首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

2.
Lal. Kumar  Joshi  G.  Agarwal  K. K. 《Geotectonics》2020,54(3):410-427
Geotectonics - Study of morphometric parameters such as stream length (Lu) and stream length ratios (Rl), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc),...  相似文献   

3.
Land and water resources development plans are generally adopted at watershed level. Delineation of watersheds and their prioritization within large river basins requires host of terrain parameters to be studied and analysed. Chopan watershed in Central India has been studied for sub-watershed delineation and prioritization based on drainage morphometry, land use/land cover and sediment yield index analysis using remote sensing and GIS techniques. The watershed was demarcated into five sub-watersheds on the basis of drainage flow directions, contour value, slope, elevation. Geocoded satellite data of 1989 and 2001 on 1:50 000 scale were visually interpreted to prepare land use/land cover and drainage maps which were later digitized using Arcview/ArcGIS. Linear and shape aspects of the sub-watersheds were computed and used for prioritization. The results show widespread variation in drainage characteristics, land cover changes and sediment yield rates across sub-watersheds. On the basis of morphometric, land use/land cover change and sediment yield index, sub-watersheds were grouped into low, medium and high priority. A correlation of results show that SW1 and SW5 are common sub-watersheds falling under high and low priority based on morphometric, land use change analysis and SYI. The priority list of sub-watersheds will be crucial for decision making and implementation of land and water resource conservation projects.  相似文献   

4.
The study area is a one of the sub-basin of Vaigai River basin in the Theni and Madurai districts, Western Ghats of Tamil Nadu. The Vaigai sub-basin extends approximately over 849 km2 and it has been sub-divided into 48 watersheds. It lies between 09°30′00″ and 10°00′00″N latitudes and 77°15′10″ and 77°45′00″ E longitudes in the western part of Tamil Nadu, India. It originates at an altitude of 1661m in the Western Ghats of Tamil Nadu in Theni district. The drainage pattern of these watersheds are delineated using geo-coded Indian remote sensing satellite (IRS) ID, linear image self-scanning (LISS) III of geo-coded false colour composites (FCC), generated from the bands 2, 3 and 4 on 1:50,000 scale in the present study. The Survey of India (SOI) toposheets 58G/5, 58 G/6, 58G/9 and 58G/10 on a scale of 1:50,000 scale was used as a base for the delineation of watershed. In the present study, the satellite remote sensing data has been used for updation of drainages and the updated drainages have been used for morphometric analysis. The morphometric parameters were divided in three categories: basic parameters, derived parameters and shape parameters. The data in the first category includes area, perimeter, basin length, stream order, stream length, maximum and minimum heights and slope. Those of the second category are bifurcation ratio, stream length ratio, RHO coefficient, stream frequency, drainage density, and drainage texture, constant of channel maintenance, basin relief and relief ratio. The shape parameters are elongation ratio, circularity index and form factor. The morphometric parameters are computed using ESRI’s ArcGIS package. Drainage density ranges from 1.10 to 4.88 km/km2 suggesting very coarse to fine drainage texture. Drainage frequency varies from 1.45 to 14.70 which is low to very high. The bifurcation ratio ranges from 0.55 to 4.37. The low values of bifurcation ratios and very low values of drainage densities indicate that the drainage has not been affected by structural disturbances and also that the area is covered under dense vegetation cover. Elongation ratio ranges from 0.11 to 0.57. Drainage texture has the minimum of 1.63 and maximum of 11.44 suggesting that the drainage texture is coarse to fine. It is concluded that remote sensing and GIS have been proved to be efficient tools in drainage delineation and updation. In the present study these updated drainages have been used for the morphometric analysis.  相似文献   

5.
Morphometric analysis, being widely used to assess the drainage characteristics of the river basins, has been found to be a useful tool to delineate the glacial till covered overburden material as well as to identify areas prone to flash floods in present studies. A number of parameters including the stream frequency, drainage density and drainage texture suggest that the unconsolidated, unstratified and highly permeable glacially deposited overburden till material facilitates the infiltration of snowmelt and rainwater in the Pindari glacio-fluvial basin, Eastern Kumaun Himalaya, India. Likewise, other till overburden covered glacial and proglacial areas of Higher Himalayan regions have been contributing to the groundwater budget. The shape parameters further suggest that the sub-basins with higher form factor are more prone to flash floods. Besides this, the anomalies in the morphometric parameters have been found to be a useful tool to delineate zones of active tectonics in such areas.  相似文献   

6.
Remote Sensing and GIS techniques have been proved to be efficient tools in the delineation, updating and morphometric analysis of drainage basin. The present study incorporates a morphometric analysis of three sub-basins of Fatehabad area of Agra district using remote sensing and GIS techniques. The morphometric parameters of the sub-basins are classified under linear, areal and relief aspects. The drainage pattern exhibited by the main river Yamuna and its tributaries shows a dendritic pattern indicating homogenously underlain material while the mean bifurcation ratio values suggest that the geological structures are not disturbing the drainage pattern. The form factor value of sub-basins suggests that the main basin is more or less elongated. Circularity ratio values of the three sub-basins fall within range of elongated basin and low discharge. The area has low density indicating that the region has high permeable sub-soil material and dense vegetation. The values of drainage texture, drainage density and infiltration number indicate that sub-basin-III has the highest infiltration rate and low runoff, hence contributing most to the underground water resources. This study also indicates porous and permeable sub-soil condition in sub-basin-III. The values of sub-basin-I indicate low permeable subsoil material owning to high infiltration number value, hence low infiltration and high runoff.  相似文献   

7.
A geomorphic unit Usri drainage basin (latitude: 24° 04′00″ N to 24° 34′00″ N and longitude 86°05′00″E to 86°25′00″E) lies in north-eastern parts of Chhotanagpur Plateau, India, has been selected for morphometric analysis. Digital elevation model (DEM) has been generated by Cartosat stereo pair data at 10-m resolution. The morphometric parameters considered for the analysis includes the linear, areal, and relief aspects of the basin. Morphometric analysis of the river network and the basin revealed that the Usri Basin has sixth-order river network with a dendritic drainage pattern. The dendritic drainage pattern indicates that the basin has homogeneous lithology, gentle regional slope, and lack of structural control. The bifurcation ratio between different successive orders varies but the mean ratio is low that suggests the higher permeability and lesser structural control. The low drainage density, poor stream frequency, and moderately coarse drainage texture values of the basin indicate that the terrain has gentle slope, is made up of loose material, and hence has good permeability of sub-surface material and significant recharge of ground water. The shape parameters indicate that the basin is elongated in shape with low relief, high infiltration capacity, and less water flow for shorter duration in basin. The 50 % of the basin has altitude below 300 m and gently sloping towards the southeast direction. All the morphometric parameters and existing erosional landforms indicated mature to early old stage topography.  相似文献   

8.
Jaggar watershed is a constituent of the Gambhir river basin, in eastern Rajasthan and covers an area of 352.82 km2, representing arid climate. The drainage network is dendritic to sub-dendritic pattern however parallel to sub-parallel has also developed locally. The Jaggar watershed has been divided into fourteen sub-watersheds, designated as SW1 to SW14, for prioritization purpose. The prioritization of the sub-watersheds has been done on the basis of morphometric analysis and land use/land cover categories. Various morphometric parameters (linear and shape) have been determined for each sub-watershed and assigned rank on the basis of value/relationship with erodibility so as to arrive at a compound value for final ranking of the sub-watersheds. Land use/land cover mapping has been carried out using IRS LISS III data of 1998. Based on morphometric and land use/land cover analysis and their ranks, the subwatersheds have been classified into four categories as very high, high, medium and low in terms of priority for conservation and management of natural resources. The prioritization results based on morphometry reveal that only SW7 and SW10 fall under very high priority, whereas SW6, SW11 and SW13 fall under very high priority on the basis of land use/land cover analysis. However on the integration of morphometry and land use/land cover only SW14 show common priority whereas rest have little or no correlation.  相似文献   

9.
A morphometric evaluation of Tamiraparani subbasin was carried out to determine the drainage characteristics using GIS model technique. Extraction of the subbasin and stream network model has been developed to quantify the drainage parameters in the study area. The input parameters required to run this model are: a pour point, a minimum upstream area in hectares, and a digital elevation model. After execution, the model provides a drainage basin with Strahler’s classified stream network supported by thematic layers like aspect, slope, relief, and drainage density. The developed model reveals that the drainage area of this subbasin is 2,055 km2 and shows subdendritic to dendritic drainage pattern. The basin includes seventh order stream and mostly dominated by lower stream order. The slope of the study area varies from 0° in the east to 61° towards west. The presence of Western Ghats is the chief controlling factor for slope variation. Moreover, the slope variation is controlled by the local lithology and erosion cycles. The bifurcation ratio indicates that the geological structures have little influence on the drainage networks and the drainage density reveals that the nature of subsurface strata is permeable.  相似文献   

10.
Hydrogeological mapping and drainage analysis can form an important tool for groundwater development. Assessment of drainage and their relative parameters have been quantitatively carried out for the Morar River Basin, which has made positive scientific contribution for the local people of area for the sustainable water resource development and management. Geographical Information System has been used for the calculation and delineation of the morphometric characteristics of the basin. The dendritic type drainage network of the basin exhibits the homogeneity in texture and lack of structural control. The stream order ranges from first to sixth order. The drainage density in the area has been found to be low which indicates that the area possesses highly permeable soils and low relief. The bifurcation ratio varies from 2.00 to 5.50 and the elongation ratio (0.327) reveals that the basin belongs to the elongated shaped basin category. The results of this analysis would be useful in determining the effect of catchment characteristics such as size, shape, slope of the catchment and distribution of stream net work within the catchment.  相似文献   

11.
Intermontane basin sedimentation occurred during Pliocene-Pleistocene in the Karewa Basin which formed after the continent-continent collision resulting in the formation of Himalayan orogenic belt around Eocene. These are elongated, narrow, thrust bounded basins which have formed during the late stages of orogeny. Situated at a height of 1700–1800 m above sea level, the Karewa basin received sediments because of ponding of a pre-existing river system and the tectonic movements along the Great Himalayan Ranges in the north and the Pir-Panjal ranges in the south along active faults. About 1300 m thick sediments of largely fluvio-lacustrine, glacio-fluvio-lacustrine and eolian origin are exposed having evidences of neotectonically formed structural features such as folds and faults. Folds are more prominent in the Lower Karewa formation (Hirpur Formation) while faults (mostly normal faults) are abundant in the Upper Karewas (Nagum Formation). Drainage in the area varies from dendritic to anastomosing to parallel. Anastomosing drainage suggests sudden decrease in gradient while presence of linear features such as faults and ridges is evident by parallel drainage. Study of morphometric parameters such as stream length (Lsm) and stream length ratios (RL), bifurcation ratio (Rb), drainage density (D), form factor (Rf), circularity ratio (Rc), and elongation ratio (Re) also indicate intense tectonic activity in the recent past.  相似文献   

12.
In this present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used to update drainage and surface water bodies and to evaluate linear, relief and aerial morphometric parameters of the two sub-watersheds viz. Jilugumilli and Regulapadu in the northern part of West Godavari District, Andhra Pradesh. The area of Jilugumilli and Regulapadu watersheds spread over about 110 & 80 sq. km respectively. The morphometric analysis of the drainage networks of Regulapadu and Jilugumilli sub-watersheds exhibit sub-dendritic and sub parallel drainage pattern. The variation in stream length ratio changes due to change in slope and topography. It was inferred from the study that the streams are in a mature stage in Regulapadu and Jilugumilli watersheds, which indicated the geomorphic development. The variations in bifurcation ratio values among the sub-watersheds are described with respect to topography and geometric development. The stream frequencies for both sub-watersheds exhibit positive correlation with the drainage density, indicating increase in stream population with respect to increase in drainage density. The Jilugumilli watershed has a coarse drainage texture and Regulapadu sub-watershed is a fine drainage texture in nature. In the present study an attempt has been made to analyse the morphometric analysis of two sub-watersheds under different physiographic conditions. Morphometric analysis is one of the essential analyses required for development and management of watershed.  相似文献   

13.
An attempt to carry out morphometric, statistical, and hazard analyses using ASTER data and GIS technique of Wadi El-Mathula watershed, Central Eastern Desert, Egypt. Morphometric analysis with application of GIS technique is essential to delineate drainage networks; basin geometry, drainage texture, and relief characteristics, through detect forty morphometric parameters of the study watershed and its sub-basins. Extract new drainage network map with DEM, sub-basin boundaries, stream orders, drainage networks, slope, drainage density, flow direction maps with more details is very necessary to analyze different morphometric and hydrologic applications for the study basin. Statistical analysis of morphometric parameters was done through cluster analysis, regression equations, and correlation coefficient matrix. Clusters analyses detect three independents variables which are stream number, basin area, and stream length have a very low linkage distance of 0.001 (at very high similarity of 99.95%) in a cluster with the basin width. Main channel length and basin perimeter (at very high similarity of 99.83%) are in a cluster with basin length. Using the regression equations and graphical correlation matrix indicates the mathematical relationships and helps to predict the behavior between any two variables. Hazard analysis and hazard degree assessment for each sub-basin were performed. The hazardous factors were detected and concluded that most of sub-basins are classified as moderately to highly hazardous. Finally, we recommended that the flood possibilities should be taken in consideration during future development of these areas.  相似文献   

14.
Demand for irrigation water increases day by day along with meteorological vagaries and extension of irrigated area in the drought-prone Barind area of Bangladesh. This increasing stress on water resource is gradually making the area water scare. The study is aimed at studying the morphometric parameters of the Atrai-Sib river basin in the Barind area and on their relevance in water resource management based on satellite images and SRTM DEM. Computation and delineation of linear and areal aspects of the river basin and its morphometric components reveals that stream order ranges from first to eighth order showing dendritic drainage pattern. The basin represents homogeneity of soil texture; possibility of flash flood after heavy rainfall with low discharge of runoff; and is not largely affected by structural disturbance. Moderate drainage density of the river basin area indicates semipermeable soil lithology with moderate vegetation. Mean bifurcation ratio of the basin is calculated as 3.92 and elongation ratio 0.75, which indicate elongated shape of the river basin with low to moderate relief bounded in the east and west by ‘moderate to steep’ sloping land area. It reveals a flatter peak of runoff flow for longer duration and gravity flow of water. The gentle but undulating slope of the basin represents ‘excellent’ category for groundwater management as the site is favorable for infiltration due to maximum time of runoff water percolation. The east facing slopes of the basin show higher moisture content and higher vegetation than the west-facing slope. The land use pattern of the area shows that major part (95.29%) comes under the cultivated land which will support future river basin development and management. Results obtained from the study would be useful in categorization of river basins for future water resource development and management, and selection of suitable sites for water conservation structures such as check dam, percolation tank, artificial recharge of groundwater through MAR technique etc.  相似文献   

15.
This research paper assesses the vulnerability of landslide for the Bodi-Bodimettu Ghat section, Theni district, Tamil Nadu, India, using remotely sensed data and geographic information system (GIS). Landslide database was generated using IRS-1C satellite LISS III data and aerial photographs accompanied by field investigations using differential global positioning system to generate a landslide inventory map. Topographical, spatial, and field data were processed to construct the spatial thematic layers using image processing and GIS environment. Twelve landslide-inducing factors were used for landslide vulnerability analysis: elevation, slope, aspect, plan curvature, profile curvature, proximity to road, drainage and lineament, land use/land cover, geology, geomorphology, and run-off. The first five factors were derived from digital elevation model, and other thematic layers were prepared from spatial database. Frequency ratio of each factor was computed using the above thematic factors with past landslide locations. Landslide vulnerability map was produced using raster analysis. The landslide vulnerability map was classified into five zones: very low, low, moderate, high, and very high. The model is validated using the relative landslide density index (R-index method). The consistency of R-index indicates good performance of the vulnerability map.  相似文献   

16.
The present paper deals with morphometric analysis of Koshalya-Jhajhara (K-J) watershed, tributaries of Ghaggar in northwestern India. The area forms a rugged topography having elevation range from 399 m to 1810 m MSL. Aster DEM and SOI toposheets have been used to calculate various parameters using Geographic Information System (GIS). Linear, areal and relief aspects for morphometric analysis were calculated using GIS. Total number of streams in the watershed are 991 out of which 543 are of 1st order, 259 are of 2nd order, 124 are of 3rd order, 58 are of 4th order and only 7 are of 5th order. The order of stream determines the chances of flood in the stream. Higher the stream order more the probabilities of flood. The present paper indicates that K-J watershed is of 5th order and less elongated in shape having lower peak flows of longer duration with dendritic pattern and having fine drainage texture. Bifurcation ratio varies from 3 to 5 which indicate that geological structures don’t have dominant influence on drainage pattern. High slope is witnessed in NE part and low slope in SW part with very low gradient ratio. Variables like stream frequency and drainage density determines the volume of the water discharge and its speed of flow in the river channels. Higher the stream frequency and drainage density more will be the probability of floods. These variables also effects temporal variations in the speed at which the water flows in the stream when flood reaches its peak.  相似文献   

17.
This study deals with the application of visual basic program ‘bearing, azimuth and drainage (bAd) calculator’ which employs a new and easy methodology for extraction of watershed morphometric parameters. Using bAd calculator, morphometric analysis was carried out for the Kali River basin of southwest coast of India. The basin forms a part of the Western Ghats, which is an important mountain range of the Indian sub-continent and runs nearly parallel to the coast. Spatial maps of six morphometric parameters have been prepared from the results obtained. Various linear, areal, shape and relief morphometric parameters of fifth and sixth order basins have been calculated and interpreted. Majority of the sub-basins show less uniform values (~3 to 4) of R bm which indicate the uniform and systematic branching pattern of streams. High D d zones are found in the Western Ghats region, whereas low D d zones are observed in the eastern part of the basin and near the estuary. The eastern part of the basin shows low F s values, whereas NW and SW parts of the basin show high F s values. Compared to manual measurement, bAd calculator requires minimal time to quantify the morphometric parameters. Experimental results show that the software is effective in calculating drainage parameters such as drainage density, frequency, bifurcation ratio, etc., using the text file of ESRI shapefile.  相似文献   

18.
A morphometric analysis was done to determine the drainage characteristics of Lules River basin using land-sat imageries and topographical maps. This catchment was divided into seven sub-basins for the analysis: Liquimayo, Hoyada, Ciénaga, De Las Tablas, Siambón, Potrerillo and San Javier. Yungas ecoregion covers almost all the watershed. The drainage patterns of the sub-basins are dendritic and parallel. The basin includes seventh order stream and lower streams order mostly dominate the basin. The development of stream segments is affected by slope and local relief. The mean bifurcation ratio indicates that the drainage pattern is not much influenced by geological structures. The shape parameters also reveal the elongation of the basin and sub-basins.  相似文献   

19.
GIS and Remote Sensing have proved to be an indispensible tool in morphometric analysis. The identification of morphometric properties based on a geographic information system (GIS) was carried out in two watersheds in the Thrissur district of Kerala, India. These watersheds are parts of Western Ghats, which is an ecologically sensitive area. Quantitative geomorphometric analysis was carried out for the Chimmini and Mupily watersheds independently by estimating their (a) linear aspects like stream number, stream order, stream length, mean stream length, stream length ratio, bifurcation ratio, length of overland flow, drainage pattern (b) aerial aspects like circulatory ratio, elongation ratio, drainage density and (c) relief aspects like basin relief, relief ratio, relative relief and ruggedness number. The drainage areas of Chimmini and Mupily watersheds are 140 and 122 km2 respectively and show patterns of dendritic to sub-dendritic drainage. The Chimmini watershed was classified as a sixth order drainage basin, whereas Mupily watershed was classified as a fifth order basin. The stream order of the basin was predominantly controlled by physiographic and structural conditions. The increase in the stream length ratio from lower to higher order suggests that the study area has reached a mature geomorphic stage. The development of stream segments is affected by rainfall and local lithology of the watersheds. The slope of both watersheds varied from 0° to 50° and 0° to 42° respectively and the slope variation is chiefly controlled by the local geology and erosion cycles. Moreover, these studies are useful for planning rain water harvesting and watershed management.  相似文献   

20.
Watershed prioritization is one of the most important processes in natural resource management system especially in areas of sustainable watershed development and planning. Morphometric characteristics are the viable entity to understand the hydrological behavior of the subwatershed. For prioritization of subwatershed, morphometric analysis was utilized by using the linear, areal, and relief aspects of the drainage basin. In this context, remote sensing and GIS has been proved to be an efficient tool to identify the morphological features. The Survey of India (SOI) topographical maps, satellite data IRS-LISS III, and Cartosat DEM data were utilized to understand the drainage pattern and also for prioritization of subwatershed areas. The prioritization of subwatershed has been attempted using novel and quantitative approaches based on compound parameter ranking for soil erosion. Lower compound factors were chosen as the most feasible for soil erosion. Based on the observation, eight subwatersheds with a higher degree of the slope were severely prone to soil erosion and remaining 21 subwatersheds occur in low-lying areas that can be developed as sustainable watersheds. The identified subwatershed requires immediate soil remediation and water conservation measures for efficient watershed planning and management. The proposed study might be helpful for resource planners, government agencies, private sectors, and other stake holders to take up soil conservation measures and fixation of water-harvesting structures for better decision making.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号