首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 375 毫秒
1.
黑河流域水资源系统演变和人类活动影响   总被引:4,自引:0,他引:4  
黑河流域降水集中于山区,平原稀少。50多年来,除了20世纪70—80年代上游的中东部地区降水偏多外,其它区域为正常变化;蒸发量从山区向平原逐渐增大,除了中游蒸发量显示稳定变化外,山区和下游区表现为减少趋势;黑河多年出山径流量呈现稳定变化,但在中下游盆地间的正义峡水文站,径流量自20世纪80年代中期以来,出现了非常明显的减少过程:这是受到中游地区地下水开采量增加、补给量减少和水位下降的影响,主要是中游地区人口数量增多、大规模扩耕灌溉和水工建设作用的结果。计算表明,人类活动影响强度:20世纪50年代占18%,60—70年代占28%,80—90年代占54%;上游占1%,中游占87%,下游占12%。这说明黑河中游80—90年代是人类活动影响强度达到最大的地区。因此,提出了充分认识流域水资源系统演变规律性,约束人类活动的影响,均衡保护利用流域水资源的有关建议。  相似文献   

2.
全球变暖、长江水灾与可能损失   总被引:45,自引:3,他引:42  
全球大幅度变暖,使得水循环加快,蒸发和降水增强。长江中下游地区在20世纪90年代已呈现出明显增温趋势,达到 0.2~0.8℃,最大增温区域在长江三角洲地区。降水在长江流域中下游地区增加明显,增加值为5%~20%。20世纪90年代是继50年代后,长江流域性洪水灾害高发的10年。长江流域是我国经济发展的核心地区,对长江流域725个县洪水灾害脆弱性分析结果表明,近 1/3的地区是洪水灾害高脆弱性地区。按照1998年社会经济状况,若遭遇1954年型、1991年型、1996年型和1998年型的洪水时,洪水灾害造成的可能损失分别为589、55、70和196亿美元。气候模拟预测表明,21世纪长江流域地区的增温可能达到 2.7℃,导致降水可能增加 10%,径流可能增加37%。在全球变暖的趋势,以及区域社会经济可持续发展造成不透水面积增大和单位经济价值升高的共同影响下,长江流域发生相当于1870年、1954年和1998的千年、百年和20年一遇洪水的可能性增大,甚至可能发生超过上述频率的特大洪水。  相似文献   

3.
新疆河流洪水与洪灾的变化趋势   总被引:32,自引:11,他引:21  
吴素芬  张国威 《冰川冻土》2003,25(2):199-203
在西北气候由暖干转向暖湿的过程中,新疆河流的洪水和洪灾反映明显.对新疆29条河流选取年最大洪水,统计出超标准洪水、20a一遇、50a一遇洪水的出现频次进行分析,结果显示1987年后洪水量级、洪水频次呈增加的变化趋势.通过20世纪90年代以来灾害性洪水出现的频次、灾害损失的变化比较分析,90年代以来灾害性洪水尤其是灾害性暴雨洪水和突发性洪水呈现增加的态势,1987—2000年的灾害损失与1950—1986年相比增加了30倍.  相似文献   

4.
新疆天山北坡中段河流冰凌洪水特征分析   总被引:3,自引:1,他引:2  
万金泰  张建国  苗燕 《冰川冻土》2007,29(5):819-823
冰凌洪水(冰洪)是新疆天山北坡中段河流冬季的一种特殊洪水,其暴发主要受气温、逆温带范围、冬季河流来水量、冰情冰厚、地势.河道弯曲率和河床条件等多种因素影响."冰洪"具有随机性、规律性和不重复性三种特性,冰凌洪水的峰型类似于暴雨洪水具有陡涨陡落的特点,峰前陡峭而落峰则相对缓一些.以四棵树河为典型流域,对冰凌洪水的成因、发展和运动规律进行研究,并发现冰凌洪水具有"水鼓冰开"现象.对四棵树河1967-2006年冰洪流量的年内、年际分布情况看,20世纪70-80年代由于冬季气候寒冷,是"冰洪"发生最多的时期;自进入20世纪90年代以来由于受全球气候变暖等因素影响,冰凌洪水呈现衰退趋势,气候变暖对冰洪影响非常大.  相似文献   

5.
新疆阿尔泰山区克兰河上游水文过程对气候变暖的响应   总被引:17,自引:7,他引:10  
额尔齐斯河支流克兰河上游发源于西风带水汽影响的阿尔泰山南坡,主要由融雪径流补给,年内积雪融水可占年径流量的45%.年最大月径流一般出现在6月份,融雪季节4~6月径流量占65%.流域自20世纪60年代开始明显升温,年平均温度从50年代的1.4℃上升到90年代的5.2℃;年降水总量也呈增加趋势,尤其是冬季和初春增加最多.随着气候变暖,河流年内水文过程发生了很大的变化,主要表现在最大月径流由6月提前到5月,月径流总量增加约15%,4~6月融雪径流量也由占年流量的60%增加到近70%.在多年变化趋势上,气温上升主要发生在冬季,降水也以冬季增加明显,而夏季降水呈下降趋势;水文过程主要表现在5月径流呈增加趋势,而6月径流为下降趋势;夏季径流减少而春季径流增加明显.冬春季积雪增加和气温上升,导致融雪洪水增多且洪峰流量增大,使洪水灾害破坏性加大.近些年来气候变暖引起的年内水文过程变化,已经对河流下游的城市供水和农牧业生产产生了影响.  相似文献   

6.
地下水环境破坏经济损失评估   总被引:1,自引:0,他引:1  
根据济南市地下水环境的实际情况,从地下水环境污染、泉水停喷、地下水位下降三个方面,分8个指标,对济南市地下水环境破坏造成的经济损失进行了评估。表明2005年济南市地下水环境破坏造成的经济损失巨大,约为10亿元,占当年全市GDP的0.58%,其中,泉水停喷造成的生态环境损失、旅游业损失和农业缺水损失尤为突出,占总损失的50%。  相似文献   

7.
20世纪90年代渭河入黄水量锐减成因初步分析   总被引:7,自引:1,他引:7  
张学成  匡键  井涌 《水文》2003,23(3):43-45
20世纪90年代渭河入黄水量为49.37亿m^3,与多年平均情况相比减少了38%。从降水量变化、水资源开发利用、生态环境建设、蒸散发损失等方面,初步分析了90年代渭河入黄水量减少的原因。  相似文献   

8.
朱元甡  刘九夫 《水文》2013,33(2):1-5
分析梳理了防洪减灾风险、风险及其分析、风险管理和治理等概念,指出防洪减灾理念从20世纪早期的"控制洪水"到20世纪后期的"减小洪灾损失"再到21世纪初的"降低洪灾风险"的演变,与防洪减灾形势、社会公共管理水平等密切相关;防洪减灾风险源于洪水时空变化的不确定性、承灾体的不确定性和防灾减灾措施实际效果的不确定性等,需要根据具体问题做具体分析;防洪减灾风险管理指采取多方参与方式,在洪灾发展周期的不同阶段,针对多种不确定性,综合分析各种风险,力求做出相对科学的决策。在防洪减灾风险管理的研究和实践中,应重视有关人文因素及其不确定性、构建风险分析文化的重要性。  相似文献   

9.
山溪性强潮河口是中国东南沿海的一种典型河口,水动力强劲、泥沙运动活跃,对人类活动响应迅速。自然条件与人类活动共同驱动下山溪性强潮分汊河道演变机制尚需进一步研究。以径潮流作用下滩槽演变剧烈的瓯江江心屿分汊河段为例,采用实测资料分析与二维水沙数学模型计算的方法,分析了20世纪70年代以前自然演变、70年代至90年代末上村丁顺坝建设影响期、21世纪以来人工采砂等影响下的河道演变机制。结果表明,丁顺坝建设等人类活动改变了该河段自然条件下主支汊周期性交替的演变规律; 21世纪以来人工采砂等造成河床大幅下切,近20 a来潮差增大0.5 m、涨潮流量增大约47%,分流与分沙不均匀性分别减弱0.08~0.30和0.28~0.54,涨落潮流速差异减小,有利于减缓支汊萎缩态势,河道演变机制受到自然-人类活动双重因素主导。研究成果可为类似河流演变和保护利用提供借鉴。  相似文献   

10.
近40a来新疆河流洪水变化   总被引:9,自引:5,他引:4  
李燕 《冰川冻土》2003,25(3):342-346
随着全球变暖,水循环加快,降水量、冰川消融量和径流量连续多年增加,导致20世纪90年代以来新疆河流各类洪水频繁发生,且呈现出峰高量大的特征.近40a来洪水灾害的频次呈逐年增加趋势,尤其是1987年以来,洪灾发生的频次增高,灾害损失成10倍增加.其原因主要是由于天山中西部为主的地区气候由暖干向暖湿转型所致.  相似文献   

11.
During 1990–1996 the United States experienced record-setting insured property losses due to numerous weather catastrophes, each event causing $100 million or more in losses (1991 dollars). The total loss in this 7-year period, after adjustment to inflation and other factors, was $39.65 billion with $15 billion coming from one event, Hurricane Andrew. In the 1990s, 72 catastrophes occurred, half of the total number in the 40 preceding years, 1950–1989. Although the total loss and the number of catastrophes were exceptionally high in the 1990s, the average loss per event was $551 million, only slightly more than the $467 million average for catastrophes during 1950–1989. Furthermore, storm intensities in the 1990s were slightly less than those during the preceding 40 years, revealing the excess losses of the 1990s to be a result of an extremely large number of damaging storms causing losses exceeding $100 million. Examination of historical values of most weather extremes including hurricanes, floods, and tornadoes, did not show an increase during the 1990s, revealing that weather changes were not the principal cause of more catastrophes. Examination of recent demographic shifts in the U.S. reveals two changes, each based on major re-locations to higher-valued property concentrated in areas either with a high frequency of damaging storms (Gulf and East Coast), or to where even a small but intense storm can cause huge losses (urban areas and West Coast). These shifts, plus the continuing growth of population in other storm-prone areas have greatly increased society's vulnerability to storm damage. An in-depth analysis of many conditions was required to establish that the high losses and numerous catastrophes of the 1990s were largely the result of societal changes and not major weather changes. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Loss values from extremes in the U.S. and elsewhere have been more qualitativethan quantitative, but recent pressures for better information have led to newassessments and better estimates of financial losses from extremes. These pressureshave included concerns over potential impacts of more extremes due to global warmingfostered by ever increasing costs to the insurance industry and government from weather extremes; plus a series of massive losses during the past 15 years (drought of 1988–1989,Hurricane Andrew in 1992, and Midwestern 1993 floods). These recent assessmentsattempted to adjust data for societal changes over time and thus derived new and betterestimates of losses for seven major extremes than existed previously. Three extremeshave annual average losses in excess of a billion dollars (1998 dollars) includinghurricanes ($4.2 billion), floods ($3.2 billion), and severe local storms ($1.6 billion).One extreme and its adjusted losses exhibit upward trends (floods), but all others showno increases with time or temporal decreases (hail, hurricanes, tornadoes, and severethunderstorms). Annual national losses during 1950–1997 from the three major extremes, plus four others (hail, tornadoes, winter storms, and wind storms), collectively reveal no upward or downward trend over time, with an average annual loss of $10.3 billion. The quality loss values do not indicate an increase as has been postulated for global warming. The good news is that better estimates of impacts now exist, but the bad news is that they are still estimates and do not include sizable unmeasured losses. If accurate data on the economic impacts from weather extremes are seen as important for scientific research and policy-making for global warming, the U.S. needs a continuing program to adequately measure losses from weather extremes.  相似文献   

13.
High winds are one of the nation’s leading damage-producing storm conditions. They do not include winds from tornadoes, winter storms, nor hurricanes, but are strong winds generated by deep low pressure centers, by thunderstorms, or by air flow over mountain ranges. The annual average property and crop losses in the United States from windstorms are $379 million and windstorms during 1959–1997 caused an average of 11 deaths each year. Windstorms range in size from a few hundred to hundreds of thousands square kilometers, being largest in the western United States where 40% of all storms exceed 135,000 km2. In the eastern United States, windstorms occur at a given location, on average, 1.4 times a year, whereas in the western US point averages are 1.9. Midwestern states average between 15 and 20 wind storms annually; states in the east average between 10 and 25 storms per year; and West Coast states average 27–30 storms annually. Storms causing insured property losses >$379 million and windstorms during 1959–1997 caused an average of 11 deaths each year. Windstorms range in size from a few hundred to hundreds of thousands square kilometers, being largest in the western United States where 40% of all storms exceed 135,000 km2. In the eastern United States, windstorms occur at a given location, on average, 1.4 times a year, whereas in the western US point averages are 1.9. Midwestern states average between 15 and 20 wind storms annually; states in the east average between 10 and 25 storms per year; and West Coast states average 27–30 storms annually. Storms causing insured property losses >1 million, labeled catastrophes, during 1952–2006 totaled 176, an annual average of 3.2. Catastrophic windstorm losses were highest in the West and Northwest climate regions, the only form of severe weather in the United States with maximum losses on the West Coast. Most western storms occurred in the winter, a result of Pacific lows, and California has had 31 windstorm catastrophes, more than any other state. The national temporal distribution of catastrophic windstorms during 1952–2006 has a flat trend, but their losses display a distinct upward trend with time, peaking during 1996–2006.  相似文献   

14.
In this investigation, four scenarios were used to quantify the balance between the benefits of levees for flood protection and their potential to increase flood risk using Hazards U.S. Multi-Hazard flood-loss software and hydraulic modeling of the Middle Mississippi River (MMR). The goals of this study were (1) to quantify the flood exposure under different flood-control configurations and (2) to assess the relative contributions of various engineered structures and flood-loss strategies to potential flood losses. Removing all the flood-control structures along the MMR, without buyouts or other mitigation, reduced the average flood stages between 2.3 m (100-year flood) and 2.5 m (500-year), but increased the potential flood losses by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by $4.3–6.7 billion. Removing the agricultural levees downstream of St. Louis decreased the flood stages through the metro region by ~1.0 m for the 100- and 500-year events; flood losses, without buyouts or other mitigation, were increased by 155 million for the 100-year flood, but were decreased by $109 million for the 500-year flood. Thus, agricultural levees along the MMR protect against small- to medium-size floods (up to the ~100-year flood level) but cause more damage than they prevent during large floods such as the 500-year flood. Buyout costs for the all the buildings within the 500-year floodplain downstream of urban flood-control structures near St. Louis are ~40% less than the cost of repairing the buildings damaged by the 500-year flood. This suggests large-scale buyouts could be the most cost-effective option for flood loss mitigation for properties currently protected by agricultural levees.  相似文献   

15.
The Yangtze River Economic Belt is one of the three national strategies of China, while flood risk is one of the most important concerns in the development of Yangtze River Economic Belt. In order to decrease the risks caused by floods, complete flood management system and adequate pre-arranged planning are desiderated to be researched in advance. This study considers two typical situations of flood risk, in which one is sluice-control situation in flood detention area and another is dike-break situation in flood-protected area, and proposes a framework for flood risk mapping. The results show that the losses caused by flood hazards are massive both in the two typical cases when extreme floods happen. The economic losses of different indicators are of great difference in flood detention area and flood-protected area, respectively. The framework effectively handles the complex boundaries in the Yangtze River Economic Belt and provides more accurate flood routing information. The evacuation plan module which has been incorporated in the framework also provides informative assistance for emergent action of evacuation under urgent condition.  相似文献   

16.
分期设计洪水频率与防洪标准关系研究   总被引:16,自引:4,他引:12       下载免费PDF全文
现行分期设计洪水模式估算的分期设计洪水值均小于或等于年最大设计值,达不到规定的防洪标准。采用Gumbel-Hougaard Copula函数描述两个分期的分期最大洪水之间的相关性结构,并构造边缘分布为P-Ⅲ分布的分期最大洪水联合分布,建立分期最大洪水与年最大洪水的关系式,讨论分期设计洪水频率与防洪标准应满足的关系,探讨能够满足防洪标准的新的分期设计洪水模式。应用示例表明,新模式主汛期设计值相对年最大设计值小幅度增加,而非主汛期设计值则小于年最大设计值,既满足不降低防洪标准的要求又能够起到优化设计洪水的作用,为分期设计洪水研究提供了一条新的思路。  相似文献   

17.
Winter storms are a major weather problem in the United States and their losses have been rapidly increasing. A total of 202 catastrophic winter storms involving ice storms, blizzards, and snowstorms, each causing >$5 million in damages, occurred during 1949–2003, and their losses totaled $35.2 billion (2003 dollars). Catastrophic winter storms occurred in most parts of the contiguous United States, but were concentrated in the eastern half of the nation where 88% of all storm losses occurred. They were most frequent in the Northeast climate district (95 storms), and were least frequent in the West district (14 catastrophic storms). The annual average number of storms is 3.7 with a 1-year high of nine storms, and one year had no storms. Temporal distributions of storms and their losses exhibited considerable spatial variability across the nation. For example, when storms were very frequent in the Northeast, they were infrequent elsewhere, a result of spatial differences in storm-producing weather conditions over time. The time distribution of the nation’s 202 storms during 1949–2003 had a sizable downward trend, whereas the nation’s storm losses had a major upward trend for the 55-year period. This increase over time in losses, given the decrease in storm incidences, was a result of significant temporal increases in storm sizes and storm intensities. Increases in storm intensities were small in the northern sections of the nation, but doubled across the southern two-thirds of the nation, reflecting a climatic shift in conditions producing intense winter storms.  相似文献   

18.
Floods in the IPCC TAR Perspective   总被引:1,自引:0,他引:1  
Recent floods have become more abundant and more destructive than ever in many regions of the globe. Destructive floods observed in the 1990s all over the world have led to record-high material damage, with total losses exceeding one billion US dollars in each of two dozen events. The immediate question emerges as to the extent to which a sensible rise in flood hazard and vulnerability can be linked to climate variability and change. Links between climate change and floods have found extensive coverage in the Third Assessment Report (TAR) of the Intergovernmental Panel on Climate Change (IPCC). Since the material on floods is scattered over many places of two large volumes of the TAR, the present contribution - a guided tour to floods in the IPCC TAR – may help a reader notice the different angles from which floods were considered in the IPCC report. As the water-holding capacity of the atmosphere grows with temperature, the potential for intensive precipitation also increases. Higher and more intense precipitation has been already observed and this trend is expected to increase in the future, warmer world. This is a sufficient condition for flood hazard to increase. Yet there are also other, non-climatic, factors exacerbating flood hazard. According to the IPCC TAR, the analysis of extreme events in both observations and coupled models is underdeveloped. It is interesting that the perception of floods in different parts of the TAR is largely different. Large uncertainty is emphasized in the parts dealing with the science of climate change, but in the impact chapters, referring to sectors and regions, growth in flood risk is taken for granted. Floods have been identified on short lists of key regional concerns.  相似文献   

19.
Property insurance data available for 1949–2006 were assessed to get definitive measures of hurricane losses in the U.S. Catastrophes, events causing >$1 million in losses, were most frequent in the Southeast and South climate regions. Losses in these two regions totaled $127 billion, 85% of the nation’s total losses. During the period 1949–2006 there were 79 hurricane catastrophes, causing $150.6 billion in losses and averaging $2.6 billion per year. All aspects of these hurricanes showed increases in post-1990 years. Sizes of loss areas averaged one state in 1949–1967, but grew to 3 states during 1990–2006. Seven of the ten most damaging hurricanes came in 2004 (4) and 2005 (3). The number of hurricanes also peaked during 1984–2006, increasing from an annual average of 1.2 during 1949–1983 to 2.1 per year. Losses were $49.3 billion in 1991–2006, 32% of the 58-year total. Various reasons have been offered for such recent increases in hurricane losses including more hurricanes, more intense tropical storms, increased societal vulnerability in storm-prone areas, and a change in climate due to global warming, although this is debatable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号