首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
岩浆(型)碳酸岩研究进展   总被引:19,自引:0,他引:19  
主要从岩石学,矿物学,岩石分类,C,O,Sr同位素,碳酸岩与矿化的关系等各方面对(碱性)碳酸岩的研究进行了较为全面的总结,并结合近20年来实验岩石等,流体包裹体研究,CO2^- H2O-NaCl流体体系的性质的研究,对碳酸岩岩浆的来源及成因,岩浆-热液的演化进行了分析和探讨,碳酸岩形成至少经历了三个阶段,即岩浆阶段,岩浆期后阶段(气相碳酸岩/岩浆热液阶段),交代碳酸岩阶段,而作为与碳酸岩在空间和成因上有密切联系的基性,超基性岩,碱性岩杂岩体,则经历了碳酸岩成岩阶段以前的岩浆不混熔作用,结晶分异作用,岩浆结晶作用以及碳酸岩形成之后的围岩蚀变(霓长岩化)作用。  相似文献   

2.
四川牦牛坪稀土矿床矿物流体包裹体研究   总被引:18,自引:0,他引:18  
对矿物流体包裹体进行分析的结果表明,牦牛坪稀土矿床的矿物中存在4种类型包裹体:(1)液-所耵;(2)液-气-固相;(3)纯气相;(4)固相,矿物包裹体显微测温结果显示牦牛坪矿床成矿温度从423℃至122℃;成矿流体的盐度ω(NaCl)为11.46%-14.36%质量分数,包裹体的成分分析结果显示流体中富含CO2和其他挥发性组分,并富含大量的不同成分的矿物雏晶,根据矿床地质特征和矿物包裹体的研究结果,作者认为本矿床的成矿作用是由碳酸岩岩浆气液流体的沸腾、充填和交代过程而实现的。  相似文献   

3.
山东微山稀土矿床成矿流体的演化及对成矿的制约   总被引:3,自引:0,他引:3  
山东微山稀土矿是我国三大轻稀土基地之一,产出有大量金属硫化物.本文在金属硫化物中富含银,且达到工业品位.流体包裹体研究表明,矿床内存在四类包裹体:含子矿物包裹体、含CO2包裹体、含SO42-包裹体,以及盐水溶液包裹体.盐水溶液包裹体与舍CO2包裹体的热力学特征存在较大差异,激光拉曼分析表明包襄体中的子矿物主要为硅酸盐,硫酸盐和碳酸盐矿物,重晶石产出含SO42-溶液包裹体,盐水溶液包裹体含有H2S,少量盐水溶液包裹体同时存在SO42-,HS-.硫同位素表明金属硫化物成矿流体属于碳酸盐热液分异流体同其他来源流体混合的产物.以上资料表明,微山矿床成矿流体经历了硅酸盐岩浆期、碳酸岩岩浆一热液过渡期、碳酸岩热液期、金属硫化物低温热液期,在不同期次内挥发分的富集和存在形式不同,导致碳酸岩岩浆-热液过渡期发生稀土矿化,低温热液期发生银矿化.因此,微山矿床属于与碱性岩有关的稀土-金(银)矿床.  相似文献   

4.
河南商城县汤家坪钼矿床地球化学特征与成矿模式   总被引:7,自引:0,他引:7       下载免费PDF全文
在研究商城县汤家坪大型钼矿床的赋矿岩体特征、成矿物质来源、成矿流体性质和成矿地球动力学背景的基础上,建立了矿床成岩成矿模式。研究发现汤家坪钼矿主成矿期石英包裹体,以CO2包裹体和含子矿物的多相包裹体为主,少量二相气液包裹体,主成矿期的成矿温度在260~419℃之间;包裹体盐度具有典型的双配分模式特征,其中含盐度介于32.6%~48.54%(NaCl)之间的含子矿物的多相包裹体基本代表含水的“岩浆”。成矿物质来源于元古宙大别片麻杂岩部分熔融而形成的富钼花岗岩浆。成矿流体为高温高盐度的初始岩浆水,中后期有大气降水加入。由此建立汤家坪钼矿床的成岩成矿模式为:大别片麻杂岩重熔形成岩浆源—伸展体制下岩浆侵入冷凝阶段—钾化及初始岩浆热液成矿阶段—大气降水加入的中后期成矿阶段。  相似文献   

5.
冕宁-德昌稀土(REE)矿带位于青藏高原东部,受川西一系列走滑断裂控制,大陆槽矿床是矿带中唯一位于南部的大型REE矿床。在前人研究基础上,结合近年来对整个稀土矿带地质填图和室内研究,重点对大陆槽矿床的成矿特征、赋矿围岩及其蚀变、矿石类型、成矿流体来源和流体包裹体演化等方面与同一矿带内的其它矿床进行了详细对比,进一步总结了碳酸岩型(含碳酸岩-正长岩杂岩体)REE矿床的成矿过程。大陆槽矿床的No.1号和No.3号矿体均位于碳酸岩-正长岩杂岩体内,分别由不同隐爆角砾岩筒所控制。以往研究认为两个矿体的碳酸岩-正长岩杂岩体侵位的年龄都在12Ma左右,本次研究发现在26.49±0.63Ma已经存在碳酸岩-正长岩杂岩体岩浆活动。大陆槽REE矿床受隐爆角砾岩构造活动和风化作用的影响,矿石类型以角砾岩型和风化型为主,脉石矿物和矿石矿物在手标本尺度和镜下很难辨认。通过野外观察、镜下矿物共生组合、包裹体显微测温等研究发现,大陆槽矿化过程和牦牛坪矿床相似,只是矿化规模较小,矿化阶段分为岩浆岩阶段-伟晶岩阶段(600℃)-高温热液阶段(450~350℃)-低温热液阶段(350℃),氟碳铈矿形成于热液阶段的晚期。根据伟晶岩阶段至热液阶段氟碳铈矿中流体包裹体的特征,发现多期次隐爆角砾活动导致大气降水和碳酸岩中脱出的CO_2的加入,使得成矿流体的密度(0.732~0.631g/cm~3)、压力(2436~101bar)逐渐降低,直至成矿。此外,岩相学观察和拉曼测试分析也表明包裹体从熔融包裹体过渡到含重晶石、萤石、天青石子晶的富CO_2包裹体、气液两相包裹体,显示了成矿流体由岩浆至热液的转化过程。大陆槽矿床中的包裹体阴离子以SO_4~(2-)为主,气体以CO_2为主,成矿流体中阳离子主要为K~+、Na~+、Ca~(2+)、Sr~(2+)、Ba~(2+)和稀土元素阳离子,表明流体属于SO_4~(2-)-CO_2-H_2O体系,与矿带中其它矿床的成矿流体体系一致。成矿流体的主要成分是岩浆水、大气水和碳酸岩脱碳作用形成的CO_2,后者导致热液方解石和氟碳铈矿的O同位素(氟碳铈矿和方解石:δ~(18)O=5.8‰~12.5‰)值升高。已有研究显示矿带中不同矿床的脉石矿物如重晶石、天青石的Sr-Nd-Pb同位素与碳酸岩-正长岩杂岩体的相关数值基本一致,表明这些脉石矿物来源于碳酸岩-正长岩杂岩体。多期次隐爆角砾岩化作用及大陆槽断裂相关的构造活动促进了成矿流体的循环,直接或间接导致了大陆槽隐爆角砾岩型和风化型矿石的形成。尽管在大陆槽和牦牛坪矿床可以识别出表生氧化阶段,但这一过程并不伴随稀土矿化,热液阶段才是稀土沉淀的主要阶段。研究还强调了碳酸岩发育的大陆槽No.3矿体和里庄矿床主要出现的霓长岩化与矿化无关,而牦牛坪矿床地表并无霓长岩化蚀变。在以往和本次研究的基础上,建立了川西碳酸岩-正长岩型稀土矿床的成矿模式。  相似文献   

6.
付瑞鑫  李宁波  牛贺才  单强  赵旭  刘堃 《岩石学报》2023,(10):2951-2967
赛马碱性杂岩体位于我国辽东半岛,是一个典型的铀-铌和稀土多金属矿化杂岩体,富含重稀土,其复杂的演化过程和稀土元素富集机制仍没有得到有效约束。本文对该碱性杂岩体中角闪辉石正长岩、正长岩、黑云正长岩、云霓霞石正长岩和异霞正长岩5类岩石及锆石的元素地球化学特征进行了系统研究,并开展了特征矿物包裹体的显微岩相学研究,旨在限定杂岩体母岩浆的演化路径,揭示稀土元素的富集机制。研究结果显示,赛马碱性杂岩体的母岩浆经历了由钾质碱性(角闪辉石正长岩、正长岩和黑云正长岩),到钾质过碱性(云霓霞石正长岩),向钠质过碱性(异霞正长岩)的充分演化。在演化过程中赛马碱性杂岩体母岩浆的体系状态发生了明显变化,碱性岩浆演化受流体不饱和的纯岩浆体系的控制,而过碱性岩浆岩则形成于流体过饱和的岩浆体系,且异霞正长岩母岩浆流体的饱和程度明显高于云霓霞石正长岩的母岩浆。研究还显示,钾质碱性岩浆稀土元素的地球化学行为主要受控于磷灰石等矿物的分离结晶,而成矿的钠质过碱性岩浆稀土、锆和铌等元素的富集成矿则主要受富CO_(2)的高盐度岩浆热液的控制。  相似文献   

7.
碱性岩是自然界中分布极少的一类岩石,其起源于富集地幔并与稀有金属矿床伴生,因此是揭示深地物质组成和过程难得的理想研究对象。本文介绍了一些涉及碱性岩的相关概念,着重介绍了与稀有金属(REE-HFSE)成矿最为密切的阿格帕质岩和麦斯克质岩;简要阐述了与成矿相关碱性岩浆的起源、结晶条件和岩浆性质、岩浆动力学过程以及伴生的碳酸岩;列举了一些与碱性岩有关的HFSE-REE矿床的矿物学特征、成矿岩浆过程及岩浆性质,着重介绍了碱性岩(包括碳酸岩)侵入体周围的霓长岩化作用,包括其岩石学特征、规模、空间分带性以及REE-HFSE元素的行为等,以期为这类矿床的勘探工作提供一定的启示。最后就一些碱性岩与REE-HFSE成矿方面值得重视的科学问题提出建议。  相似文献   

8.
在研究罗山县陡坡钼矿床的赋矿花岗岩岩体特征、矿床地球化学特征、成矿流体性质的基础上,初步总结了矿床成岩成矿模式。研究发现陡坡钼矿床主成矿期石英包裹体,含有CO_2包裹体、含子矿物的多相包裹体、二相气-液包裹体等三类包裹体。主成矿期的成矿温度在290℃~415℃之间;包裹体盐度w(NaCleq)介于1.40%~39.76%之间。成矿物质来源于下地壳物质的部分熔融而形成的含钼花岗岩浆,成矿流体为高温、高盐度的初始岩浆水,后期有雨水加入。由此建立陡坡钼矿床的成岩成矿模式为:在印支晚期古老片麻杂岩重熔形成富钼花岗岩岩浆源,在白垩世伸展减薄体制下,花岗岩岩浆开始侵入、冷凝固结,含钼岩浆热液沿构造裂隙沉淀富集,后期成矿阶段可能有雨水加入。  相似文献   

9.
包裹体常常作为研究成岩成矿流体性质的重要手段.最常用到的主矿物是石英、萤石、重晶石、方解石等矿物.由于这些矿物既可以在岩浆过程中也可以在热液过程、甚至在低温热液过程中形成,对研究岩浆热液的演化提出了极大的挑战.夕卡岩中常常发育各类长石,但由于各种条件的制约,很难发育理想的包裹体,所以,至今对长石中包裹体研究成果报道较少.  相似文献   

10.
冕宁-德昌稀土成矿带碳酸岩流体研究   总被引:1,自引:0,他引:1  
通过对四川冕宁-德昌稀土矿带主要矿物中包裹体岩相学、显微测温分析与包裹体成分分析,指出由岩浆碳酸岩分异出的成矿流体为富含高密度CO2、K、Na、SO42-和多种成矿元素的超临界流体,流体以高温、高压、超高盐度、富CO2为特征,从早期到晚期流体中CO2含量增加。结合前人对碳酸岩流体、稀土矿带周边新生代盆地中无机成因CO2气藏、富钾卤水、稳定同位素和隋性气体同位素研究成果,从碳酸岩流体的性质、流体体系、碳、氦同位素组成,初步探讨了碳酸岩流体与周边新生代盆地中CO2气藏、富钾卤水的成因联系。  相似文献   

11.
Vulture volcano displays a wide range of mafic to alkaline, carbonate-, and/or CaO-rich volcanic rocks, with subvolcanic and plutonic rocks together with mantle xenoliths in pyroclastic ejecta. The roles of magmatic volatiles such as CO2, S, and Cl have been determined from compositions and trapping temperatures of inclusions in phenocrysts, which include the Na-K-Ca-carbonate nyerereite within melilite. We surmise that this alkali carbonate crystallised from an appropriate carbonatitic melt at relatively high temperature. Carbonatitic metasomatic features are traceable throughout many of the mantle xenoliths, and various carbonatitic components are found in the late stage extrusive suite. There is no evidence that alkali carbonatite developed as a separate magma, but it may have been an important evolutionary stage. We compare the rare occurrence of nyerereite at Vulture with other carbonatites and with an unaltered kimberlite from the Udachnaya pipe. We review the evidence at Vulture for associated carbonatitic metasomatism in the mantle, and we suggest that low viscosity alkali carbonatitic melts may have a primary and much deeper origin than previously considered.  相似文献   

12.
Natrocarbonatite flows in the crater of the volcano Oldoinyo Lengai (Tanzania) are the only carbonatite magmas observed to erupt and have provided strong arguments in favor of a magmatic origin for carbonatite. The currently favored explanation for the genesis of these carbonatites by liquid immiscibility between a silicate and a carbonatite melt is questioned based on the extremely low eruption temperatures of 544-593 °C and compositional and mineralogical characteristics not in agreement with experimental constraints. Experimental investigations of the relationship between Oldoinyo Lengai natrocarbonatite and related silicate rock compositions do indicate that alkali-bearing peralkaline carbonatite with liquidus calcite can form by liquid immiscibility. At the same time, these experiments result in evidence which speaks against a liquid immiscibility origin for the highly alkaline and peralkaline Oldoinyo Lengai natrocarbonatite. On the carbonatite side of the miscibility gap, fractional crystallization cannot account for a liquid evolution from alkali-bearing peralkaline carbonatite to highly alkaline natrocarbonatite. Such an evolution does not seem to be compatible with the liquidus mineral assemblages and the chemistry of Oldoinyo Lengai natrocarbonatite. No natural silicate magma is known to produce natrocarbonatite compositions by liquid immiscibility. The best interpretation of the Oldoinyo Lengai natrocarbonatite flows involves expulsion of a cognate, mobile, alkaline, and CO2-rich fluid condensate. This conclusion is supported by recent studies of silicate and carbonatite melt inclusions in minerals of ultramafic alkaline complexes, trace element partitioning, isotopic constraints, and by experimental data on major element partitioning between coexisting H2O-CO2-rich fluid and carbonatitic melt. In contrast to all other suggested modes of formation, an origin of Oldoinyo Lengai natrocarbonatite from cognate fluid appears best to be in agreement with the field observations, the petrography, mineralogy, and geochemistry of Oldoinyo Lengai natrocarbonatite and the dynamics of the Oldoinyo Lengai natrocarbonatite extrusion.  相似文献   

13.
Carbonatite magmas precipitate silicates, in addition to the abundant carbonates, oxides, and phosphates. Calculated silica activities for equilibria involving silicates and a silica component in magmatic liquids predict specific assemblages for silicate and oxide phases in carbonatites. These assemblages provide tests of alternative sources (carbonatite magma, coeval silicate magma, or older rock) for silicate minerals in carbonatites. Quartz, feldspars, and orthopyroxene are unlikely to be primary magmatic phases in carbonatites, because the silica activity in carbonatite magmas is too low to stabilize these minerals. Zircon and titanite should be unstable relative to baddeleyite and perovskite, respectively, but they do occur in carbonatites. Liquids dominated by carbonate are strongly nonideal with respect to dissolved silica. Consequently, activity coefficients for a silica component in carbonatite liquids are >>1, so that small mole fractions of SiO2 translate into silica activities sufficient to stabilize phlogopite, clinopyroxene, amphibole, monticellite, and forsterite, among other silicates. Examination of silicate mineral assemblages in carbonatites in the light of silica activity indicates that many carbonatites are contaminated by solid silicate phases from external sources but these xenocrysts can be discriminated from magmatic minerals.  相似文献   

14.
Baerzhe Be–Nb–Zr–REE deposit is hosted in alkaline granite (125 Ma) which intrudes in the late Jurassic Baiyingaolao Formation in the middle of the Great Hinggan Metallogenic Belt in China. The ore‐forming granite consists of three lithological facies: arfvedsonite‐bearing alkaline granite at the bottom, aegirine‐bearing albite aplite in the middle and pegmatite crust on the top. The albite aplite is the main orebody. We recognized three magmatic‐hydrothermal stages: orthomagmatic stage, late‐magmatic stage and hydrothermal stage, with the late‐magmatic stage being divided into two substages, the pegmatite substage and the aplite substage. Petrographic study on the granite, the microthermometric study on fluid inclusions and in situ laser‐ablation inductively coupled plasma mass spectrometry analysis for quartz‐hosted melt inclusions reveal the process of magmatic‐hydrothermal evolution. The finding indicates that primary magma evolved to more peralkaline by fractional crystallization, with synchronously increasing high field strength elements. An extremely high content of Zr and Nb are in the melt inclusions from last stage albite aplite (Zr, min 52 548 ppm, and Nb, min 4104 ppm). This implies that the residual magma directly formed the orebody of rare metal elements. Meanwhile, volatility was increasing during the magma evolution process and F‐bearing aqueous fluid was oversaturated at temperatures higher than 800°C. The separation of fluid from magma caused Li‐REE enrichment in F‐bearing fluid and depletion in residual melt, and led to the difference of the Y/Ho ratio between whole rock compositions and melt inclusion data. Fluid separated into a high‐salinity liquid and a low density vapor phase above 697°C, and enriched REE in the high‐salinity liquid. The oxygen isotope data shows mixing between primary magmatic‐hydrothermal fluid and meteoric water. The ubiquitous pseudo‐secondary fluid inclusions have a wide range of salinity below 462°C, which is similar to the melting temperatures of REE‐bearing daughter minerals. A model involving the mixing by meteoric water could be a mechanism for precipitation of REE minerals.  相似文献   

15.
The origin and sources of the Il’mensky-Vishnevogorsky miaskite-carbonatite complex, one of the world’s largest alkaline complexes, with unique rare-metal and colored-stone mineralization and Nb, Zr, and REE deposits, are discussed in this paper. Geochemical and isotopic studies, including of Nd, Sr, C, and O isotopes, as well as estimation of PT formation conditions, of miaskites and carbonatites from various deposits of the Il’mensky-Vishnevogorsky Complex have been carried out. The Vishnevogorsky, Potaninsky, and Buldym Nb-REE deposits and the Il’mensky, Baidashevo, and Uvil’dy occurrences related to carbonatites were investigated. Their geological setting, composition, and ore resource potential are characterized. The genetic models and typical features of the Il’mensky-Vishnevogorsky Complex are considered. The rocks of the Il’mensky-Vishnevogorsky Complex were formed at T = 1000?230°C and P = 2–5 kbar. Carbonated miaskite melt was divided into immiscible silicate and carbonate liquids at T = 1000°C and P = 5 kbar. Miaskite crystallized at T = 850?700°C and P = 3.5–2.5 kbar. The formation temperature of carbonatite I of the Vishnevogorsky pluton was close to the temperature of miaskite crystallization (700–900°C). The crystallization temperature of carbonate-silicate rock and carbonatite I in the Central alkaline tract was 650–600°C. The formation temperature of carbonatite II varied from 590 to 490°C. Dolomite-calcite carbonatite III and dolomite carbonatite IV of the Buldym massif were formed at T = 575?410°C and T = 315?230°C, respectively. The geochemical features of carbonatites belonging to the Il’mensky-Vishnevogorsky Complex differ from those of carbonatites related to alkaline ultramafic rocks and are close to those of carbonatites related to nepheline syenite or carbonatites localized in linear fracture zones. A high Sr content in early carbonatites along with relatively low Ba, Nb, Ta, Ti, Zr, and Hf contents and a certain enrichment in HREE (a low La/Yb ratio) in comparison with carbonatites of the alkaline ultramafic association are typical. The geochemistry of carbonatites of the Il’mensky-Vishnevogorsky Complex corresponds to the trend of geochemical evolution of carbonatitic melts and their fluid derivatives. The Sr, Nd, C, and O isotopic compositions indicate a mantle magmatic source of the Il’mensky-Vishnevogorsky Complex and participation of moderately depleted mantle (DM) and enriched mantle EM1 in magma generation. Carbonatite and miaskite of the Vishnevogorsky pluton are related to the DM magma source, and carbonatite of the Buldym massif, to the EM1 source, probably, involved in the plume ascent.  相似文献   

16.
火成碳酸岩的实验岩石学研究及对地球深部碳循环的意义   总被引:3,自引:0,他引:3  
宋文磊  许成  刘琼  王林均  吴敏  曾亮 《地质论评》2012,58(4):726-744
火成碳酸岩是地表出露较少的幔源岩石之一。实验岩石学研究表明碳酸盐化的橄榄岩和循环的地壳物质(如碳酸盐化榴辉岩或泥质岩)的低程度(<1%)部分熔融均可以产生碳酸岩质的熔体,其中碳酸盐化泥质岩具有最低的熔融温度且更加富碱质、CO2和不相容元素;富CO2的霞石质等硅酸盐岩浆也可以通过不混溶或分离结晶作用产生碳酸岩,用于解释碳酸岩在空间中常与碱性硅酸岩的共生关系。由于碳酸岩熔体具有极低的粘度和高的活性,形成后在上升过程中会将二辉橄榄岩转变为异剥橄榄岩,是引起地幔交代作用和地幔地球化学不均一性的重要介质之一。实验表明在俯冲作用过程中,大多数的碳酸盐在位于岛弧之下的含水熔融并不分解而是被带入到深部地幔并且稳定存在,含碳地幔的熔融又会形成碳酸岩质的熔体,这说明俯冲循环物质可能对碳酸岩的成因也起着重要的作用。然而,对于碳酸岩的初始熔体成分、岩浆演化、地幔交代作用、成矿特征以及碳从地球深部返回到地表的途径和过程等都存在着很大的争议。我国火成碳酸岩出露相对较多,分布广泛,因此,加强我国碳酸岩以及伴生硅酸岩的成因研究,同时开展与碳酸岩相关的实验岩石学工作,不仅可以检验现有的成因理论,而且有助于提高我国对火成碳酸岩的研究水平;由于其特殊的成因背景,还可为许多存在很大争议的重大地质事件提供新的科学依据。  相似文献   

17.
火成碳酸岩及其风化产物是全球战略性关键金属稀土元素(REE)和铌(Nb)的主要来源。因此,对关键金属在火成碳酸岩中的超常富集机理研究具有重要的科学意义。研究表明成矿碳酸岩常常与碱性杂岩体存在密切的时空联系,因而母岩浆应属于碳酸盐化的硅酸盐岩浆,并以霞石岩岩浆为主。针对碳酸岩关键金属矿床的成岩成矿过程,已有实验发现母岩浆在地壳内的演化过程中,既可以通过分离结晶作用,也可以通过液态不混溶作用形成碳酸岩。然而,更加接近自然样品的多组分体系的实验均表明液态不混溶作用总是先于碳酸盐矿物分离结晶作用。因此,液态不混溶作用对关键金属成矿过程有着不可忽视的作用。尽管如此,已有不混溶实验表明当碳酸盐熔体和硅酸盐熔体发生不混溶之后,关键金属REE与Nb总是优先分配到硅酸盐熔体(碱性岩)中,但是在成矿杂岩体中,REE与Nb是高度富集在碳酸岩中。虽然不混溶实验表明REE与Nb在碳酸盐-硅酸盐熔体中的分配系数与含水量有关,即与熔体的聚合程度有关,但是绝大部分成矿碳酸岩成矿过程一般并不富水,所以碳酸岩中REE和Nb等关键金属元素超常富集的机理并不明确。因此未来的研究应重点关注在碳酸岩演化的过程中,除了水以外,其他配体对于关键金属元素在不混溶硅酸盐-碳酸盐熔体之间分配系数是否有影响,从而找到控制碳酸岩中关键金属成矿的关键。  相似文献   

18.
山东昌乐新生代玄武岩内的刚玉巨晶(蓝宝石)中含有多种类型熔融包裹体,其成分对了解华北深部地幔交代过程中的流/熔体性质和刚玉母岩浆特点具有重要意义.详细的岩相学和激光拉曼分析鉴定出一类富碳酸盐和硫酸盐成分的原生熔融包裹体以及一类含硫酸盐和氯化物等成分的次生熔融包裹体,二者同时还含有CO2和H2O.碳酸盐和硫酸盐成分在世界范围玄武岩内刚玉巨晶中是首次发现,结合已有的包裹体稀有气体同位素和测温资料,反映两种成分可能来源于交代地幔的碳酸岩熔体,预示着华北深部地幔不仅经历了硅酸盐成分的交代还经历了富碳酸盐和硫酸盐成分(碳酸岩)的交代,同时也显示刚玉母岩浆成分复杂,至少有富这两类成分物质的参与,刚玉很可能是硅酸盐岩浆/岩石和幔源碳酸岩岩浆相互作用的产物,后被玄武岩喷发携带至地表.  相似文献   

19.
Kerimasi calciocarbonatite consists principally of calcite together with lesser apatite, magnetite, and monticellite. Calcite hosts fluid and S-bearing Na–K–Ca-carbonate inclusions. Carbonatite melt and fluid inclusions occur in apatite and magnetite, and silicate melt inclusions in magnetite. This study presents statistically significant compositional data for quenched S- and P-bearing, Ca-alkali-rich carbonatite melt inclusions in magnetite and apatite. Magnetite-hosted silicate melts are peralkaline with normative sodium-metasilicate. On the basis of our microthermometric results on apatite-hosted melt inclusions and forsterite–monticellite phase relationships, temperatures of the early stage of magma evolution are estimated to be 900–1,000°C. At this time three immiscible liquid phases coexisted: (1) a Ca-rich, P-, S- and alkali-bearing carbonatite melt, (2) a Mg- and Fe-rich, peralkaline silicate melt, and (3) a C–O–H–S-alkali fluid. During the development of coexisting carbonatite and silicate melts, the Si/Al and Mg/Fe ratio of the silicate melt decreased with contemporaneous increase in alkalis due to olivine fractionation, whereas the alkali content of the carbonatite melt increased with concomitant decrease in CaO resulting from calcite fractionation. Overall the peralkalinity of the bulk composition of the immiscible melts increased, resulting in a decrease in the size of the miscibility gap in the pseudoquaternary system studied. Inclusion data indicate the formation of a carbonatite magma that is extremely enriched in alkalis with a composition similar to that of Oldoinyo Lengai natrocarbonatite. In contrast to the bulk compositions of calciocarbonatite rocks, the melt inclusions investigated contain significant amount of alkalis (Na2O + K2O) that is at least 5–10 wt%. The compositions of carbonatite melt inclusions are considered as being better representatives of parental magma composition than those of any bulk rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号