首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jaggar watershed is a constituent of the Gambhir river basin, in eastern Rajasthan and covers an area of 352.82 km2, representing arid climate. The drainage network is dendritic to sub-dendritic pattern however parallel to sub-parallel has also developed locally. The Jaggar watershed has been divided into fourteen sub-watersheds, designated as SW1 to SW14, for prioritization purpose. The prioritization of the sub-watersheds has been done on the basis of morphometric analysis and land use/land cover categories. Various morphometric parameters (linear and shape) have been determined for each sub-watershed and assigned rank on the basis of value/relationship with erodibility so as to arrive at a compound value for final ranking of the sub-watersheds. Land use/land cover mapping has been carried out using IRS LISS III data of 1998. Based on morphometric and land use/land cover analysis and their ranks, the subwatersheds have been classified into four categories as very high, high, medium and low in terms of priority for conservation and management of natural resources. The prioritization results based on morphometry reveal that only SW7 and SW10 fall under very high priority, whereas SW6, SW11 and SW13 fall under very high priority on the basis of land use/land cover analysis. However on the integration of morphometry and land use/land cover only SW14 show common priority whereas rest have little or no correlation.  相似文献   

2.
Assessment of erosion status of a watershed is an essential prerequisite for integrated watershed management. It not only assists in chalking out suitable soil and water conservation measures to arrest erosion and conserve water but also helps in devising best management practices to enhance biomass production in watersheds. Keeping this in view, the present study has been undertaken by involving geospatial-statistical techniques to determine the critical and priority areas for soil and water conservation in Suketi watershed of the lower Himachal Himalayan region. A novel weighted sum analysis technique was used for ranking each of hydrological unit by obtaining the weightages from various morphometric parameters. This technique offers dynamic, effective and sustainable approach over traditional prioritization methods in which significance of each parameter were considered equally. Considering this approach, sub-watersheds were delineated into low, medium and high priority zones. The results illustrate that about 52 % of sub-watersheds of Suketi watershed are in moderate to high erosion and runoff susceptible zones. Therefore, these potential areas can be considered for preferential soil and water conservation planning. The results obtained from the study will be useful for various stakeholders such as agriculturists, water resource managers, conservation measures planners and decision policy makers for better management practices and decision making. The geospatial-statistical technique can be used for effective estimation of erosion status of watersheds leading to watershed prioritization for taking up soil and water conservation measures in watershed systems. Finally, this technique can be very useful in remote, rugged and inaccessible watersheds with absence of soil erosion and runoff monitoring.  相似文献   

3.
In this present study, Remote Sensing (RS) and Geographical Information System (GIS) techniques were used to update drainage and surface water bodies and to evaluate linear, relief and aerial morphometric parameters of the two sub-watersheds viz. Jilugumilli and Regulapadu in the northern part of West Godavari District, Andhra Pradesh. The area of Jilugumilli and Regulapadu watersheds spread over about 110 & 80 sq. km respectively. The morphometric analysis of the drainage networks of Regulapadu and Jilugumilli sub-watersheds exhibit sub-dendritic and sub parallel drainage pattern. The variation in stream length ratio changes due to change in slope and topography. It was inferred from the study that the streams are in a mature stage in Regulapadu and Jilugumilli watersheds, which indicated the geomorphic development. The variations in bifurcation ratio values among the sub-watersheds are described with respect to topography and geometric development. The stream frequencies for both sub-watersheds exhibit positive correlation with the drainage density, indicating increase in stream population with respect to increase in drainage density. The Jilugumilli watershed has a coarse drainage texture and Regulapadu sub-watershed is a fine drainage texture in nature. In the present study an attempt has been made to analyse the morphometric analysis of two sub-watersheds under different physiographic conditions. Morphometric analysis is one of the essential analyses required for development and management of watershed.  相似文献   

4.
《地学前缘(英文版)》2019,10(6):2167-2175
The sub-watershed prioritization is the ranking of different areas of a river basin according to their need to proper planning and management of soil and water resources.Decision makers should optimally allocate the investments to critical sub-watersheds in an economically effective and technically efficient manner.Hence,this study aimed at developing a user-friendly geographic information system(GIS) tool,Sub-Watershed Prioritization Tool(SWPT),using the Python programming language to decrease any possible uncertainty.It used geospatial-statistical techniques for analyzing morphometric and topohydrological factors and automatically identifying critical and priority sub-watersheds.In order to assess the capability and reliability of the SWPT tool,it was successfully applied in a watershed in the Golestan Province,Northern Iran.Historical records of flood and landslide events indicated that the SWPT correctly recognized critical sub-watersheds.It provided a cost-effective approach for prioritization of sub-watersheds.Therefore,the SWPT is practically applicable and replicable to other regions where gauge data is not available for each sub-watershed.  相似文献   

5.
Assessment of soil loss through Sediment Yield Index (SYI) is important for watershed planning, prioritization, and development. In the absence of measured sediment data, SYI expressing the relative sediment yield from different basins work as a basis for grading another basin to adopt erosion control measures. An attempt was made to evaluate SYI in wider scale by using cost-effective tools like remote sensing and geographical information system (GIS). SYI was calculated for Madia subwatershed, which consists of 29 microwatersheds and located in Sagar District, Madhya Pradesh (M.P.) The IRS LISS III data and Shuttle Radar Topography Mission (SRTM) digital elevation models (DEM) of 90-m resolution were used to identify land use characteristics and geomorphometric analysis. Major land use was observed as agricultural land (24.7 %), water bodies (16.7 %), forest area (10.2 %), and settlement (21.3 %). In categorization, similar overall accuracy was observed for dense forest, barren land, settlement, and water bodies. The highest SYI with a value more than 20 was observed in microwatershed Mw6, Mw7, and Mw24, which comprises 33 % of the total watershed area. It gives the information about the watershed area that requires very high priority.  相似文献   

6.
Delineation of Lake Karoun watershed in Egypt was carried out and various watershed parameters and environmental characteristics were extracted using geographic information system and remote sensing. Environmental characteristics including normalized vegetation index (NDVI), moisture index, land surface temperature, and land use classes were obtained from high spatial resolution images (Landsat TM). Moreover, hydrological parameters, drainage flow directions, drainage networks, and catchments from digital elevation model have been delineated using the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER) satellite images. As a result, the lake's watershed characteristics including the environmental and hydrological factors for each watershed zone were presented and analyzed. The information generated would be of immense help in hydrological modeling of watershed for prediction of runoff and sediment yield, thereby providing necessary inputs for developing suitable developmental management plans with sound scientific basis.  相似文献   

7.
An integrated morphometric and hypsometric analysis coupled with asymmetric factor used as a proxy for the landscape evolution of the catchment of Karuvannur River. The present study area is a sixth order tropical river in the central Kerala which supplies water and sediments to the Vembanad-Kol Ramsar site. The Karuvannur River Basin (KRB) has been divided into six sub-watersheds (SW). Morphometric parameters (areal, linear, and relief) and hypsometric and asymmetric factors are measured for the delineation of morphotectonic evolution of the area. High values of drainage density, texture, ruggedness number, and hypsometric integral with relatively high volume of leftover rocks in the basin in SW-II and SW-III compared to the entire basin of KRB imply that these two sub-watersheds have been influenced by the tectonic activities. Further, detailed asymmetric data indicated that these two watersheds are tilted in opposite direction. It may be the result of reactivation of Precambrian fault/lineament in recent past. This has been supported by recent tremors and neotectonic studies in Kerala. Moreover, detailed field evidence along with google imagery revealed that the entire basin is a part of regional anticline associated with PCSZ. Geomorphic response to disturbance will produce a sensible, recognizable response; it can be well studied in rivers through detailed study of their sensitivity or behavioral changes. Rivers have an enormous capacity to absorb perturbation and these types of studies are essential for identifying/measuring tectonic activities, sediment diffusion, surface runoff in a drainage basin, and as an important tool for target oriented micro watershed management.  相似文献   

8.
Geographical information system and remote sensing are proven to be an efficient tool for locating water harvesting structures by prioritization of mini-watersheds through morphometric analysis. In this study, the morphometric analysis and prioritization of ten mini-watersheds of Malesari watershed, situated in Bhavnagar district of Saurashtra region of Gujarat state, India, are studied. For prioritization of mini-watersheds, morphometric analysis is utilized by using the linear parameters such as bifurcation ratio, drainage density, stream frequency, texture ratio, and length of overland flow and shape parameters such as form factor, shape factor, elongation ratio, compactness constant, and circularity ratio. The different prioritization ranks are assigned after evaluation of the compound factor. Digital elevation model from Shuttle Radar Topography Mission, digitized contour, and other thematic layers like drainage order, drainage density, and geology are created and analyzed over ArcGIS 9.1 platform. Combining all thematic layers with soil and slope map, the best feasibility of positioning check dams in mini-watershed has been proposed, after validating the sites through the field surveys.  相似文献   

9.
The Asna river basin is located in Hingoli and Nanded districts of Marathwada region of Maharashtra. A geomorphometric analysis is an important method for the investigation and management of natural resources of watershed. The geomorphometric analysis of Asna river basin classifies three sub-basins that have been delineated using GIS and remote sensing through measurements of linear, aerial, and relief aspects. The Asna river basin comprises an area of 1187 km2 with seventh-order drainage pattern. As per Strahler classification, the upper part of the basin shows dendritic to sub-dendritic and the lower part exhibits parallel to sub-parallel drainage pattern. The total numbers of stream segments are 2422 and length of streams is 2187.92 km. The bifurcation value ranges from 1.26 to 5.58 indicating that there are no structural disturbances. The form factor value (0.49) indicates that the shape of the basin is moderately circular. The high values of drainage density, stream frequency, and low infiltration number indicate the high runoff due to impermeable lithology. The slope of the basin varies from 1 to 32.2%, terrain elevation ranges from 333 to 551 m, and overall relief of the basin is 218 m amsl. River sub-basin prioritization has an immense importance in natural resource management, especially in semi-arid regions. The present study is an attempt to prioritize the sub-basins of Asna river based on geomorphometric parameters. The weightage is assigned to different morphometric parameters of sub-basins based on erosion potential. The Asna river sub-basins have been classified into three categories as high, medium, and low on the basis of priorities for soil and water conservation. It is confirmed that sub-basin I is characterized as highly vulnerable to erosion and has high sedimentation load; sub-basin II has low priority, i.e., very low erodibility; and sub-basin III is of moderate type. The morphometric analysis and prioritization methods can be applied to hydrological studies in surface as well as subsurface water, climatic studies, rainwater harvesting, groundwater recharging sites, and watershed management.  相似文献   

10.
Water erosion is one of the main forms of land degradation in Algeria, with a serious repercussion on agricultural productivity. The purpose of this study is to estimate the soil loss of Wadi El-Ham watershed in the center of Algeria, this study aims also to evaluate the effectiveness and reliability of the use of the Revised Universal Soil Loss Equation (RUSLE) under a Geographic Information System in this field. The RUSLE model involves the main factors of erosion phenomena, namely, rain aggressiveness, soil erodibility, topographic factor, land cover index and the anti-erosive practices factor. Using this approach, the specific erosion in Wadi El-Ham watershed is estimated as 5.7 (t/ha/yr) in the entire watershed area. This result is compared to the measured suspended sediment at the Rocade-Sud gauging station situated outlet the watershed. These data consist of 1293 instantaneous measures of the water discharge and the suspended sediment concentration recorded during 21 years. Through this comparison, the used approach of RUSLE under GIS estimates the soil loss in Wadi El-Ham in Hodna region of Algeria with an error of 7.5%. Consequently, the results obtained in cartographic format make it possible to target the areas requiring priority action for a larger scale analysis to find appropriate solutions to combat erosion and to protect the natural environment.  相似文献   

11.
Land use change quantified for the last 50 years within and near a fast growing agricultural land in Neka River Basin, using geographic information systems. Land cover and land use change was projected for the next decade using topography, geology, land use maps and remote sensing data of the study area. The study explored the relationships between agricultural land growth and landscape changes. The land use changes assessed among the different land cover classes. It is important to mention that conducting of the present study a very severe land cover changes taken place as the result of agricultural land development. These changes in land cover led to the forest degradation of the study area. Relationship between land-use changes and agricultural growth offered a more robust prediction of soil erosion in Neka watershed. This study aims to find the relationships between land use pattern, erosion and the sediment yield in the study area. The land use coefficient has applied in the model of erosion potential method to forecast the effect of the land type to reduce the erosion. The results of this study indicated that the total sediment yield of the study area has notably decreased to 89.24 % after an appropriate land use/cover alteration. The estimated special erosion for the southern Neka Basin is about 144465.1 m3/km2 where after management policy is predicted 15542.9 m3/km2/y. Therefore, the total difference for the study area has estimated about 128922.2 m3/km2/y.  相似文献   

12.
Bago River is an important river in Myanmar. Although shorter than other rivers, it has its own river system, and people along the river rely heavily on it for their daily lives. The upper part of the watershed has changed rapidly from closed forest to open forest land in the 1990s. Since the recent degradation of the forest environment, annual flooding has become worse during the rainy season in Bago City. This paper aims at determining soil conservation prioritization of watershed based on soil loss due to erosion and morphometric analysis in the Bago Watershed by integrating remote sensing and geographic information system (GIS) techniques. In this study, soil erosion of the Bago watershed was determined using the Universal Soil Loss Equation. Such factormaps as rainfall, soil erodibility, slope length gradient, and crop management were compiled as input parameters for the modeling; and the soil loss from 26 sub-watersheds were estimated. Then, the soil erosion maps of the Bago watershed for 2005 were developed. The resulting Soil Loss Tolerance Map could be utilized in developing watershed management planning, forestry management planning, etc.  相似文献   

13.
Annual runoff in Luanhe river basin was detected a downward trend and caused water crisis in Tianjin, China. To quantify the decreased runoff volume, Mann–Kendall test and Pettitt test were employed to check whether there existed significant trend and change points for annual rainfall and runoff time series in Panjiakou reservoir basin and 8 sub-watersheds. It was found that the annual runoff time series had a significant downward trend at 5 % confidence level, and the change point was at 1979 in Panjiakou reservoir watershed. Then double mass curve of annual rainfall and annual runoff was plotted, and two lines were fitted before and after 1979, respectively. Based on this method, the comprehensive effects of land use/land cover change on annual runoff were estimated. To further quantify the contributions of each main factor to annual runoff decrease, water stored in check dams and social water use in different periods were surveyed first. And then multi-linear regression was used to develop the relations between annual runoff and the driven factors. Water area decrease was identified to be the main factor contributing to annual runoff reduction. The results in this study can provide valuable information for water resources planners and policy makers.  相似文献   

14.
Sediment discharge due to soil and rock erosion within the watersheds is the major cause of siltation in water reservoirs. Siltation in reservoirs reduces the capacity for power production, irrigation water supply, and other domestic purposes. Hypsometric analysis has widely been used to identifying the geomorphic development stages (stabilized, equilibrium, and un-stable) to assess the erosion proneness of watersheds. In this study, watershed of Kurram Tangi Dam and its four sub-watersheds (SWs) were considered to determine their sediment discharge capacity through hypsometric analysis. The boundaries of watershed and sub-watersheds were delineated from Digital Elevation Model (DEM). The hypsometric parameters i.e., hypsometric integral (HI) and curves were generated using Geographic Information System (GIS) techniques. The HI values of SW-1 (0.41) and SW-2 (0.36) indicated that these two SWs were relatively more prone to erosion and contributed higher sediment discharge in Dam siltation. The results were validated through sampling the main drainage channel (Kurram River) to determine the sediment concentration at 12 sites during summer, winter, and spring seasons. Comparison of HI and sediment concentration of SWs presented high correlation (R2?=?0.87). The results emphasized the effective watershed management, extensive afforestation, and construction of silt-control structures at appropriate locations in sub-watersheds. This will ultimately maintain the water and power generation capacity as well as extending the life span of the Dam.  相似文献   

15.
The natural resources are considered more efficient and appropriate for necessary survey and investigation for the assessment, subsequent planning and implementation of various developmental programmes. Hence, it is necessary to increase the land and water resources levels for future demands. Morphometric, land use/land cover and hydrogeomorphic analyses have been carried out by visual interpretation method of remote sensing data of IRS, 1D-LISS III and IRS, P6-LISS III, and FCCs of band combination 2, 3 and 4. The interpreted data is supplemented as well as cross checked by field visits. The remote sensing and GIS tool could be helpful in getting the precise and valuable spatial information in understanding the present scenario contemplating with the past data and predicting the future trends. Morphometric analysis was done to determine the drainage characteristics of Bankukara watershed. The drainage pattern of the study area is predominantly dendritic to sub-dendritic in nature; however, locally structurally controlled drainage pattern is also seen. The development of stream segments is affected by slope and local relief. The bifurcation ratio indicates that the drainage pattern is structurally controlled. The land use/land cover change detection for 2001 and 2005 showed an increase in uncultivated land by 1.37%, dense forest by 0.17%, wasteland by 1.46% and rock quarry by 0.10%. There has been a decrease in the area under cultivated land by 1.99%, open forest by 0.12%, open scrub by 0.54% and water body by 0.40%. Hydrogeomorphic units identified through visual interpretation of FCC include alluvial plain, valley fills, plateau, buried pediment, pediments and intermontane. Based on land use/land cover change detection and hydrogeomorphological mapping, the Bankukara watershed has qualitatively been categorized into four groundwater potential zones, viz. good to very good, moderate to good, poor to moderate and very poor to poor.  相似文献   

16.
The selected study area is a coastal watershed which receives high rainfall in the monsoon season. During this period, most of the water input to the watershed drains to the Arabian Sea without any adequate use due to the rugged topography of the watershed. Hence, an attempt has been made to assess the physical properties specifically morphometric parameters of the Gad watershed using geoinformatics techniques along with field evidence for understanding the relationship between fluvial landforms and hydro-physical parameters in the region. Morphometric parameters have been analyzed and integrated with physical parameters like topography, rainfall, soil, land use–land cover, geology, and geomorphology for evaluating the potential water resource availability in the Gad watershed. The results of the study have shown that there is high surface water availability in the watershed with very low water retaining capacity, mainly in the upper region of the watershed due to presence of basaltic bedrock and steep slopes. Based on this work, a water resource management plan has been suggested at a subwatershed level which established on the physical properties and morphological characteristics of the study area.  相似文献   

17.
Modified Universal Soil Loss Equation (MUSLE) application study is undertaken in order to estimate the sediment yield of the Kengir watershed in Iyvan City, Ilam Province, Iran. The runoff factor of MUSLE is computed using the measured values of runoff and peak rate of runoff at outlet of the watershed. Topographic factor (LS) and crop management factor(C) are determined using geographic information system (GIS) and field-based survey of land use/land cover. The conservation practice factor (P) is obtained from the literature. Sediment yield at the outlet of the study watershed is simulated for six storm events spread over the year 2000 and validated with the measured values. The high coefficient of determination value (0.99) indicates that MUSLE model sediment yield predictions are satisfactory for practical purposes.  相似文献   

18.
The assessment of freshwater resources in a drainage basin is not only dependent on its hydrologic parameters but also on the socio-economic system driving development in the watershed area; the socio-economic aspect, that is often neglected in hydrologic studies, is one of the novelties of this study. The aim of this paper is twofold: (1) presenting an integrated working methodology and (2) studying a local case of a North African watershed where scarce field data are available. Using this integrated methodology, the effects of climate and land use change on the water resources and the economic development of the Tahadart drainage basin in Northern Morocco have been evaluated. Water salinization, tourism, urbanization, and water withdrawals are a threat to water resources that will increase with future climate change. The Tahadart Basin (Morocco 1,145 km2) is characterized by rain-fed agriculture and by the presence of two water retention basins. Assessment of the effects of climate and land use change on this drainage basin was based on current and future land cover maps obtained from spatial interactions models, climate data (current and future; scenario A1b for the period 2080–2100), and hydrological models for water budget calculations. Land use suitability maps were designed assuming a A1b Special Report on Emissions Scenarios socio-economic development scenario. The most important conclusions for the period 2080–2100 are the following: (1) Freshwater availability within the watershed will likely be affected by a strong increase in evaporation from open water surface bodies due to increased temperature. This increase in evaporation will limit the amount of freshwater that can be stored in the surface reservoirs. (2) Sea level rise will cause flooding and salinization of the coastal area. (3) The risk for drought in winter is likely to increase. The methodology used in this paper is integrated into a decision support tool that is used to quantify change in land use and water resources.  相似文献   

19.
In Jakarta, climate change has been detected through rising air temperatures, increased intensity of rainfall in the wet season, and sea level rise. The coupling of such changes with local anthropogenic driven modifications in the environmental setting could contribute to an increased probability of flooding, due to increase in both extreme river discharge and sedimentation (as a result of erosion in the watersheds above Jakarta and as indicated by sediment yield in the downstream area). In order to respond to the observed and projected changes in river discharge and sediment yield, and their secondary impacts, adaptation strategies are required. A possible adaptation strategy is through policy making in the field of spatial planning. For example, in Indonesia, presidential regulation number 54 year 2008 (Peraturan Presiden Nomor 54 Tahun 2008—Perpres 54/2008) was issued as a reference for the implementation of water and soil conservation. This paper assesses the impact of climate and land cover change on river discharge and sediment yield, as well as the effects of Perpres 54/2008 on that river discharge and sediment yield. The spatial water balance model Spatial Tools for River Basins and Environmental and Analysis of Management Option was used for the runoff computations, whilst the Spatial Decision Assistance of Watershed Sedimentation model was used to simulate erosion, Sediment Delivery Ratio, and sediment yield. The computation period is from January 1901 to December 2005, at the scale of the following watersheds: Ciujung, Cisadane, Ciliwung, and Citarum. During the twentieth century, computed average discharge in the downstream area (near Jakarta) increased between 2.5 and 35 m3/s/month, and sediment yield increased between 1 × 103 and 42 × 103 tons/year. These changes were caused by changes in both land cover and climate, with the former playing a stronger role. Based on a computation under a theoretical full implementation of the spatial plan proposed by Perpres 54/2008, river discharge would decrease by up to 5 % in the Ciliwung watershed and 26 % in the Cisadane watershed. The implementation of Perpres 54/2008 could also decrease the sediment yield, by up to 61 and 22 % in the Ciliwung and Cisadane watersheds, respectively. These findings show that the implementation of the spatial plan of Perpres 54/2008 could significantly improve watershed response to runoff and erosion. This study may serve as a tool for assessing the reduction in climate change impacts and evaluating the role of spatial planning for adaptation strategies.  相似文献   

20.
This paper focuses on artificial groundwater recharge study in Ayyar basin, Tamil Nadu, India. The basin is covered by hard crystalline rock and overall has poor groundwater conditions. Hence, an artificial recharge study was carried out in this region through a project sponsored by Tamil Nadu State Council for Science and Technology. The Indian Remote Sensing satellite 1A Linear Imaging Self Scanning Sensor II (IRS 1A LISS II) satellite imagery, aerial photographs and geophysical resistivity data were used to prioritize suitable sites for artificial recharge and to estimate the volume of aquifer dimension available to recharge. The runoff water available for artificial recharge in the basin is estimated through Soil Conservation Service curve number method. The land use/land cover, hydrological soil group and storm rainfall data in different watershed areas were used to calculate the runoff in the watersheds. The weighted curve number for each watershed is obtained through spatial intersection of land use/land cover and hydrological soil group through GeoMedia 3.0 Professional GIS software. Artificial recharge planning was derived on the basis of availability of runoff, aquifer dimension, priority areas and water table conditions in different watersheds in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号