首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Gibbsite mineralization is found in the Um Bogma region, southwestern Sinai, predominantly in the Um Bogma Formation, and to a lesser extent also in the Abu Thora Formation, at the base of a carboniferous sequence. This region is well known for the manganese ore lenses which occur in the dolomite beds at the base of the Um Bogma Formation. The gibbsite generally occurs in discordant veins and pockets within the dolomite. Most of the gibbsite bodies are associated with N-NW Tertiary faults or joints, and with dyke contacts and planes of weakness. The common associated minerals are clays, predominantly kaolinite, gypsum, halite, manganese and iron oxides. In the gibbsite, Pb, Zn and Cu are anomalously high, as is the fluoride content identified in the clay fraction. From stratigraphic, tectonic, petrographic and geochemical evidence it is concluded that the gibbsite mineralization took place during the Tertiary and is of hypogene origin. This hypogene activity also caused intensive leaching and alteration of the Um Bogma dolomites and remobilization of Mn + Fe ore bodies. This interpretation is reinforced by the geochemical similarities of the hot springs and trapped formation waters in the Nubian Sandstones along the Gulf of Suez.  相似文献   

2.
埃及西奈半岛西南部Um Bogma地区是埃及著名的金属与非金属矿产区,区内盛产锰铁矿、铜矿、铀矿、高岭石和石英砂等矿产,铀矿化与三水铝石体关系密切.通过详细的野外地质调查和室内分析鉴定,从三水铝石体和铀矿(化)体的时空分布、结构构造、矿物组成、化学成分、稀土元素及微量元素特征等方面,分析探讨了该地区三水铝石体与铀矿(化)体的内在联系,认为该地区广泛发育于石炭系Um Bogma组中的三水铝石体是红土化作用的结果,铀矿化与三水铝石体的关系十分密切,富含三水铝石、高岭石、蒙脱石等粘土矿物的三水铝石体是铀的良好聚集剂,在长期的表生风化过程中,从岩石活化淋滤出来的铀以微粒及超显微颗粒逐渐被三水铝石体所吸附而形成铀矿(化)体.  相似文献   

3.
The mobilization, redistribution and fractionation of trace elements during chemical weathering processes have been investigated on a 4.05 m thick terra rossa profile overlying dolomite on the Yunnan-Guizhou Plateau, in Southwest China. In this in situ weathering profile, the ferromanganese concretions and the gibbsite spots coexist in the terra rossa saprolite. The mass-balance evaluation reveals that titanium, Nb and Hf in the terra rossa matrix are conservative elements during chemical weathering compared to Zr. The elements of Li, Sc, V, Cr, Fe, Ga, As, Mo, Cs, Ce, Ta, Tl, Pb and Th in the terra rossa matrix include additions from external sources. Beryllium, Mn, Co, Ni, Cu, Rb, Ba and La are depleted in the shallow parts of the terra rossa profile and enriched in the deep parts. The elements of Zn, Sr, Y, Cd, Sn and U in the terra rossa profile are lost during weathering. Compared to the terra rossa matrix, the ferromanganese concretions are significantly enriched in most trace elements, especially Mn, Co, Cd, Ce, Tl and Pb. In contrast, the gibbsite spots are depleted in all trace elements, except for U. The results regarding specific inter-element relationships indicate that most trace elements have different inter-element relationships in the ferromanganese concretions, the gibbsite spots and the terra rossa matrix. This suggests that the behavior of many trace elements during mobilization and redistribution differs from their behavior during incorporation into secondary mineral phases, especially the Mn and Fe oxides and/or oxyhydroxides in the ferromanganese concretions. It is worthy to note that the fractionation between Ce and Mn occurs under intensive chemical weathering conditions. Correspondingly, beryllium exhibits a similar geochemical behavior as that of rare earth elements (except for Ce) and Y during surface weathering.  相似文献   

4.
The study focuses on the lateral distribution and the environmental geochemistry of seven heavy metals: Fe, Mn, Cu, Co, Ni, Pb, and Zn in addition to Al in the stream sediments of Wadi Allaqi. Forty-two samples were collected from the upstream, the midstream, and the downstream of this Wadi. Results of the grain size analysis show that the sediments of Wadi Allaqi are fine to medium sand. The heavy metals content reflects the weathering impact on the hinterland. The highest concentrations of Fe, Al, Mn, Cu, Pb, and Zn are recorded in the midstream that is dominated by clastics of felsic and intermediate composition. Moreover, the downstream, occupied by ultrabasic–basic rocks, shows the highest averages of Co and Ni. These results suggest that the felsic and intermediate rocks are the main source of the former metals, whereas the ultrabasic–basic rocks are the source of later two metals. All the analyzed heavy metals have average concentrations lower than their backgrounds, except for Co and Pb. The pollution level by these heavy metals has been evaluated using enrichment ratio (ER), pollution load index (PLI), and index of geoaccumulation (Igeo). The calculated values of ER, CF, PLI, and Igeo indicate that Wadi Allaqi sediments are almost pristine except occasional feeble pollution level by Co and Pb.  相似文献   

5.
The Carboniferous carbonates of the Um Bogma Formation of the west-central Sinai include two rock successions. The lower succesion consists of karstic carbonates, intrakarstic products, weathering varieties, manganese deposits, and soil cover. The lower karstic rocks and the associated soil cover are preserved under a rhythmic alternation of dolostone and shale forming the upper rock succession of the Um Bogma Formation. The all over congruent relations between the manganese deposits and the fossilized karst profile, karst products, and the associated pedogenesis demonstrate the role of weathering in the accumulation of these deposits during Carboniferous karstification. It is clear that the manganese oxides were deposited during the mature stage of Carboniferous karstification, i.e., during the soil formation, preceeding initial diagenetic change of the karstic rocks and final deposition of the related late-diagenetic caliche cement. The geochemical behavior of Mn during the karstification and the microbiological processes involved in pedogenesis played an essential role in the concentration of the manganese ore in the subsoil horizon of the paleokarst profile. The Um Bogma Formation has been subjected to another episode of karstification during the Quaternary and resulted in lowering of the landforms of the Carboniferous carbonates and destruction of the Carboniferous karst and the associated manganese deposits in some localities.  相似文献   

6.
Paleozoic rocks in the Wadi El Sahu area are affected by many major faults in different directions. A reverse fault trending NE-SW is exposed for about 300 m of its length as it cuts through the Abu Hamata and Adedia formations on the south side of Wadi El Sahu. A secondary ascending hydrothermal solution carrying heavy metals and radioactive minerals passed through the fault plain and the surrounding fractures, forming mineralized and radioactive zone. The mineralized zone thickness ranges from 60 cm to 200 cm along the fault plain. These rocks were analyzed radiometrically using a portable gamma-ray spectrometer, chemically by employing ICP-ES and ICP-MS, as well as mineralogically by both binocular and Environmental Scanning Electron microscope. Gold content was also determined by fire assay. REE and U contents reached up to 2682 and 1216 ppm, respectively. Mineralogical investigations indicated the presence of uraninite, torbernite, autunite, sklodowskite, kasolite as uranium minerals, thorite as a thorium mineral, monazite, allanite and xenotime as REE-bearing minerals, zircon and columbite as accessory minerals, gold and nickel as precious and base metals, in addition to cassiterite, chalcopyrite, chalcocite and chrysocolla. High REE and U contents are attributed to the circulation of epigenetic U and REE-bearing hydrothermal solutions along the fault plain and its surrounding fractures. Hydrothermal alteration processes could then be confirmed by the presence of the M-type tetrad effect in the REE-patterns of the ferruginous sandstone. The non-chondritic ratio of Nb/Ta, Zr/Hf and Y/Ho in the studied sandstone may be attributed to the tetrad effect. The Ce and Eu anomaly with unusual REE-patterns was represented by the presence of conjugated M-W tetrad effects, indicating either the dual effect of hydrothermal solutions or groundwater with seawater. The results clarify that the tetrad-effects could be used as evidence for the environment of deposition and as an indication for gold mineralization.  相似文献   

7.
The volcanic-hosted massive sulphide (VHMS) deposits in the Eastern Desert of Egypt (e.g., Um Saki deposit) are associated with Precambrian coarse acid pyroclastic rocks. The upper contacts of the massive sulphide body are sharp and well-defined; while the keel zone to the mineralization is always associated with pervasive alteration, characterized by the presence of septechlorite and talc, associated with variable amounts of carbonate and tremolite. On the other hand, the economic talc deposits in Egypt are hosted intensively altered volcanic rocks. Besides talc, chlorite, carbonates and tremolite that occur in variable amounts in these deposits, anomalously high concentrations of gold are also present.The present study showed that alterations in the talc deposits of Darhib, El Atshan, Abu Gurdi, Egat, Um Selimat and Nikhira are similar to those occurring in the keel zone underlying the VHMS of Um Samuki and that the chemical modifications due to alteration processes (additions of Mg, Fe, Mn and Ca coupled with depletions in silica, alkalies, alumina and titanium) are comparable, even the host rocks are different, thus reflecting a genetic relationship. It is suggested that, the examined localities of talc deposits are hosted in the intensively altered volcanics in the keel zones of volcanogenic massive sulphide deposits. Recently, detailed geophysical prospecting program, including electric (resistivity, self-potential and induced polarization), electromagnetic and magnetic methods, was carried out at Darhib, Abu Gurdi and Um Selimat talc deposits. The quantitative interpretation of these geophysical measurements revealed the presence of subsurface bodies of sulphides. The present distribution of talc and allied minerals in Darhib, El Atshan, Abu Gurdi, Egat, Um Selimat and Nikhira could be explained by a tectonic process in which the coarse acid pyroclastic rocks with massive sulphides have tilted in such way that the footwall rock alterations (talc and allied minerals) are exposed on the present-day surface at these localities. Structural studies are currently under way in an attempt to explain the deformation regime that led to the present situation of talc deposits.Two distinct spatial and mineralogical associations of gold mineralization could be identified in the volcanogenic massive sulphide deposits and their footwall alterations (the keel zone) in the Eastern Desert of Egypt. These are (1) gold–silver–zinc association, and (2) gold–copper association. In the former, gold grades are very low and silver is anomalous. This association occurs typically in the upper levels of the VHMS deposit where low-temperature sulphides are abundant. Gold was deposited because of the mixing between the ascending hot solutions and the sulphate-rich seawater. The upper levels of Um Samuki sulphide body represent this association. Gold–copper association, on the other hand, typically occurs in the footwall altered rocks (the keel zone) and the lowest parts of the massive sulphide body. Gold grades reach up to 5.54 ppm, but the average is 1 ppm. Silver is very low, usually in the range of 4–10 ppm. Lead usually, but not always, accompanies gold in this association. Deposition of gold probably took place due to decreasing of temperature and/or increasing pH of the ascending hot brines. The keel zones at Darhib, Abu Gurdi, El Atshan, Um Selimat, Nikhira and Egat talc mines better represent this association.  相似文献   

8.
The distribution of trace elements in the lower Eocene coal seam mined in the Yeniceltek, Kucukkohne and Ayridam coal mines from the Sorgun Basin was investigated in relation to ash content and maceral composition. The coal seam is mainly composed of huminite. In the present study, 35 samples from five seam sections were collected on the basis of megascopic characteristics. Results were determined using an energy dispersive polarised X-ray fluorescence (EDP-XRF) spectrometer on a whole-coal dry basis. Most of the major and trace elements studied are enriched in high-ash samples, while Ba, Br, Mn and W show relative enrichments in low-ash samples. Most of elements studied, such as Ga, Ce, La, Th, Nb, Rb, Zr, V, Cu, U, Pb, Sb, Cs, Sn, Cr, Se, Y and Zn, are primarily associated with mineral matter (clay minerals). Arsenic and a part of Zn, Se and Sb are probably concentrated in pyrites in the samples. Element concentrations show statistically significant negative correlations with many macerals and positive relationships with only attrinite that is mainly mixed with mineral matter (clay minerals and small quartz grains) in the samples. Nine trace elements (As, Cr, Mn, Ni, Pb, Sb, Se, Th and U), considered as potentially Hazardous Air Pollutants, are present in low to moderate concentrations. The mean values of trace element concentrations display relative enrichments in Se (2.8 ppm), Th (21 ppm) and W (26 ppm) in the investigated samples in comparison with other coals in the world.  相似文献   

9.
The Pliocene aquifer receives inflow of Miocene and Pleistocene aquifer waters in Wadi El Natrun depression. The aquifer also receives inflow from the agricultural activity and septic tanks. Nine sediment samples were collected from the Pliocene aquifer in Wadi E1 Natrun. Heavy metal (Cu, Sr, Zn, Mn, Fe, Al, Ba, Cr, Ni, V, Cd, Co, Mo, and Pb) concentrations of Pliocene aquifer sediments were investigated in bulk, sand, and mud fractions. The determination of extractable trace metals (Cu, Zn, Fe, Mn, and Pb) in Pliocene aquifer sediments using sequential extraction procedure (four steps) has been performed in order to study environmental pathways (e.g., mobility of metals, bounding states). These employ a series of successively stronger chemical leaching reagents which nominally target the different compositional fractions. By analyzing the liquid leachates and the residual solid components, it is possible to determine not only the type and concentration of metals retained in each phase but also their potential ecological significance. Cu, Sr, Zn, Mn, Fe, and Al concentrations are higher in finer sediments than in coarser sediments, while Ba, Cr, Ni, V, Cd, Co, Mo, and Pb are enriched in the coarser fraction. The differences in relative concentrations are attributed to intense anthropogenic inputs from different sources. Heavy metal concentrations are higher than global average concentrations in sandstone, USEPA guidelines, and other local and international aquifer sediments. The order of trace elements in the bulk Pliocene aquifer sediments, from high to low concentrations, is Fe?>?Al?>?Mn?>?Cr?>?Zn?>?Cu?>?Ni?>?V?>?Sr?>?Ba?>?Pb?>?Mo?>?Cd?>?Co. The Pliocene aquifer sediments are highly contaminated for most toxic metals, except Pb and Co which have moderate contamination. The active soluble (F0) and exchangeable (F1) phases are represented by high concentrations of Cu, Zn, Fe, and Mn and relatively higher concentrations of Pb and Cd. This may be due to the increase of silt and clay fractions (mud) in sediments, which act as an adsorbent, retaining metals through ion exchange and other processes. The order of mobility of heavy metals in this phase is found to be Pb?>?Cd?>?Zn?>?Cu?>?Fe?>?Mn. The values of the active phase of most heavy metals are relatively high, indicating that Pliocene sediments are potentially a major sink for heavy metals characterized by high mobility and bioavailability. Fe–Mn oxyhydroxide phase is the most important fraction among labile fractions and represents 22% for Cd, 20% for Fe, 11% for Zn, 8% for Cu, 5% for Pb, and 3% for Mn. The organic matter-bound fraction contains 80% of Mn, 72% of Cu, 68% of Zn, 60% of Fe, 35% of Pb, and 30% of Cd (as mean). Summarizing the sequential extraction, a very good immobilization of the heavy metals by the organic matter-bound fraction is followed by the carbonate-exchangeable-bound fraction. The mobility of the Cd metal in the active and Fe–Mn oxyhydroxide phases is the highest, while the Mn metal had the lowest mobility.  相似文献   

10.
11.
The Um Rus tonalite-granodiorite intrusion(~6 km2)occurs at the eastern end of the Neoproterozoic,ENE-trending Wadi Muba rak shear belt in the Central Eastern Desert of Egypt.Gold-bearing quartz veins hosted by the Um Rus intrusion were mined intermittently,and initially by the ancient Egyptians and until the early 1900 s.The relationship between the gold mineralization,host intrusion,and regional structures has always been unclear.We present new geochemical and geochronological data that help to define the tectonic environment and age of the Um Rus intrusion.In addition,field studies are integrated with EPMA and LA-ICP-MS data for gold-associated sulfides to better understand the formation and distribution of gold mineralization.The bulk-rock geochemical data of fresh host rocks indicate a calc-alkaline,metaluminous to mildly peraluminous,I-type granite signature.Their trace element composition reflects a tectonic setting intermediate between subduction-related and within-plate environments,presumably transitional between syn-and post-collisional stages.The crystallization age of the Um Rus intrusion was determined by in situ SHRIMP 206 Pb/238 U and 207Pb/235U measurements on accessory monazite grains.The resultant monazite U-Pb weighted mean age(643±9 Ma;MSWD 1.8)roughly overlaps existing geochronological data for similar granitic intrusions that are confined to major shear systems and are locally associated with gold mineralization in the Central Eastrn Desert(e.g.,Fawakhir and Hangaliya).This age is also consistent with magmatism recognized as concomitant to transpressional tectonics(D2:~650 Ma)during the evolution of the Wadi Mubark belt.Formation of the gold-bearing quartz veins in NNE-SSW and N-S striking fault segments was likely linked to the change from transpressional to transtensional tectonics and terrane exhumation(D3:620-580 Ma).The development of N-S throughgoing fault arrays and dike swarms(~595 Ma)led to heterogeneous deformation and recrystallization of the mineralized quartz veins.Ore minerals in the auriferous quartz veins include ubiquitous pyrite and arsenopyrite,with less abundant pyrrhotite,chalcopyrite,sphalerite,and galena.Uncommon pentlandite,gersdorffite,and cobaltite inclusions hosted in quartz veins with meladiorite slivers are interpreted as pre-ore sulfide phases.The gold-sulfide paragenesis encompasses an early pyrite-arsenopyrite±loellingite assemblage,a transitional pyrite-arsenopyrite assemblage,and a late pyrrhotite-chalcopyrite-sphalerite±galena assemblage.Free-milling gold/electrum grains(10 sμm-long)are scattered in extensively deformed vein quartz and in and adjacent to sulfide grains.Marcasite,malachite,and nodular goethite are authigenic alteration phases after pyrrhotite,chalcopyrite,and pyrite and arsenopyrite,respectively.A combined ore petrography,EPMA,and LA-ICP-MS study distinguishes morphological and compositional differences in the early and transitional pyrites(PyⅠ,PyⅡ)and arsenopyrite(ApyⅠ,ApyⅡ).Py I forms uncommon small euhedral inclusions in later PyⅡand Apy II.PyⅡforms large subhedral crystals with porous inner zones and massive outer zones,separated by narrow As-rich irregular mantles.The Fe and As contents in PyⅡare variable,and the LA-ICP-MS analysis shows erratic concentrations of Au(<1 to 177 ppm)and other trace elements(e.g.,Ag,Te,and Sb)in the porous inner zones,most likely related to discrete sub-microscopic sulfide inclusions.The outer massive zones have a rather homogenous composition,with consistently lower abundances of base metals and Au(mean 1.28 ppm).The early arsenopyrite(Apy I)forms fine-grained euhedral crystals enriched in Au(mean 17.7 ppm)and many other trace elements(i.e.,Ni,Co,Se,Ag,Sb,Te,Hg,and Bi).On the other hand,ApyⅡoccurs as coarsegrained subhedral crystals with lower and less variable concentrations of Au(mean 4 ppm).Elevated concentrations of Au(max.327 ppm)and other trace elements are measured in fragmented and aggregated pyrite and arsenopyrite grains,whereas the undeformed intact zones of the same grains are poor in all trace elements.The occurrence of gold/electrum as secondary inclusions in deformed pyrite and arsenopyrite crystals indicates that gold introduction was relatively late in the paragenesis.The LAICP-MS results are consistent with gold redistribution by the N-S though-going faults/dikes overprinted the earlier NNW-SSE quartz veins in the southeastern part of the intrusion,where the underground mining is concentrated.Formation of the Um Rus intrusion and gold-bearing quartz veins can be related to the evolution of the Wadi Mubarak shear belt,where the granitic intrusion formed during or just subsequent to D2 and provided dilatation spaces for gold-quartz vein deposition when deformed by D3 structures.  相似文献   

12.
The Younger Granites of Yahmid-Um Adawi area, located in the southeastern part of Sinai Peninsula, comprise two coeval Late Neoproterozoic post-collisional alkaline (hypersolvous alkali-feldspar granites; 608–580?Ma) and calc-alkaline (transsolvous monzo- and syenogranites; 635–590?Ma) suites. The calc-alkaline suite granitoids are magnesian and peraluminous to metaluminous, whereas the alkaline ones are magnesian to ferroan alkaline to slightly metaluminous. Both granitoid suites exhibit many of the typical geochemical features of A-type granites such as enrichment in Nb (>20?ppm), Zr (>250?ppm), Zn (>100?ppm) and Ce (>100?ppm) and high 10000*Ga/Al2O3 ratios (>2.6) and Zr?+?Nb?+?Y?+?Ce (>350?ppm). Accessory mineral saturation thermometers demonstrated former crystallization of apatite at high temperatures prior to zircon and monazite separation from the magma for both granitoid suites. The mild zircon saturation temperatures of the studied Younger Granites (around 800?°C) imply low-temperature crustal fusion and incomplete melting of the largely refractory zircon. The two Younger Granite suites were semi-synchronously evolved during the post-collisional stage of the Arabian-Nubian Shield subsequent to the collision between the juvenile shield crust and the older pre-Neoproterozoic continental blocks of west Gondwana. Their parental magmas has been generated by melting of crustal source rocks with minor involvement from mantle, which might participated chiefly as a source of heat necessary for fusion of the crustal precursor. Extensive in-situ gamma-ray spectrometry revealed anomalously high radioactivity of some Younger Granite exposures along Wadi Um Adawi (eU; 388–746?ppm and eTh; 1857–2527?ppm) and pegmatitic pockets pertaining to the calc-alkaline suite (equivalent U and Th; 212–252?ppm and 750–1757?ppm, respectively). The radioactivity of the syngenetic pegmatites arises from the primary radioactive minerals uranothorite and thorite together with the U- and/or Th-bearing minerals zircon, columbite, samarskite and monazite. The anomalously high radioactivity of some Younger Granite exposures in Wadi Um Adawi stem from their appreciable enclosure of the epigenetic uranium minerals metatorbenite and uranophane.  相似文献   

13.
Weathering of heavy metal enriched black shales may be one of the most important sources of environmental contamination in areas where black shales are distributed. Heavy metal release during weathering of the Lower Cambrian Black Shales (LCBS) in western Hunan, China, was investigated using traditional geochemical methods and the ICP-MS analytical technique. Concentrations of 16 heavy metals, 8 trace elements and P were measured for samples from selected weathering profiles at the Taiping vanadium ore mine (TP), the Matian phosphorous ore mine (MT), and Taojiang stone-coal mine (TJ). The results show that the bedrock at these three profiles is enriched with Sc, V, Cr, Co, Ni, Cu, Zn, Pb, Th, U, Mo, Cd, Sb, Tl, and P. Based on mass-balance calculation, the percentages of heavy metals released (in % loss) relative to immobile element Nb were estimated. The results show significant rates of release during weathering of: V, Cr, Co, Ni, Cu, Zn, U, Mo, Cd, Sn, Sb, and Tl for the TP profile; Sc, Cr, Mn, Co, Ni, Cu, Zn, Pb, Th, Cd, and Sn for the MT profile; and Sc, Mn, Co, Ni, Zn, Th, Cd, Sn, and Tl for the TJ profile. Among these heavy metals, Co, Ni, Zn, Cd, and Sn show very similar features of release from each of the three weathering profiles. The heavy metals released during weathering may affect the environment (especially topsoil and surface waters) and are possibly related to an observed high incidence of endemic diseases in the area.  相似文献   

14.
Five radiolitid rudist species are described from the Turonian sequence of Abu Roash area. They are recognized in three rudist biostromes that occur in two informal members of Abu Roash Formation; the Rudist- and the Actaeonella-bearing limestone–marl members. The three biostromes show autochthonous and parautochthonous fabrics and moderate to high packing potential. The first rudist biostrome at the base of the Rudist-bearing limestone–marl member (Middle Turonian) contains Durania gaensis, Praeradiolites ponsianus and Bournonia fourtaui. The second biostrome in the same member consists of Bournonia roashensis. The third biostrome that recognized in the Actaeonella-bearing limestone–marl member (Late Turonian) consists of Durania arnaudi. Rudist biostromes in the Rudist-bearing limestone–marl member were deposited on subtidal rudist shoals with moderate to high energy versus that of the Actaeonella-bearing limestone–marl member that deposited in low to moderate energy on deeper part of subtidal rudist shoals. The exposed Turonian succession at Abu Roash area could be divided into three depositional sequences bounded by three sequence boundaries (paleosols and angular unconformity).The first rudist biostrome in the Rudist-bearing limestone–marl member represents the lower part of the transgressive systems tract of the first depositional sequence. The deepening upward trend of the transgressive systems tract is due to increase of accommodation space in transgressive context during relative sea-level rise episode. On the other hand, the second rudist biostrome in the Rudist-bearing limestone–marl member and the third rudist biostrome in the Actaeonella-bearing limestone–marl member are in shallowing-upward set sequence forming the highstand systems tract of the first and third depositional sequences. This indicates that, the accommodation space was being filled more rapidly than was being created during the highstand stage.  相似文献   

15.
白云鄂博群黑色岩系微量元素地球化学特征及地质意义   总被引:3,自引:1,他引:3  
白云鄂博群位于华北地台北缘,是一套中—新元古代裂谷沉积的产物。尖山组和比鲁特组是其中主要的黑色岩系。对以上两组中的碳质页岩和板岩的Au、Ag、As、Ba、Co、Cu、Hg、Mn、Mo、Ni、P、Pb、V、Zn、U、B、Sb等微量元素和稀土元素进行了较为详细的研究。通过元素含量特征、w(V)/w(V+Ni)、w(Zn)-w(Co)-w(Ni)三元图、稀土配分曲线、w(Ce)/w(La)、Ce和Eu异常、w(La)/w(Yb)-w(Ce)/w(La)和w(La)/w(Yb)-w(ΣREE)图解等方法对其沉积环境特征进行了探讨。微量元素含量分析显示白云鄂博群黑色岩系以富亲铜元素和亲石元素、贫亲铁元素为特征,其中富集Hg、B、As、Mn、Sb、Au、Ag、Pb、P、Ba、U、Mo等多种元素;较高的w(B)反映了黑色岩系沉积于盐度较高的水体中;高的w(V)/w(V+Ni)、w(Ce)/w(La)反映了黑色岩系形成于缺氧的沉积环境中;黑色岩系中Hg、Sb、Ba的富集和w(Zn)-w(Co)-w(Ni)图解中投点大部分靠近热水沉积区域指示了黑色岩系中有热水沉积物的参与;稀土元素配分模式、Ce和Eu异常及w(La)/w(Yb)-w(ΣREE)和w(La)/w(Yb)-w(Ce)/w(La)图解投点在两岩组中的不同特点表明尖山组沉积物以陆源沉积为主,有少量热水沉积物参与;而比鲁特组中热水沉积组分所占比例较大,形成时海水较深。  相似文献   

16.
Four overbank profiles from the three terraces of different age were sampled in 10 to 20 cm intervals for the bulk content of major and minor (Ca, Mg, Fe, Ti, Al, Na, K and P) and trace (Mo, Cu, Pb, Zn, Ni, Co, Mn, As, U, Th, Sr, Cd, Sb, V, La, Cr, Ba, W, Zr, Ce, Sn, Y, Nb, Ta, Sc, Li, Rb and Hf) elements in the minus 0.125 mm fraction. Univariate statistics together with analysis of variance discriminated between the lower-lying carbonate (CA) population dominantly composed of carbonates and the overlying silicate (SI) population being dominantly of silicate mineralogy. This stratified pattern resulted from the intensive erosive action of melting glaciers exerted on limestones and dolomites in the alpine region, followed by local inputs mainly of silicate composition. Elements exhibiting the greatest between-population variability are Ca and Mg being enriched in the CA population and Fe, Mn, P, Sr, Al, Na, K, Li, Rb, Y, Zr, Ni, Cr and Ti being enriched in the SI population. Anomalously high Hg, Pb and Ba concentrations (maximum values: 6,500±2,860 ppb, 225±13 ppm and 1,519±91 ppm, respectively) in the lowermost part of the profile S7, which is nearest to the Croatian-Slovenian border, derive from the mineralized Slovenian catchment area. This profile also contains trimodal frequency distributions of Fe, Mn and P whose highest concentrations coincide with increased values of Zn and Cu which are bimodally distributed. Geochemical patterns of majority of elements in all four profiles consistently reflect the average compositions of the upstream drainage basins.  相似文献   

17.
Layers from one manganese nodule dredged from the Philippine Sea(16°56'N, 129°48'E; water depth, 5700 m) and 45 bulk nodules from offshore Minami-Torishima Island, Japan(23°3'N, 153°22'E; water depth, 1200 m) were analyzed chemically and their origin is discussed based on geochemical constraints. In general, Cu, Ni, Zn and Mo tend to increase with increasing Mn content, while Co, Pb, Ba, V, Sc, Th, and the rare earth elements(REEs) show less variation with increasing Mn content. Nodule 42 H from the Philippine Sea has an average Mn/Fe ratio close to 1 and shows a positive Ce anomaly, suggesting a predominant hydrogenous origin. Profiles of 230Th230 ex and Thex/232 Th ratios in the outer ~0.3 mm of nodule 42 H indicate a steady growth rate of ~1.7 mm/Myr. Nodule E30 from offshore Minami-Torishima is characterized by lower Mn, Fe, Mn/Fe(0.53) and Mo/V(0.2) ratios but higher P and Cu/Ni(0.31) ratio relative to other nodules from that area. The Ce content of E30 is unusually low(82 ppm) when compared with other nodules from the area and it is the only nodule analyzed with a negative Ce anomaly(-0.64). Based on the geochemical data we suggest that most nodules from offshore Minami-Torishima are primarily of hydrogenous origin except E30, which is dominated by hydrothermal input, and E45, which has about a 35% hydrothermal contribution.  相似文献   

18.
贵州开阳白马洞铀矿化岩层地球化学特征   总被引:2,自引:0,他引:2  
贵州开阳白马洞铀矿是重要的蚀变型铀矿,通过对白马洞清虚洞组黑色蚀变岩及白云岩风化红粘土和寒武系牛蹄塘组黑色页岩的常量元素、微量元素和稀土元素组成的分析研究,发现铀元素含量与Re、Se、Pb、Cu、As、Sb、Tl、Zn、Ni、Mo、Co、S含量为正相关关系,铀含量高,则Re、Se、Pb、Cu、As、Sb、Tl、Zn、Ni、Mo、Co、S含量也高,其中As、Co、Mo、Ni、Re、Tl、Zn、S具有显著的正相关性,而且地表土壤中Se、V、Mo 等元素的富集是铀矿找矿的主要标志之一。根据白马洞清虚洞组、寒武系牛蹄塘组黑色页岩、灯影组硅化白云岩的稀土元素配分模式分析,硒富集和铀矿化矿源层不仅是牛蹄塘组黑色页岩,可能有更深部的矿源存在。认为硒富集区是铀矿找矿远景区域;古代炼汞矿渣富集铀矿,值得开发利用和治理。  相似文献   

19.
The quartz vein-type gold deposits are widely hosted by the Neoproterozoic (Xiajiang Group) epimeta- morphic clastic rock series in southeastern Guizhou Province, China. The Zhewang gold deposit studied in this paper occurs in the second lithologieal member of the Pinglue Formation of the Xiajiang Group. Trace element geochemis- try of host rocks, quartz veins and arsenopyrite has revealed that ore-forming fluid was enriched in sulphophile ele- ments such as Au, Ag, As, Sb, Pb and Zn, and simultaneously concentrated some magmaphile elements such as W and Mo, which probably provides some evidence for multi-stage mineralization or overprinting of magmatic hydro- therm. Quartz veins and arsenopyrite were characterized by depletion in HFSE and enrichment in LREE. Hf/Sm, Nb/La and Th/La imply that the ore-forming fluid was probably a NaC1-H20 solution system enriched in more C1 than F; Th/U values reflect the strong reducibility of the ore-forming fluid, coincident with the sulfide assemblages. The values of Co/Ni reflect that magmatic fluids may have partly participated in the ore-forming process and Y/Ho values have proved that the ore-forming fluid was associated with metamorphism and exotic hydrotherm which has reformed former quartz veins during late mineralization. The concentrations of REE, Eu anomalies and Ce anomalies of this deposit display that ore-forming elements mainly were derived from host rocks and possibly from a mixed deep source, and the ore-forming fluid was mixed by dominant metamorphic fluid and minor other sources. The physical-chemical conditions of ore-forming fluid changed from the initial stage to the late stage. The metamorphic fluid is responsible for the mineralization. Therefore, the Zhewang gold deposit is classified as a quartz vein-type gold deposit which may have been reformed by magmatic fluids during the late stage.  相似文献   

20.
Abstract. Inorganic chemical compositions are determined for a series of rocks crossing an Early Jurassic stratiform manganese ore deposit in a chert‐dominant sequence at Katsuyama, in the Mino Terrane of central Japan. The lithology in the vicinity of the manganese ore bed is classified into lower bedded chert, black shale, massive chert, manganese ore and upper bedded chert, in ascending order. The rocks surrounding the manganese deposit are anomalously high in certain elements: Pb (max. 29 ppm), Ni (1140) and Co (336) in the lower bedded chert, Mo (438), As (149), Tl (29) and U (12) in the black shales, V (210) and Cr (87) in the massive chert, and MnO and W (24) in the manganese ore. The aluminum‐normalized profiles reveal a distinct zonation of redox‐sensitive elements: Pb‐Zn, Ni‐Co‐Cu(‐Zn) and U‐Cr in the lower bedded chert, Mo‐As‐Tl in the black shale, V(‐Cr) in the massive chert, and Mn‐Fe‐Ba‐W in the manganese ore, in ascending order. The lower and upper bedded cherts and manganese ore generally exhibit flat rare earth element patterns with positive Ce anomalies, whereas the uppermost part of the lower bedded chert, the black shale and massive chert have flat patterns with weak or nonexistent negative Ce anomalies and weak positive Eu anomalies. The strong enrichment in Ni, Co, W, Tl and As detected in the Katsuyama section is not recognized in other sediments, including those of anoxic deposition origin, but is identified in modern ferromanganese nodules, suggesting that metal enrichment in the Katsuyama section is essentially due to the formation of ferromanganese nodules rather than to deposition in an anoxic environment. The observed elemental zonation is well explained by equilibrium calculations, reflecting early diagenetic formation and associated gradual reduction with depth. The concentration profiles in combination with litho‐ and biostratigraphical features suggest that formation of these bedded manganese deposits was triggered by an influx of warm, saline and oxic water into a stagnant deep ocean floor basin in Panthalassa at the end of the middle Early Jurassic. Paleoceanographic environmental controls thus appear to be important factors in the formation and preservation of this type of stratiform manganese deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号