首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Paired stable oxygen isotope and Mg/Ca analyses in calcite tests of the mixed-layer-dwelling planktic foraminifer Globigerinoides ruber has been used to reconstruct equatorial Indian Ocean δ18O of seawater (δ18Osw) over the last ~137 thousand years. On the basis of ice-volume-corrected δ18Osw (δ18Osw–ivc), relative changes in sea surface salinity (SSS) have been estimated. The SSS estimates suggest three episodes of higher SSS (131–113 thousand years before present (kyr BP), 62–58 kyr BP, and 30–24 kyr BP) within the last glacial period as compared with the present. SSS comparison between interglacial episodes reveals that the surface seawater over the core site was significantly saltier during the penultimate interglacial than the Holocene. We suggest that the evolution of a seasonal insolation gradient between the Indian monsoon areas and the equator over the investigated time interval was instrumental in shaping the strength of the Indian winter and summer monsoons that left their imprints on the equatorial Indian Ocean SSS via freshwater input and wind-induced mixing. The study shows that the insolation difference between northern latitudes and the equator during winter affects monsoon strength in the Indian region, especially during cold intervals.  相似文献   

2.
The Late Quaternary climate history of the Larsemann Hills has been reconstructed using siliceous microfossils (diatoms, chrysophytes and silicoflagellates) in sediment cores extracted from three isolation lakes. Results show that the western peninsula, Stornes, and offshore islands were ice‐covered between 30 000 yr BP and 13 500 cal. yr BP. From 13 500 cal. yr BP (shortly after the Antarctic Cold Reversal) the coastal lakes of the Larsemann Hills were deglaciated and biogenic sedimentation commenced. Between 13 500 and 11 500 cal. yr BP conditions were warmer and wetter than during the preceding glacial period, but still colder than today. From 11 500 to 9500 cal. yr BP there is evidence for wet and warm conditions, which probably is related to the early Holocene climate optimum, recorded in Antarctic ice cores. Between 9500 and 7400 cal. yr BP dry and cold conditions are inferred from high lake‐water salinities, and low water levels and an extended duration of nearshore sea‐ice. A second climate optimum occurred between 7400 and 5230 cal. yr BP when stratified, open water conditions during spring and summer characterised the marine coast of Prydz Bay. From 5230 until 2750 cal. yr BP sea‐ice duration in Prydz Bay increased, with conditions similar to the present day. A short return to stratified, open water conditions and a reduction in nearshore winter sea‐ice extent is evident between 2750 and 2200 cal. yr BP. Simultaneously, reconstructions of lake water depth and salinity suggests relatively humid and warm conditions on land between 3000 and 2000 cal. yr BP, which corresponds to a Holocene Hypsithermal reported elsewhere in Antarctica. Finally, dry conditions are recorded around 2000, between 760 and 690, and between 280 and 140 cal. yr BP. These data are consistent with ice‐core records from Antarctica and support the hypothesis that lacustrine and marine sediments on land can be used to evaluate the effect of long‐term climate change on the terrestrial environment. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

3.
Diatoms from surface sediment samples collected from Enderby Basin of Indian Sector of Southern Ocean were analyzed to determine the relative abundance and distribution of seven key indicator diatom species viz. Sea ice related species Fragilariopsis rhombica, F. separanda, F. curta, F. ritscheri, Thalassiosira tumida and Actinocyclus actinochilus and Open Ocean species F. kerguelensis on the basis of modern physico-chemical parameters. The relative abundances of different species observed viz. F. rhombica — 6.25%; F. separanda — 12.5%; F. curta — 10.53–13.33%; F. ritscheri — 4.55–12.5%; F. kerguelensis — 6.25–63.64%; T. tumida — 3.13% and A. actinochilus — 9.38–13.33%. The increasing abundance of F. kerguelensis consecutively suggests the effect of Antarctic bottom water in the study area which is further substantiated by the presence and increasing abundance of F. ritscheri. The gradual decrease in abundance or absence of sea ice related species from the sampled stations indicates the summer and winter sea ice extent concentration in the study area. The nutrient concentration correlates with the distribution and abundances of diatom species.  相似文献   

4.
Holocene pollen and diatom analyses and complementary data from δ18O and δ13C, malacology and sedimentology have provided a detailed record of vegetation history and palaeoenvironmental change at arroyo Las Brusquitas, on the southeastern coast of the pampas of Argentina especially in relation to past sea levels. Holocene palaeosalinity trends were estimated by Detrended Correspondence Analysis and by salinity indexes based on pollen and diatom data. As a consequence of sea‐level rise from the postglacial an extensive wave‐cut platform formed over which Holocene infilling sequences were deposited unconformably. In these sequences, variation in pollen and diatom assemblages occurred in agreement with changes in mollusc diversity and abundance, isotope values, and sediment deposits. Between ca. 6700 and 6190 14C yr BP (6279–6998 cal. yr BP) saline conditions predominated in an environment highly influenced by tides and salt water during the Holocene sea‐level highstand. Between ca. 6200 and 3900 14C yr BP (4235–4608 cal. yr BP) shallow brackish water bodies formed surrounded by saltmarsh vegetation that became more widespread from 5180 14C yr BP (5830–6173 cal. yr BP) to 3900 14C yr BP in relation to a sea‐level stabilisation period within the regression phase. Less saline conditions marked by frequent variations in salinity predominated between ca. 3900 and 2040 yr 14C BP (1830–2160 cal. yr BP). The intertidal saltmarsh environment changed into a brackish marsh dominated by freshwater conditions and sporadic tidal influence. Halophytic vegetation increased towards ca. 200014C yr BP indicating that saline conditions may be due to either desiccation or an unusually high tide range with rare frequency. After ca. 2000 14C yr BP the sedimentary sequences were buried by aeolian sand dunes. Changes in Holocene vegetation and environments in Las Brusquitas area are in agreement with data obtained from various southeastern coastal sites of the Pampa grasslands. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

5.
Core MD95‐2011 was taken from the eastern Vøring Plateau, near the Norwegian coast. The section between 250 and 750 cm covers the time period from 13 000 to 2700 cal. yr BP (the Lateglacial and much of the Holocene). Samples at 5 cm intervals were analysed for fossil diatoms. A data‐set of 139 modern sea‐surface diatom samples was related to contemporary sea‐surface temperatures (SSTs) using two different numerical methods. The resulting transfer functions were used to reconstruct past sea‐surface temperatures from the fossil diatom assemblages. After the cold Younger Dryas with summer SSTs about 6°C, temperatures warmed rapidly to about 13°C. One of the fluctuations in the earliest Holocene can be related to the Pre‐Boreal Oscillation, but SSTs were generally unstable until about 9700 cal. yr BP. Evidence from diatom concentration and magnetic susceptibility suggests a change and stabilization of water currents associated with the final melting of the Scandinavian Ice Sheet at c. 8100 cal. yr BP. A period of maximum warmth between 9700 and 6700 cal. yr BP had SSTs 3–5°C warmer than at present. Temperatures cooled gradually until c. 3000 cal. yr BP, and then rose slightly around 2750 cal. yr BP. The varimax factors derived from the Imbrie & Kipp method for sea‐surface‐temperature reconstructions can be interpreted as water‐masses. They show a dominance of Arctic Waters and Sea Ice during the Younger Dryas. The North Atlantic current increased rapidly in strength during the early Holocene, resulting in warmer conditions than previously. Since about 7250 cal. yr BP, Norwegian Atlantic Water gradually replaced the North Atlantic Water, and this, in combination with decreasing summer insolation, led to a gradual cooling of the sea surface. Terrestrial systems in Norway and Iceland responded to this cooling and the increased supply of moisture by renewed glaciation. Periods of glacial advance can be correlated with cool oscillations in the SST reconstructions. By comparison with records of SSTs from other sites in the Norwegian Sea, spatial and temporal changes in patterns of ocean water‐masses are reconstructed, to reveal a complex system of feedbacks and influences on the climate of the North Atlantic and Norway.  相似文献   

6.
Atmospheric circulation over the North Atlantic has undergone significant fluctuations during the Holocene. To better constrain these changes and their impacts on the Fennoscandian subarctic, we investigated molecular and inorganic proxies as well as plant wax D/H isotopes (δDC28) in a Holocene sedimentary record from Lake Torneträsk (Sweden). These data indicate a thermal maximum c. 8100 to 6300 cal. a BP with reduced soil organic matter input, followed by a long‐term cooling trend with increasing soil erosion. δD data suggest a stable atmospheric circulation with predominance of westerly flow and North Atlantic moisture sourcing during the Early and Middle Holocene. A substantial depletion in δD followed by increased flood frequency starting at c. 5300 cal. a BP and intensifying c. 1500 cal. a BP suggests a reorganization of the atmospheric circulation from zonal towards meridional flow with predominantly Arctic Ocean and Baltic Sea moisture sourcing.  相似文献   

7.
A Holocene lake sediment record is presented from Lake N14 situated on Angissoq Island 15 km off the main coast of southern Greenland. The palaeoclimatic development has been interpreted on the basis of flux and percentage content of biogenic silica, clastic material, organic material and sulphur as well as sedimentation rate, moss content and magnetic susceptibility. A total of 43 radiocarbon dates has ensured a reliable chronology. It is argued that varying sediment composition mainly reflects changing precipitation. By analogy with the present meteorological conditions in southern Greenland, Holocene climate development is inferred. Between 11 550 and 9300 cal. yr BP temperature and precipitation increase markedly, but this period is climatically unstable. From 9300 yr BP conditions become more stable and a Holocene climatic optimum, characterised by warm and humid conditions, is observed from 8000 to 5000 cal. yr BP. From 4700 cal. yr BP the first signs of a climatic deterioration are observed, and from 3700 cal. yr BP the climate has become more dry and cold. Superimposed on the climatic long‐term trend is climate variability on a centennial time‐scale that increases in amplitude after 3700 cal. yr BP. A climatic scenario related to the strength and position of the Greenland high‐pressure cell and the Iceland low‐pressure cell is proposed to explain the Holocene centennial climate variability. A comparison of the Lake N14 record with a terrestrial as well as a marine record from the eastern North Atlantic Ocean suggests that the centennial climate variability was uniform over large areas at certain times. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

8.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

9.
Fifty‐six new radiocarbon dates from driftwood (mainly Larix, Picea and Populus spp.) collected from the modern and raised shorelines of Melville and Eglinton islands (western Canadian High Arctic) are presented and compared to other driftwood collections from the Canadian Arctic Archipelago (CAA) and Greenland. By documenting the species (provenance) and spatio‐temporal distribution of driftwood at various sites across the Arctic, regional characterizations of former sea‐ice conditions and changes in Arctic Ocean circulation patterns may be deduced. The earliest postglacial invasion of the Canadian Arctic Archipelago by driftwood is recorded on central Melville Island at c. 11 cal. ka BP, suggesting that the modern circulation pattern of Arctic Ocean surface water southeast through the archipelago was established >1000 years earlier than previously proposed. Throughout most of the Holocene until c. 1.0 cal. ka BP, the rate of driftwood delivery to the western Arctic islands was low (~1 recorded stranding event per 200 years) and intermittent, with the longest break in the record occurring between c. 3.0 and 5.0 cal. ka BP. This 2000‐year hiatus is attributed to a period of colder temperatures causing severe sea‐ice conditions and effectively making the coasts of the western Arctic islands inaccessible. After c. 1.0 cal. ka BP, driftwood incursion increased to maximum Holocene levels (~1 recorded stranding event every 20 years). Driftwood identified to the genus level as Larix that was delivered at this time suggests that the Trans Polar Drift current was regularly in its most southwestern position, related to a dominantly positive Arctic Oscillation mode. The Little Ice Age appears to have had little impact on driftwood entry to the western Canadian Arctic Archipelago, indeed the general abundance in the latest Holocene may record infrequent landfast sea ice.  相似文献   

10.
This article presents a new comprehensive assessment of the Holocene hydrological variability of Lake Ladoga, northwest Russia. The reconstruction is based on oxygen isotopes of lacustrine diatom silica (δ18Odiatom) preserved in sediment core Co 1309, and is complemented by a diatom assemblage analysis and a survey of modern isotope hydrology. The data indicate that Lake Ladoga has existed as a freshwater reservoir since at least 10.8 cal. ka BP. The δ18Odiatom values range from +29.8 to +35.0‰, and relatively higher δ18Odiatom values around +34.7‰ between c. 7.1 and 5.7 cal. ka BP are considered to reflect the Holocene Thermal Maximum. A continuous depletion in δ18Odiatom since c. 6.1 cal. ka BP accelerates after c. 4 cal. ka BP, indicating Middle to Late Holocene cooling that culminates during the interval 0.8–0.2 cal. ka BP, corresponding to the Little Ice Age. Lake‐level rises result in lower δ18Odiatom values, whereas lower lake levels cause higher δ18Odiatom values. The diatom isotope record gives an indication for a rather early opening of the Neva River outflow at c. 4.4–4.0 cal. ka BP. Generally, overall high δ18Odiatom values around +33.5‰ characterize a persistent evaporative lake system throughout the Holocene. As the Lake Ladoga δ18Odiatom record is roughly in line with the 60°N summer insolation, a linkage to broader‐scale climate change is likely.  相似文献   

11.
We present new results for relative sea‐level change for southern Greenland for the interval from 9000 cal. yr BP to the present. Together with earlier work from the same region this yields a nearly complete record from the time of deglaciation to the present. Isolation and/or transgression sequences in one lake and five tidal basins have been identified using lithostratigraphic analyses, sedimentary characteristics, magnetic susceptibility, saturated induced remanent magnetisation (SIRM), organic and carbonate content, and macrofossil analyses. AMS radiocarbon dating of macrofossils and bulk sediment samples provides the timescale. Relative sea level fell rapidly and reached present‐day level at ~9300 cal. yr BP and continued falling until at least 9000 cal. yr BP. Between 8000 and 6000 cal. yr BP sea level reached its lowest level of around ~10 m below highest astronomical tide. At around 5000 cal. yr BP, sea level had reached above 7.8 m below highest astronomical tide and slowly continued to rise, not reaching present‐day sea level until today. The isostatic rebound caused rapid isolation of the basins that are seen as distinct isolation contacts in the sediments. In contrast, the late Holocene transgressions are less well defined and occurred over longer time intervals. The late Holocene sea‐level rise may be a consequence of isostatic reloading by advancing glaciers and/or an effect of the delayed response to isostatic rebound of the Laurentide ice sheet. One consequence of this transgression is that settlements of Palaeo‐Eskimo cultures may be missing in southern Greenland. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

12.
The palaeoceanographic evolution of the SW Svalbard shelf west of Hornsund over the last 14 000 years was reconstructed using benthic foraminiferal assemblages, stable oxygen and carbon isotopes, and grain‐size and ice‐rafted debris data. The results reveal the complexity of the feedbacks influencing the shelf environment: the inflow of Atlantic and Arctic waters (AW and ArW, respectively), and the influence of sea ice and tidewater glaciers. The inflow of subsurface AW onto the shelf gradually increased with the first major intrusion at the end of the Bølling‐Allerød. During the Younger Dryas, the shelf was affected by fresh water originating from sea ice and glacier discharge. Glaciomarine conditions prevailed until the earliest Holocene with the intense deliveries of icebergs and meltwater from retreating glaciers and the occasional penetration of AW onto the shelf. Other major intrusions of AW occurred before and after the Preboreal oscillation (early Holocene), which resulted in more dynamic and open‐water conditions. Between 10.5 and 9.7 cal. ka BP, the shelf environment transformed from glaciomarine to open marine conditions. Between c. 9.7 and 6.1 cal. ka BP the AW advection reached its maximum, resulting in a highly dynamic and productive environment. At c. 6.1 cal. ka BP, the inflow of AW onto the Svalbard shelf decreased due to the intensification of the Greenland Gyre and the subduction of AW under the sea‐ice‐bearing ArW. Bioproductivity decreased over the next c. 5500 years. During the Little Ice Age, bioproductivity increased due to favourable conditions in the marginal sea‐ice zone despite the effects of cooling. The renewed advection of AW after AD 1850 started the climate warming trend observed presently. Our findings show that δ18O can be used to reconstruct the dominances of different water‐masses and, with some caution, as a proxy for the presence of sea ice in frontal areas over the northwestern Eurasian shelves.  相似文献   

13.
Holocene palaeolimnological conditions were reconstructed by analysing fossil diatom assemblages within a lacustrine sediment core from Lake Sokoch, southern Kamchatka (Russia). Sediments of this proglacial lake cover the past 9400 years and hence represent almost the whole Holocene history. The biosiliceous muddy sample material was analysed for several geochemical and biological parameters, such as the total organic carbon and biogenic silica content, and the diatom community (quantitative and qualitative changes). Based on changes in the relative abundances of the most frequent species Aulacoseira subarctica, Staurosira martyi and Stephanodiscus alpinus and a depth‐constrained cluster analyses (CONISS), five diatom assemblage zones could be identified. The oldest stage recovered lies between 9400 and 9000 cal. a BP and reflects the initial lake stage after the retreat of local glaciers, with a high detrital sediment supply, shallow‐water conditions and a high diatom diversity. The next zone (9000–6200 cal. a BP) shows a more mature lake system with accumulating biogenic remains and higher water levels during climate amelioration. This is followed by the most obvious change in the diatom assemblage, delineated by an occurrence of S. alpinus, between 6200 and 2700 cal. a BP. Wet conditions in spring probably led to an enhanced fluvial runoff and eutrophic to hypertrophic conditions. The end of this period might reflect climate deterioration related to the Neoglacial epoch of the Holocene. Between 2700 and 1600 cal. a BP the sediments of Lake Sokoch reveal oligotrophic water conditions in a windy high‐energy environment. The youngest interval, between 1600 cal. a BP and the Present, indicates shallow‐water conditions and a very short growing season, which might reflect the Little Ice Age. The results may offer a baseline for the interpretation of Holocene palaeoenvironmental changes in Kamchatka and their relation to regional climate change from a palaeoecological perspective.  相似文献   

14.
The aragonite compensation depth (ACD) fluctuated considerably during the last glacial until the Holocene with a dominant pteropod preservation spike during the deglacial period, which is prominently seen in three well‐dated cores covering the Andaman Sea, northeastern Indian Ocean. The precise time period of the preservation spike of pteropods is not known but this knowledge is crucial for stratigraphical correlation and also for understanding the driving mechanism. Isotopic and foraminiferal proxies were used to decipher the possible mechanism for pteropods preservation in the Andaman Sea. The poor preservation/absence of pteropods during the Holocene in the Andaman Sea may have implications for ocean acidification, driven by enhanced atmospheric CO2 concentration. Strengthening of the summer monsoon and the resultant high biological productivity may also have played a role in the poor preservation of pteropods. The deglacial pteropod spike is characterized by high abundance/preservation of the pteropods between ~19 and 15 cal. ka BP, associated with very low atmospheric CO2 concentration. Isotope data suggest the prevalence of a glacial environment with reduced sea surface temperature, upwelling and enhanced salinity during the pteropod preservation spike. Total planktic foraminifera and Globigerina bulloides abundances are low during this period, implying a weakened summer monsoon and reduced foraminiferal productivity. Based on the preservation record of pteropods, it is inferred that the ACD was probably deepest (>2900 m) at 16.5 cal. ka BP. The synchronous regional occurrence of the pteropod preservation spike in the Andaman Sea and in the northwestern Indian Ocean could potentially be employed as a stratigraphic marker.  相似文献   

15.
Comparatively little research has been undertaken on relative sea‐level (RSL) change in western Iceland. This paper presents the results of diatom, tephrochronological and radiocarbon analyses on six isolation basins and two coastal lowland sediment cores from the Stykkishólmur area, northern Snæfellsnes, western Iceland. The analyses provide a reconstruction of Lateglacial to mid‐Holocene RSL changes in the region. The marine limit is measured to 65–69 m above sea level (asl), with formation being estimated at 13.5 cal ka BP. RSL fall initially occurred rapidly following marine limit formation, until ca. 12.6 cal ka BP, when the rate of RSL fall decreased. RSL fell below present in the Stykkishólmur area during the early Holocene (by ca. 10 cal ka BP). The rates of RSL change noted in the Stykkishólmur area demonstrate lesser ice thicknesses in Snæfellsnes than Vestfirðir during the Younger Dryas, when viewed in the regional context. Consequently, the data provide an insight into patterns of glacio‐isostatic adjustment surrounding Breiðafjörður, a hypothesized major ice stream at the Last Glacial Maximum.  相似文献   

16.
Erbs‐Hansen, D. R., Knudsen, K. L., Gary, A. C., Jansen, E., Gyllencreutz, R., Scao, V. & Lambeck, K. 2011: Late Younger Dryas and early Holocene palaeoenvironments in the Skagerrak, eastern North Atlantic: a multiproxy study. Boreas, 10.1111/j.1502‐3885.2011.00205.x. ISSN 0300‐9843 A high‐resolution study of palaeoenvironmental changes through the late Younger Dryas and early Holocene in the Skagerrak, the eastern North Atlantic, is based on multiproxy analyses of core MD99‐2286 combined with palaeowater depth modelling for the area. The late Younger Dryas was characterized by a cold ice‐distal benthic foraminiferal fauna. After the transition to the Preboreal (c. 11 650 cal. a BP) this fauna was replaced by a Cassidulina neoteretis‐dominated fauna, indicating the influence of chilled Atlantic Water at the sea floor. Persisting relatively cold bottom‐water conditions until c. 10 300 cal. a BP are presumably a result of an outflow of glacial meltwater from the Baltic area across south‐central Sweden, which led to a strong stratification of the water column at MD99‐2286, as also indicated by C. neoteretis. A short‐term peak in the C/N ratio at c. 10 200 cal. a BP is suggested to indicate input of terrestrial material, which may represent the drainage of an ice‐dammed lake in southern Norway, the Glomma event. After the last drainage route across south‐central Sweden closed, c. 10 300 cal. a BP, the meltwater influence diminished, and the Skagerrak resembled a fjord with a stable inflow of waters from the North Atlantic through the Norwegian Trench and a gradual increase in boreal species. Full interglacial conditions were established at the sea floor from c. 9250 cal. a BP. Subsequent warm stable conditions were interrupted by a short‐term cooling around 8300–8200 cal. a BP, representing the 8.2 ka event.  相似文献   

17.
Kenai, located on the west coast of the Kenai Peninsula, Alaska, subsided during the great earthquake of AD 1964. Regional land subsidence is recorded within the estuarine stratigraphy as peat overlain by tidal silt and clay. Reconstructions using quantitative diatom transfer functions estimate co‐seismic subsidence (relative sea‐level rise) between 0.28±0.28 m and 0.70±0.28 m followed by rapid post‐seismic recovery. Stratigraphy records an earlier co‐seismic event as a second peat‐silt couplet, dated to ~1500–1400 cal. yr BP with 1.14±0.28 m subsidence. Two decimetre‐scale relative sea‐level rises are more likely the result of glacio‐isostatic responses to late Holocene and Little Ice Age glacier expansions rather than to co‐seismic subsidence during great earthquakes. Comparison with other sites around Cook Inlet, at Girdwood and Ocean View, helps in constructing regional patterns of land‐level change associated with three great earthquakes, AD 1964, ~950–850 cal. yr BP and ~1500–1400 cal. yr BP. Each earthquake has a different spatial pattern of co‐seismic subsidence which indicates that assessment of seismic hazard in southern Alaska requires an understanding of multiple great earthquakes, not only the most recent. All three earthquakes show a pre‐seismic phase of gradual land subsidence that marked the end of relative land uplift caused by inter‐seismic strain accumulation. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

18.
The deglaciation history and Holocene environmental evolution of northern Wijdefjorden, Svalbard, are reconstructed using sediment cores and acoustic data (multibeam swath bathymetry and sub-bottom profiler data). Results reveal that the fjord mouth was deglaciated prior to 14.5±0.3 cal. ka BP and deglaciation occurred stepwise. Biomarker analyses show rapid variations in water temperature and sea ice cover during the deglaciation, and cold conditions during the Younger Dryas, followed by minimum sea ice cover throughout the Early Holocene, until c. 7 cal. ka BP. Most of the glaciers in Wijdefjorden had retreated onto land by c. 7.6±0.2 cal. ka BP. Subsequently, the sea-ice extent increased and remained high throughout the last part of the Holocene. We interpret a high Late Holocene sediment accumulation rate in the northernmost core to reflect increased sediment flux to the site from the outlet of the adjacent lake Femmilsjøen, related to glacier growth in the Femmilsjøen catchment area. Furthermore, increased sea ice cover, lower water temperatures and the re-occurrence of ice-rafted debris indicate increased local glacier activity and overall cooler conditions in Wijdefjorden after c. 0.5 cal. ka BP. We summarize our findings in a conceptual model for the depositional environment in northern Wijdefjorden from the Late Weichselian until present.  相似文献   

19.
Schmidt, S., Wagner, B., Heiri, O., Klug, M., Bennike, O. & Melles, M. 2010: Chironomids as indicators of the Holocene climatic and environmental history of two lakes in Northeast Greenland. Boreas, 10.1111/j.1502‐3885.2010.00173.x. ISSN 0300‐9483. Two Holocene sediment sequences from arctic lakes on Store Koldewey, an island in Northeast Greenland, were investigated for fossil chironomid assemblages. A total of 18 and 21 chironomid taxa were identified in 290‐ and 252‐cm‐long sediment sequences from Duck Lake and Hjort Lake, respectively. The chironomid assemblages were very similar in the two lakes. Canonical correspondence analysis (CCA) was used to compare fossil chironomid assemblages from Store Koldewey with chironomid assemblages and environmental conditions presently found in Canadian Arctic lakes and, hence, to infer environmental changes for Northeast Greenland. The first chironomids appeared at c. 9500 cal. a BP in Hjort Lake, and 500 years later in Duck Lake. Taxa typical for cold and nutrient‐poor arctic lakes dominated the earliest assemblages. Chironomid assemblages with taxa typical of higher summer air temperatures and lakes with higher nutrient availability occur between 8000 and 5000 cal. a BP. This period probably marks the regional Holocene thermal maximum, which is relatively late compared with some palaeoenvironmental records from East Greenland. One possible reason could be the location of Store Koldewey at the very outer coast, with local climatic conditions strongly influenced by the cold East Greenland Current. From around 5000 cal. a BP, chironomid assemblages in Duck Lake and Hjort Lake again became more typical of those presently found in Northeast Greenland, indicating relatively cold and nutrient‐poor conditions. This shift coincides with an increase of ice‐rafting debris off East Greenland and an intensification of the East Greenland Current.  相似文献   

20.
A high-resolution record of Holocene deglacial and climate history was obtained from a 77 m sediment core from the Firth of Tay, Antarctic Peninsula, as part of the SHALDRIL initiative. This study provides a detailed sedimentological record of Holocene paleoclimate and glacial advance and retreat from the eastern side of the peninsula. A robust chronostratigraphy was derived from thirty-three radiocarbon dates on carbonate material. This chronostratigraphic framework was used to establish the timing of glacial and climate events derived from multiple proxies including: magnetic susceptibility, electric resistivity, porosity, ice-rafted debris content, organic carbon content, nitrogen content, biogenic silica content, and diatom and foraminiferal assemblages. The core bottomed-out in a stiff diamicton interpreted as till. Gravelly and sandy mud above the till is interpreted as proximal glaciomarine sediment that represents decoupling of the glacier from the seafloor circa 9400 cal. yr BP and its subsequent landward retreat. This was approximately 5000 yr later than in the Bransfield Basin and South Shetland Islands, on the western side of the peninsula. The Firth of Tay core site remained in a proximal glaciomarine setting until 8300 cal. yr BP, at which time significant glacial retreat took place. Deposition of diatomaceous glaciomarine sediments after 8300 cal. yr BP indicates that an ice shelf has not existed in the area since this time.The onset of seasonally open marine conditions between 7800 and 6000 cal. yr BP followed the deglacial period and is interpreted as the mid-Holocene Climatic Optimum. Open marine conditions lasted until present, with a minor cooling having occurred between 6000 and 4500 cal. yr BP and a period of minor glacial retreat and/or decreased sea ice coverage between 4500 and 3500 cal. yr BP. Finally, climatic cooling and variable sea ice cover occurred from 3500 cal. yr BP to near present and it is interpreted as being part of the Neoglacial. The onset of the Neoglacial appears to have occurred earlier in the Firth of Tay than on the western side of the Antarctic Peninsula. The Medieval Warm Period and Little Ice Age were not pronounced in the Firth of Tay. The breadth and synchroneity of the rapid regional warming and glacial retreat observed in the Antarctic Peninsula during the last century appear to be unprecedented during the Holocene epoch.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号