yet the relative importance of igneous vs. basinal fluid sources remains controversial. One of the most extensive volumes of sodic–calcic rocks occurs near Cloncurry, NW Queensland, and was formed by overlapping hydrothermal systems that were active synchronously with emplacement of mid‐crustal batholithic granitoids (c. 1.55–1.50 Ga). Altered rocks contain albite–oligoclase, actinolite, diopside, titanite and magnetite. Alteration was localized by: (A) composite veins and breccias containing crystallized magma intimately intergrown with hydrothermal precipitates; (B) intrusions that host setting A veins and breccias; and (C) extensive breccia and vein systems linked to regional fault systems. Isotope analyses of actinolites in settings A and B indicate calculated δ18OH2O (+8.2 to +10.6‰) and variably depleted δDH2O (?130 to ?54‰) compared with typical magmatic fluids, whereas those from setting C typically indicate calculated δ18OH2O (+8.0 to +12.8‰) and δDH2O (?29 to ?99‰). The lowest δDH2O values are interpreted as representing residual fluids after significant (> 90%) open‐system magmatic degassing. Overall the stable isotope, field, geochronological and geobarometric data suggest that these sodic–calcic alteration systems were formed by the episodic incursion of magmatic fluids that underwent minor isotopic modification as a result of varying degrees of interaction with country rocks.  相似文献   

12.
ABSTRACT This paper examines the diagenetic history of dual (i.e. matrix and fracture) porosity reservoir lithologies in Cretaceous to Eocene carbonate turbidites of the Ionian fold and thrust belt, close to the oil‐producing centre of Fier–Ballsh (central Albania). The first major diagenetic event controlling reservoir quality was early cementation by isopachous and syntaxial low‐Mg calcite. These cements formed primarily around crinoid and rudist fragments, which acted as nucleation sites. In sediments in which these bioclasts are the major rock constituent, this cement can make up 30% of the rock volume, resulting in low effective porosity. In strata in which these bioclasts are mixed with reworkedmicrite, isopachous/syntaxial cements stabilized the framework, and matrixporosity is around 15%. The volumetric importance of these cements, their optical and luminescence character (distribution and dull orange luminescence) and stable isotopic signal (δ18O and δ13C averaging respectively; ?0·5‰ VPDB and +2‰ VPDB) all support a marine phreatic origin. Within these turbidites and debris flows, several generations of fractures alternated with episodes of cementation. A detailed reconstruction of this history was based on cross‐cutting relationships of fractures and compactional and layer‐parallel shortening (LPS) stylolites. The prefolding calcite veins possess orange cathodoluminescence similar to that of the host rock. Their stable isotope signatures (δ18O of ?3·86 to ?0·85‰ VPDB and δ13C of – 0·14 to + 2·98‰ VPDB) support a closed diagenetic rock‐buffered system. A similar closed system accounts for the selectively reopened and subsequently calcite‐cemented LPS stylolites (δ18O of ?1·81 to ?1·14‰ VPDB and δ13C of +1·52 to +2·56‰ VPDB). Within the prefolding veins, brecciated host rock fragments and complex textures such as crack and seal features resulted from hydraulic fracturing. They reflect expulsion of overpressured fluids within the footwall of the frontal thrusts. After folding and thrust sheet emplacement, some calcite veins are still rock buffered (δ18O of ?0·96 to +0·2‰ VPDB and δ13C of +0·79 to +1·37‰ VPDB), whereas others reflect external (i.e. extraformational) and thus large‐scale fluid fluxes. Some of these veins are linked to basement‐derived fluid circulation or originated from fluid flow along evaporitic décollement horizons (δ18O around +3·0‰ VPDB and δ13C around +1·5‰ VPDB). Others are related to the maturation of hydrocarbons in the system (δ18O around ?7·1‰ VPDB and δ13C around +9·3‰ VPDB). An open joint system reflecting an extensional stress regime developed during or after the final folding stage. This joint system enhanced vertical connectivity. This open joint network can be explained by the high palaeotopographical position and the folding of the reservoir analogue within the deformational front. The joint system is pre‐Burdigalian in age based upon a dated karstified discordance contact. Sediment‐filled karst cavity development is linked to meteoric water infiltration during emergence of some of the structures. Despite its sediment fill, the karst network is locally an important contributor to reservoir matrix porosity in otherwise tight lithologies. Development of secondary porosity along bed‐parallel and bed‐perpendicular (i.e. layer‐parallel shortening) stylolites is interpreted as a late‐stage diagenetic event associated with migration of acidic fluids during hydrocarbon maturation. Development of porosity along the LPS system enhanced the vertical reservoir connectivity.  相似文献   

13.
Upper Visean limestones in the Campine Basin of northern Belgium are intensively fractured. The largest and most common fractures are cemented by non-ferroan, dull brown-orange luminescent blocky calcite. First melting temperatures of fluid inclusions in these calcites are around -57°C, suggesting that precipitation of the cements occurred from NaCl-CaCl2-MgCl2 fluids. The final melting temperatures (Tmice) are between -5 and -33°C. The broad range in the Tmice data can be explained by the mixing of high salinity fluids with meteoric waters, but other hypotheses may also be valid. Homogenization temperatures from blocky calcite cements in the shelf limestones are interpreted to have formed between 45 and 75°C. In carbonates which were deposited close to and at the shelf margin, precipitation temperatures were possibly in the range 70-85°C and 72-93°C, respectively. On the shelf, the calcites have a δ18O around -9.3‰ PDB and they are interpreted to have grown in a fluid with a δ18O between −3.5 and +1.0‰ SMOW. At the shelf margin, blocky calcites (δ18O∼ - 13.5‰ PDB) could have precipitated from a fluid with a δ18O betweenn -4.0 and -1.1‰ SMOW. The highest oxygen isotopic compositions are comparable to those of Late Carboniferous marine fluids (δ18O= - 1‰ SMOW). The lowest values are more positive than a previously reported composition for Carboniferous meteoric waters (δ18O= -7‰ SMOW). Precipitation is likely to have occurred in marine-derived fluids, which mixed with meteoric waters sourced from near the Brabant Massif. Fluids with a similar negative oxygen isotopic composition and high salinity are actually present in Palaeozoic formations. The higher temperature range in the limestones near the shelf margin is explained by the upward migration of fluids from the ‘basinal’ area along fractures and faults into the shelf.  相似文献   

14.
In the last ten years, with important discoveries from oil and gas exploration in the Dabashan foreland depression belt in the borderland between Shanxi and Sichuan provinces, the relationship between the formation and evolution of, and hydrocarbon accumulation in, this foreland thrust belt from the viewpoint of basin and oil and gas exploration has been studied. At the same time, there has been little research on the origin of fluids within the belt. Based on geochemical system analysis including Z values denoting salinity and research on δ13C, δ18O and 87Sr/86Sr isotopes in the host rocks and veins, the origin of paleofluids in the foreland thrust belt is considered. There are four principal kinds of paleofluid, including deep mantle-derived, sedimentary, mixed and meteoric. For the deep mantle-derived fluid, the δ13C is generally less than ?5.0‰PDB, δ18O less than -10.0‰PDB, Z value less than 110 and 87Sr/86Sr less than 0.70600; the sedimentary fluid is mainly marine carbonate-derived, with the δ13C generally more than ?2.0‰PDB, δ18O less than ?10.0‰PDB, Z value more than 120 and 87Sr/86Sr ranging from 0.70800 to 0.71000; the mixed fluid consists mainly of marine carbonate fluid (including possibly a little mantle-derived fluid or meteoric water), with the δ13C generally ranging from ?2.0‰ to ?8.0‰PDB, δ18O from ?10.0‰ to ?18.0‰ PDB, Z value from 105 to 120 and 87Sr/86Sr from 0.70800 to 0.71000; the atmospheric fluid consists mainly of meteoric water, with the δ13C generally ranging from 0.0‰ to ?10.0‰PDB, δ18O less than ?8.0‰PDB, Z value less than 110 and 87Sr/86Sr more than 0.71000. The Chengkou fault belt encompasses the most complex origins, including all four types of paleofluid; the Zhenba and Pingba fault belts and stable areas contain a simple paleofluid mainly of sedimentary type; the Jimingsi fault belt contains mainly sedimentary and mixed fluids, both consisting of sedimentary fluid and meteoric water. Jurassic rocks of the foreland depression belt contain mainly meteoric fluid.  相似文献   

15.
The Tieluping silver deposit, which is sited along NE-trending faults within the high-grade metamorphic basement of the Xiong‘er terrane, is part of an important Mesozoic orogenic-type Ag-Pb and Au belt recently discovered. Ore formation includes three stages: Early (E), Middle (M) and Late (L), which include quartz-pyrite (E),polymetallic sulfides (M) and carbonates (L), respectively. The E-stage fluids are characterized by δD=-90%c,δ^13CCO2=2.0‰ and δ^18O=9‰ at 373℃, and are deeply sourced; the L-stage fluids, with δD=-70‰, δ^13C CO2=-1.3%c and δ^18O=-2‰, are shallow-sourced meteoric water; whereas the M-stage fluids, with δD=-109‰, δ^13C CO2=0.1%c and δ^18O2‰, are a mix of deep-sourced and shallow-sourced fluids. Comparisons of the D-O-C isotopic systematics of the Estage ore-forming fluids with the fluids derived from Mesozoic granites, Archean-Paleoproterozoic metamorphic basement and Paleo-Mesoproterozoic Xiong‘er Group, show that these units cannot generate fluids with the measured isotopic composition (high δ^180 and δ^13C ratios and low δD ratios) characteristic of the ore-forming fluids. This suggests that the E-stage ore-forming fluids originated from metamorphic devolatilization of a carbonate-shale-chert lithological association, locally rich in organic matter, which could correspond to the Meso-Neoproterozoic Guandaokou and Luanchuan Groups, rather than to geologic units in the Xiong‘er terrane, the lower crust and the mantle. This supports the view that the rocks of the Guandaokou and Luanchuan Groups south of the Machaoying fault might be the favorable sources. A tectonic model that combines collisional orogeny, metallogeny and hydrothermal fluid flow is proposed to explain the formation of the Tieluping silver deposit. During the Mesozoic collision between the South and North China paleocontinents, a crustal slab containing a lithological association consisting of carbonate-shale-chert, locally rich in organic matter (carbonaceous shale) was thrust northwards beneath the Xiong‘er terrane along the Machaoying fault.Metamorphic devolatilization of this underthrust slab provided the ore-forming fluids to develop the Au-Ag-(Pb-Zn) ore belt, which includes the Tieluping silver deposit.  相似文献   

16.
Analyses of 230 Franciscan rock and mineral samples, including the San Luis Obispo ophiolite, show that metamorphism produces no change in the δ18O of the graywackes (+11 to +14), but that igneous rocks become enriched in 18O by 2–6% and the cherts depleted by 5–10%. The shales are of two types, a high-18O type (+16 to +20) associated with chert and a low-18O type isotopically and mineralogically similar to the graywackes. The vein quartz (δ = + 15 to + 20) is invariably richer in 18O than the host rock quartz and in most of the rocks the δ18O of the clastic quartz is similar to the δ18O of the whole rock. Mineral assemblages are typically not in isotopic equilibrium. Although the δ18O values are very uniform (+13 to +16). the δ13C of vein aragonite and calcite is widely variable (0 to ? 14), implying that a major source of the carbon is oxidized organic material. The δD values of 83 igneous and sedimentary rocks are -45 to -80, exceptions are the Fe-rich minerals howieite and deerite, which have δD = ?100. All of these samples could have equilibrated with H2O having δD ≈ +10 to ?20 and δ18O ≈ ?3 to +8. assuming temperatures of 100–300°C. However, the serpentines (δD ≈ ?85 to ?110) and the vein minerals (δD = ?23 to ?55) are exceptions. The vein minerals are 10–20%, richer in deuterium than the adjacent wall rocks; they formed from a relatively D-rich metamorphic water, typically at lower temperatures than did their host rocks. The isotopic compositions of the other Franciscan rocks were affected by three distinct events: (1) hydrothermal alteration of the ophiolite complexes and volcanic rocks as a result of submarine igneous activity at a spreading center or in an island-arc environment; (2) low-temperature, high-pressure regional metamorphism and diagenesis; and (3) a late-stage, very low temperature (<100°C) alteration of the ultramafic bodies by meteoric ground waters, producing lizardite-chrysotile serpentine. In the first two cases, the pore fluid involved in the alteration of the Franciscan rocks was sea water. However, this water became somewhat depleted in D and enriched in 18O during blueschist metamorphism, evolving to values of δD ≈ ? 20 and δ18O ≈ + 6 to + 8 at the highest grades. Except for one graywacke sample, the meteoric waters that affected the serpentinites did not significantly change the DH ratios of the OH-bearing minerals in any other Franciscan rock.The δ18O values of orogenic andesites are too low for such magmas to have formed by direct partial melting of Franciscan-type materials in a subduction zone. Andesites either form in some other fashion, or the melts must undergo thorough isotopic exchange with the upper mantle. The great Cordilleran granodiorite-tonalite batholiths, however, are much richer in 18O and may well have formed by large-scale melting or assimilation of Franciscan-type rocks. The range of δD values of Franciscantype rocks is identical to the ?50 to ?80 range shown by most igneous rocks. This suggests that ‘primary magmatic H2O’ throughout the world may be derived mainly by partial melting of Franciscantype materials, or by dehydration of such rocks in the deeper parts of a Benioff zone.  相似文献   

17.
The Dahutang tungsten polymetallic ore field is located north of the Nanling W-Sn polymetallic metallogenic belt and south of the Middle—Lower Yangtze River Valley Cu-Mo-Au-Fe porphyry-skarn belt.It is a newly discovered ore field,and probably represents the largest tungsten mineralization district in the world.The Shimensi deposit is one of the mineral deposits in the Dahutang ore field,and is associated with Yanshanian granites intruding into a Neoproterozoic granodiorite batholith.On the basis of geologic studies,this paper presents new petrographic,microthermometric,laser Raman spectroscopic and hydrogen and oxygen isotopic studies of fluid inclusions from the Shimensi deposit.The results show that there are three types of fluid inclusions in quartz from various mineralization stages:liquid-rich two-phase fluid inclusions,vapor-rich two-phase fluid inclusions,and three-phase fluid inclusions containing a solid crystal,with the vast majority being liquid-rich two-phase fluid inclusions.In addition,melt and melt-fluid inclusions were also found in quartz from pegmatoid bodies in the margin of the Yanshanian intrusion.The homogenization temperatures of liquid-rich two-phase fluid inclusions in quartz range from 162 to 363℃ and salinities are 0.5wt%-9.5wt%NaCI equivalent.From the early to late mineralization stages,with the decreasing of the homogenization temperature,the salinity also shows a decreasing trend.The ore-forming fluids can be approximated by a NaCl-H_2O fluid system,with small amounts of volatile components including CO_2,CH_4 and N_2,as suggested by Laser Raman spectroscopic analyses.The hydrogen and oxygen isotope data show that δ5D_(V-smow) values of bulk fluid inclusions in quartz from various mineralization stages vary from-63.8‰ to-108.4‰,and the δ~(18)O_(H2O) values calculated from the δ~(18)O_(V-)smow values of quartz vary from-2.28‰ to 7.21‰.These H-O isotopic data are interpreted to indicate that the ore-forming fluids are mainly composed of magmatic water in the early stage,and meteoric water was added and participated in mineralization in the late stage.Integrating the geological characteristics and analytical data,we propose that the ore-forming fluids of the Shimensi deposit were mainly derived from Yanshanian granitic magma,the evolution of which resulted in highly differentiated melt,as recorded by melt and melt-fluid inclusions in pegmatoid quartz,and high concentrations of metals in the fluids.Cooling of the ore-forming fluids and mixing with meteoric water may be the key factors that led to mineralization in the Dahutang tungsten polymetallic ore field.  相似文献   

18.
The Pongkor gold–silver mine is situated at the northeastern flank of the Bayah dome, which is a product of volcanism in the Sunda–Banda Arc. The hydrothermal alteration minerals in the Ciurug–Cikoret area are typical of those formed from acid to near‐neutral pH thermal waters. On the surface, illite/smectite mixed layer mineral (I/Sm), smectite and kaolinite, and spotting illite, I/Sm and K‐feldspar alteration occur at the top of the mineralized zone. Silicification, K‐feldspar and I/Sm zones are commonly formed in the wall rock, and gradually grade outwards into a propylitic zone. The mineralization of precious metal ore zone is constrained by fluid temperatures between 180 and 220°C, and with low salinity (<0.2 wt% NaCl equivalent) and boiling condition. The minimum depth of vein formation below the paleo‐water table is approximately 90–130 m for the hydrostatic column. Hydrogen and oxygen isotope data for quartz and calcite show relatively homogeneous fluid composition (?53 to ?68‰δD and ?5.7 to +0.3‰δ18O H2O). There is no specific trend in the data with respect to the mineralization stages and elevation, which suggests that the ore‐forming fluids did not significantly change spatially during the vein formation. The stable isotope data indicate mixing between the hydrothermal fluids and meteoric water and interaction between the hydrothermal fluids and the host rock.  相似文献   

19.
The Nianzha gold deposit,located in the central section of the Indus-Yarlung Tsangpo suture(IYS) zone in southern Tibet,is a large gold deposit(Au reserves of 25 tons with average grade of 3.08 g/t) controlled by a E-W striking fault that developed during the main stage of Indo-Asian collision(~65-41 Ma).The main orebody is 1760 m long and 5.15 m thick,and occurs in a fracture zone bordered by Cretaceous diorite in the hanging wall to the north and the Renbu tectonic melange in the footwall to the south.High-grade mineralization occurs in a fracture zone between diorite and ultramafic rock in the Renbu tectonic melange.The wall-rock alteration is characterized by silicification in the fracture zone,serpentinization and the formation of talc and magnesite in the ultramafic unit,and chloritization and the formation of epidote and calcite in diorite.Quartz veins associated with Au mineralization can be divided into three stages.Fluid inclusion data indicate that the deposit formed from H_2O-NaCl-organic gas fluids that homogenize at temperatures of 203℃-347℃ and have salinities of 0.35wt%-17.17wt%NaCl equivalent.The quartz veins yield δ~(18)O_(fluid) values of 0.15‰-10.45‰,low δD_(V-SMOW)values(-173‰ to-96‰),and the δ~(13)C values of-17.6‰ to-4.7‰,indicating the ore-forming fluids were a mix of metamorphic and sedimentary orogenic fluids with the addition of some meteoric and mantle-derived fluids.The pyrite within the diorite has δ~(34)S_(V-CDT) values of-2.9‰-1.9‰(average-1.1‰),~(206)Pb/~(204)Pb values of 18.47-18.64,~(207)Pb/~(204)Pb values of 15.64-15.74,and ~(208)Pb/~(204)Pb values of 38.71-39.27,all of which are indicative of the derivation of S and other ore-forming elements from deep in the mantle.The presence of the Nianzha,Bangbu,and Mayum gold deposits within the IYS zone indicates that this area is highly prospective for large orogenic gold deposits.We identified three types of mineralization within the IYS,namely Bangbu-type accretionary,Mayum-type microcontinent,and Nianzha-type ophiolite-associated orogenic Au deposits.The three types formed at different depths in an accretionary orogenic tectonic setting.The Bangbu type was formed at the deepest level and the Nianzha type at the shallowest.  相似文献   

20.
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ~(13)C values of the calcite samples range from-2.5‰ to 2.3‰, the δ~(18)O_(H2 O) and δD_(VSMOW) values of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ~(13)C, δ~(18)O_(H2 O) and δD_(V-SMOW) values of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ~(34)S_(V-CDT) values of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号