首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 441 毫秒
1.
Groundwater pumping and changes in climate-induced recharge lead to lower groundwater levels and significant changes in the water balance of a catchment. Water previously discharged as evapotranspiration can become a source of pumpage. Neglecting this effect leads to overestimated streamflow depletion. A small river basin (Sudogda River Basin, Russia) with a boreal climate and with long-term records of groundwater head and streamflow rate (showing that the measured stream depletion is less than the pumping rate) was investigated. The role of evapotranspiration in the water balance was analyzed by a hydrogeological model using MODFLOW-2005 with the STR package; the annual variation in recharge was obtained with the codes Surfbal and HYDRUS. The Sudogda River Basin was classified according to landscape and unsaturated-zone texture classes, and for each classified zone, the unsaturated-zone flow simulation was used to calculate the annual recharge dynamics for the observation period. Calibration of the regional flow model was conducted using flow and head observations jointly for two steady-state flow conditions—natural (before pumping started) and stressed (pumping). The simulations showed that pumped water originates from three sources: intercepted baseflow (75% of the annual total pumping rate), the capture of groundwater evapotranspiration discharge plus increased groundwater recharge (17%), and induced stream infiltration (8%). Additionally, multi-year precipitation records were analyzed to detect any long-term recharge and pumping water-budget changes. The results showed that increasing groundwater recharge by natural precipitation leads to (1) decreased intercepted baseflow and induced streamflow infiltration and (2) increased intercepted evapotranspiration discharge, thereby reducing stream depletion.  相似文献   

2.
准确计算地下水的垂向入渗补给量是合理评价和利用地下水资源的基础.EARTH模型是一种集中参数的水文模型,可刻画水流在包气带中的运移过程,弥补黑箱模型的不足.以中国科学院栾城农业生态试验站的地下水位观测资料以及气象资料为基础,综合运用降水、蒸发、土壤水、地下水动态观测资料,利用EARTH模型计算了河北平原地下水垂向入渗补给量.计算结果表明,2003年1月1日至2005年8月31日期间,栾城农业生态试验站在降水量1404.1 mm、灌溉量1050.0 mm的条件下地下水入渗补给量为487.2 mm,平均年入渗补给量为182.6 mm, 占降水和灌溉总量(2454.1 mm)的19.9%.在模拟结果的基础上,对不同年份的降水量(含灌溉)和入渗补给量分布的对比分析表明,河北栾城地下水补给滞后现象明显,在研究时间段内峰值滞后18~35 d.  相似文献   

3.
The sustainable use of groundwater has become increasingly challenging due to extreme hydrological events and anthropogenic activity. In this study, the basin-scale groundwater response to precipitation variation was analyzed using an integrated model that comprises lumped models for land and river recharges and a distributed model for groundwater. The integrated model was applied to the Chih-Ben watershed, Taiwan, using 20?years (1988?C2007) of data. The hydrological data were analyzed for trends using statistical tests. Based on decreasing trends in precipitation and groundwater levels and an increasing trend in stream flow, the oblique-cut method was applied to precipitation and excess infiltration to assess land and streambed recharge. Distributed numerical groundwater modeling was used to simulate the basin-scale groundwater responses to precipitation variation and anthropogenic pumping. The model was calibrated using stable-isotope and groundwater-level data. The safe yields were estimated for the Chih-Ben watershed for dry, wet, and normal precipitation scenarios. The safe yield of groundwater was shown to vary with precipitation, which does not guarantee the sustainable use of groundwater resources. Instead, water resources should be assessed at a basin scale, taking into account the whole ecosystem, rather than only considering water for human consumption in the alluvium.  相似文献   

4.
The stable isotopes of oxygen and hydrogen were used to determine the seasonal contributions of precipitation to groundwater recharge at a forested catchment area in the upper North Han River basin, Korea. A comparison of the stable isotopic signatures of groundwater and precipitation indicates that the precipitations which occurred during both the dry and rainy seasons are the important source of groundwater recharge in this region. A stable isotopic signature shown in the stream waters at the upstream reaches is similar to that of groundwaters, indicating that stream waters are mostly fed by groundwater discharge. Reservoir waters in the downstream flood control dams have lower deuterium excess values or d-values compared with those of the upstream waters, indicating a secondary evaporative enrichment. These results can provide a basis for the effective management of groundwater and stream water resources in the North Han River basin.  相似文献   

5.
Quantifying groundwater recharge is a fundamental part of groundwater resource assessment and management, and is requisite to determining the safe yield of an aquifer. Natural groundwater recharge in arid and semi-arid regions comprises several mechanisms: in-place, mountain-front, and mountain-block recharge. A field study was undertaken in a high-plain basin in the Altiplano region of northern Chile to quantify the magnitude of in-place and mountain-front recharge. Water fluxes corresponding to both recharge mechanisms were calculated using heat as a natural tracer. To quantify in-place recharge, time-series temperature data in cased boreholes were collected, and the annual fluctuation at multiple depths analyzed to infer the water flux through the unsaturated zone. To quantify mountain-front recharge, time-series temperature data were collected in perennial and ephemeral stream channels. Streambed thermographs were analyzed to determine the onset and duration of flow in ephemeral channels, and the vertical water fluxes into both perennial and ephemeral channels. The point flux estimates in streambeds and the unsaturated zone were upscaled to channel and basin-floor areas to provide comparative estimates of the range of volumetric recharge rates corresponding to each recharge mechanism. The results of this study show that mountain-front recharge is substantially more important than in-place recharge in this basin. The results further demonstrate the worth of time-series subsurface temperature data to characterize both in-place and mountain-front recharge processes.  相似文献   

6.
Understanding groundwater/surface-water interactions in wetlands is crucial because wetlands provide not only a high potential for agricultural production, but also sensitive and valuable ecosystems. This is especially true for the Kilombero floodplain wetland in Tanzania, which represents a data-scarce region in terms of hydrological and hydrogeological data. A comprehensive approach combining hydrogeological with tracer-based assessments was conducted, in order to develop a conceptual hydrogeological wetland model of the area around the city of Ifakara in the north-eastern region of Kilombero catchment. Within the study site, a heterogeneous porous aquifer, with a range of hydraulic conductivities, is underlain by a fractured-rock aquifer. Groundwater chemistry is mainly influenced by silicate weathering and depends on groundwater residence times related to the hydraulic conductivities of the porous aquifer. Groundwater flows from the hillside to the river during most of the year. While floodwater close to the river is mainly derived from overbank flow of the river, floodwater at a greater distance from the river mainly originates from precipitation and groundwater discharge. Evaporation effects in floodwater increase with increasing distance from the river. In general, the contribution of flood and stream water to groundwater recharge is negligible. In terms of an intensification of agricultural activities in the wetland, several conclusions can be drawn from the conceptual model. Results of this study are valuable as a base for further research related to groundwater/surface-water interactions and the conceptual model can be used in the future to set up numerical flow and transport models.  相似文献   

7.
为了有效提升大清河流域平原区地下水水位,亟需在此区域开展地下水人工补给工程,并确定合理的建设位置及有效的补给方式。首先基于研究区可利用补给水源、地下水位、地表高程、地表坡度及与河道距离5个指标的分布特征,构建地下水补给潜力评价体系,采用ArcGIS空间分析功能对研究区进行了地下水人工补给潜力区划;然后在此评价体系基础上,在典型人工补给高潜力区进一步开展系列野外现场试验,探讨适宜可行的地下水人工补给方式。结果表明:研究区西北部及南部河道附近区域开展人工补给工程潜力较高,而中部、北部及西南部远离河道的区域潜力较低。高潜力区——白沟引河地段包气带及含水层渗透性良好,整体渗透系数均在5 m/d左右或更高,适宜地表补给,但河床渗透性较差,渗透系数基本在0.01~0.09 m/d间,若通过河道补给需配合清淤等措施。其中,在上游及中游沿岸适宜将河道水通过生态水渠引至修建的地表入渗池或借助天然渗坑内入渗补给,在中下游沿岸区域适宜将补给水进行严格的水处理后采用井灌方式补给,在白沟引河中下游河道适宜修建拦水坝,利用河道进行入渗补给。  相似文献   

8.
The temporal and spatial distributions of precipitation are extremely uneven; so, careful management of water resources in Taiwan is crucial. The long-term overexploitation of groundwater resources poses a challenge to water resource management in Taiwan. However, assessing groundwater resources in mountainous basins is challenging due to limited information. In this study, a geographic information system (GIS) and stable base-flow (SBF) techniques were used to assess the characteristics of groundwater recharge considering the Wu River watershed in central Taiwan as a study area. First, a GIS approach was used to integrate five contributing factors: lithology, land cover/land use, lineaments, drainage, and slope. The weights of factors contributing to the groundwater recharge were obtained from aerial photos, geological maps, a land use database, and field verification. Second, the SBF was used to estimate the groundwater recharge in a mountainous basin scale. The concept of the SBF technique was to separate the base-flow from the total streamflow discharge in order to obtain a measure of groundwater recharge. The SBF technique has the advantage of integrating groundwater recharge across an entire basin without complex hydro-geologic modelling and detailed knowledge of the soil characteristics. In this study, our approach for estimating recharge provides not only an estimate of how much water becomes groundwater, but also explains the characteristics of a potential groundwater recharge zone.  相似文献   

9.
The study area Hindon -Yamuna interfluve region is underlain by a thick pile of unconsolidated Quaternary alluvial deposits and host multiple aquifer system. Excessive pumping in the last few decades, mainly for irrigation, has resulted in a significant depletion of the aquifer. Therefore, proper groundwater management of Hindon-Yamuna interfluve region is necessary. For effective groundwater management of a basin it is essential that careful zone budget study should be carried out. Keeping this in view, groundwater flow modelling was attempted to simulate the behavior of flow system and evaluate zone budget. Visual MODFLOW, pro 4.1 is used in this study to simulate groundwater flow. The model simulates groundwater flow over an area of about 1345 km2 with a uniform grid size of 1000 m by 1000 m and contains three layers, 58 rows and 37 columns. The horizontal flows, seepage losses from unlined canals, recharge from rainfall and irrigation return flows were applied using different boundary packages available in Visual MODFLOW, pro 4.1. The river — aquifer interaction was simulated using the river boundary package. Simulated pumping rates of 500 m3/day, 1000 m3/day and 1500 m3/day were used in the pumping well package.The zone budget for the steady state condition of study area indicated that the total annual direct recharge is 416.10 MCM and the total annual groundwater draft through pumping is of the order of 416.63 MCM. Two scenarios were considered to predict aquifer system response under different conditions. Sensitivity analysis on model parameters was conducted to quantitatively evaluate the impact of varying model inputs. Based on the results obtained from the sensitivity analysis, it was found that the model is more sensitive to hydraulic conductivity and recharge parameter. Present study deals with importance of groundwater modelling for planning, design, implementation and management of groundwater resources.  相似文献   

10.
Suketi river basin is located in the Mandi district of Himachal Pradesh, India. It encompasses a central inter-montane valley and surrounding mountainous terrain in the Lower Himachal Himalaya. Morphometric analysis of the Suketi river basin was carried out to study its drainage characteristics and overall groundwater resource potential. The entire Suketi river basin has been divided into five sub-basins based on the catchment areas of Suketi trunk stream and its major tributaries. Quantitative assessment of each sub-basin was carried out for its linear, areal, and relief aspects. The analysis reveals that the drainage network of the entire Suketi river basin constitutes a 7th order basin. Out of five sub-basins, Kansa khad sub-basin (KKSB), Gangli khad sub-basin (GKSB) and Ratti khad sub-basin (RKSB) are 5th order sub-basins. The Dadour khad sub-basin (DKSB) is 6th order sub-basin, while Suketi trunk stream sub-basin (STSSB) is a 7th order sub-basin. The entire drainage basin area reflects late youth to early mature stage of development of the fluvial geomorphic cycle, which is dominated by rain and snow fed lower order streams. It has low stream frequency (Fs) and moderate drainage density (Dd) of 2.69 km/km 2. Bifurcation ratios (Rb) of various stream orders indicate that streams up to 3rd order are surging through highly dissected mountainous terrain, which facilitates high overland flow and less recharge into the sub-surface resulting in low groundwater potential in the zones of 1st, 2nd, and 3rd order streams of the Suketi river basin. The circulatory ratio (Rc) of 0.65 and elongation ratio (Re) of 0.80 show elongated nature of the Suketi river basin, while infiltration number (If) of 10.66 indicates dominance of relief features and low groundwater potential in the high altitude mountainous terrain. The asymmetry factor (Af) of Suketi river basin indicates that the palaeo-tectonic tilting, at drainage basin scale, was towards the downstream right side of the drainage basin. The slope map of Suketi river basin has been classified into three main zones, which delineate the runoff zone in the mountains, recharge zone in the transition zone between mountains and valley plane, and discharge zone in the plane areas of Balh valley.  相似文献   

11.
黑河流域水资源转化特征及其变化规律   总被引:5,自引:3,他引:2  
黑河流域水资源主要以冰雪水资源、 地表水资源与地下水资源的形式存在.上游祁连山区分布有现代冰川428条, 发育大小河流共计29条, 多年平均出山径流量37.83×108m3·a-1; 中下游走廊平原由松散沉积的第四系盆地组成, 接受出山河水及引灌河水的入渗补给, 是地表水资源的重复表现形式, 地下水补给量为25.637×108m3·a-1.受构造-地貌条件的制约, 自南部山区至北部盆地, 地下水与河水之间经过5个不同地带有规律的、 大数量的、 重复的转化过程, 形成完整统一的"山区地下水-出山地表水-中游盆地地下水-中游盆地地表水(泉水)-下游盆地地下水"水资源循环转化系统.  相似文献   

12.
大气降水入渗系数α、地下水径流模数M是最基础的水文地质参数,文章以封闭型寨底岩溶地下河流域结合2013年3月至2014年2月一个完整水文年的水位、流量、雨量高频率监测数据,采用水量均衡法得到了岩溶区枯平丰水期大气降水入渗系数,分别为0.352、0.528、0.726,平均入渗系数为0.635。地下水径流模数分别为8.32、19.80、61.15 L·s-1·km-2,年平均径流模数为33.36 L·s·-1·km-2。其计算方法和计算结果对同类型岩溶区水资源评价等有一定的借鉴意义。   相似文献   

13.
The modeling of changes in surface water and groundwater in the areas of inter-basin water diversion projects is quite difficult because surface water and groundwater models are run separately most of the time and the lack of sufficient data limits the application of complex surface-water/groundwater coupling models based on physical laws, especially for developing countries. In this study, a distributed surface-water and groundwater coupling model, named the distributed time variant gain model–groundwater model (DTVGM-GWM), was used to assess the influence of climate change and inter-basin water diversion on a watershed hydrological cycle. The DTVGM-GWM model can reflect the interaction processes of surface water and groundwater at basin scale. The model was applied to the Haihe River Basin (HRB) in eastern China. The possible influences of climate change and the South-to-North Water Diversion Project (SNWDP) on surface water and groundwater in the HRB were analyzed under various scenarios. The results showed that the newly constructed model DTVGM-GWM can reasonably simulate the surface and river runoff, and describe the spatiotemporal distribution characteristics of groundwater level, groundwater storage and phreatic recharge. The prediction results under different scenarios showed a decline in annual groundwater exploitation and also runoff in the HRB, while an increase of groundwater storage and groundwater level after the SNWDP’s operation. Additionally, as the project also addresses future scenarios, a slight increase is predicted in the actual evapotranspiration, soil water content and phreatic recharge. This study provides valuable insights for developing sustainable groundwater management options for the HRB.  相似文献   

14.
Modeling landscape with high-resolution digital elevation model (DEM) in a geographic information system can provide essential morphological and structural information for modeling surface processes such as geomorphologic process and water systems. This paper introduces several DEM-based spatial analysis processes applied to characterize spatial distribution and their interactions of ground and surface water systems in the Greater Toronto Area (GTA), Canada. The stream networks and drainage basin systems were derived from the DEM with 30 m resolution and the regularities of the surface stream and drainage patterns were modeled from a statistical/multifractal point of view. Together with the elevation and slope of topography, other attributes defmed from modeling the stream system, and drainage networks were used to associate geological, hydrological and topographical features to water flow in river systems and the spatial locations of artesian aquifers in the study area. Stream flow data derived from daily flow measurements recorded at river gauging stations for multi-year period were decomposed into “drainage-area dependent“ and “drainage-area independent“ flow components by two-step “frequency“ and “spatial“ analysis processes. The latter component was further demonstrated to relate most likely to the ground water discharge. An independent analysis was conducted to model the distribution of aquifers with information derived from the records of water wells. The focus was given on quantification of the likelihood of ground water discharge to river and ponds through flowing wells, springs and seepages. It has been shown that the Oak Ridges Moraine (ORM) is a unique glacial deposit that serves as a recharge layer and that the aquifers in the ORM underlain by Hilton Tills and later deposits exposed near the steep slope zone of the ridges of ORM provide significant discharge to the surface water systems (river flow and ponds) through flowing wells, springs and seepages. Various statistics (cross- and auto-correlation coefficients, fractal R/S exponent) were used in conjunction with GIS to demonstrate the influence of land types, topography and geometry of drainage basins on short- and long-term persistence of river flows as well as responding time to precipitation events. The current study has provided not only insight in understanding the interaction of water systems in the GTA, but also a base for further establishment of an on-line GIS system for predicting spatial-temporal changes of river flow and groundwater level in the GTA.  相似文献   

15.
Appropriate quantification and identification of the groundwater distribution in a hydrological basin may provide necessary information for effective management, planning and development of groundwater resources. Groundwater potential assessment and delineation in a highly heterogeneous environment with limited Spatiotemporal data derived from Gelana watershed of Abaya Chamo lake basin is performed, using integrated multi-criteria decision analysis (MCDA), water and energy transfer between soil and plant and atmosphere under quasi-steady state (WetSpass) models. The outputs of the WetSpass model reveal a favorable structure of water balance in the basin studied, mainly using surface runoff. The simulated total flow and groundwater recharge are validated using river measurements and estimated baseflow at two gauging stations located in the study area, which yields a good agreement. The WetSpass model effectively integrates a water balance assessment in a geographical information system (GIS) environment. The WetSpass model is shown to be computationally reputable for such a remote complex setting as the African rift, with a correlation coefficient of 0.99 and 0.99 for total flow and baseflow at a significant level of p-value<0.05, respectively. The simulated annual water budget reveals that 77.22% of annual precipitation loses through evapotranspiration, of which 16.54% is lost via surface runoff while 6.24% is recharged to the groundwater. The calibrated groundwater recharge from the WetSpass model is then considered when determining the controlling factors of groundwater occurrence and formation, together with other multi-thematic layers such as lithology, geomorphology, lineament density and drainage density. The selected five thematic layers through MCDA are incorporated by employing the analytical hierarchy process (AHP) method to identify the relative dominance in groundwater potential zoning. The weighted factors in the AHP are procedurally aggregated, based on weighted linear combinations to provide the groundwater potential index. Based on the potential indexes, the area then is demarcated into low, moderate, and high groundwater potential zones (GWPZ). The identified GWPZs are finally examined using the existing groundwater inventory data (static water level and springs) in the region. About 70.7% of groundwater inventory points are coinciding with the delineated GWPZs. The weighting comparison shows that lithology, geomorphology, and groundwater recharge appear to be the dominant factors influence on the resources potential. The assessment of groundwater potential index values identify 45.88% as high, 39.38% moderate, and 14.73% as low groundwater potential zones. WetSpass model analysis is more preferable in the area like Gelana watershed when the topography is rugged, inaccessible and having limited gauging stations.  相似文献   

16.
地表水与地下水相互转化是中国西北干旱内流盆地水循环的显著特征,转化机制研究是盆地水循环规律认知和水资源可持续管理的重要基础。以我国西北干旱内流河黑河流域中游的张掖盆地和盐池盆地为研究区,建立了黑河主干河道时变水平衡模型和地表水地下水耦合数值模型,研究了长周期水文变化和人类活动双重影响下地表水与地下水转化机制,得到如下认识:(1)补给条件由以天然条件下河流渗漏为主的线状补给演变为以河流与引水渠道渗漏的线状补给和灌区田间入渗面状补给,排泄条件由以泉水溢出和天然湿地排泄演变为以泉水溢出与地下水开采为主的排泄。(2)张掖盆地黑河干流河道入渗段和溢出段大致以G312 大桥为界,亦称为地表水与地下水转化的转折点。莺落峡—G312 大桥段为悬河渗漏段,河道入渗补给主要受控于进入河道的实际过水量。其中,莺落峡—草滩庄段河道入渗补给率为28.20 %;草滩庄—G312 大桥段河道入渗补给量与河道过水量的关系可用分段函数表达,河道过水量大于或等于0.37×108 m3/mon时呈幂函数关系,小于则呈线性函数关系。G312 大桥—正义峡段为地下水溢出段,其中G312大桥—平川大桥段地下水溢出量约占全部溢出量的70%,溢出峰值出现在高崖水文站下游约6 km处,其单长溢出量可达0.46 m3/(s·km)。(3)研究区是一个相对完整的河流—含水层系统,近31年来经历了连枯和连丰的水文变化,地下水补给排泄条件及与地表水转化机制均发生了相应的变化。地表水与地下水转化最强烈的地区为张掖盆地中部的黑河—梨园河倾斜平原。1990—2001 年连枯期,灌区引水量总体逐年减少,以河道入渗和渠系渗漏为主的补给量平均以0.06×108 m3/a速率减少,农田灌溉面积增加导致灌溉用水增加,地下水开采量显著增加,地下水水位逐年下降,储存量累计减少5.77×108 m3,地下水溢出量平均减少0.16×108 m3/a;而2002—2020 年连丰期,灌区引水量总体逐年减少,河道入渗量呈增加趋势,地下水总补给量平均增加0.15×108 m3/a,灌溉面积继续扩大,农灌开采量随之增加,以河道入渗量增加为主导,地下水水位持续上升,储存量累计增加5.45×108 m3,地下水溢出量平均增加0.08×108 m3/a。总之,补给和排泄条件变化较大,地下水储存量先减后增,地下水溢出总量变化较为平缓,反映了该区巨厚含水层系统的巨大调蓄功能。(4)位于张掖盆地东部的诸河倾斜平原地下水水位长期处于持续下降状态,这是由于地表水开发过度,补给量锐减。黑河侵蚀堆积平原地下水水位基本稳定。30 多年来盐池盆地倾斜平原地下水水位长期处于持续下降状态,这是由于移民开垦导致地下水过量开采。(5)内流盆地天然悬河入渗段是珍贵的地下水补给通道,无论连枯期还是连丰期,河道实际过水量是河道渗漏补给量的关键,保护上游天然河道和一定的河道实际过水量是内流盆地水资源可持续管理的关键。  相似文献   

17.
A conceptual groundwater flow model was developed for the crystalline aquifers in southeastern part of the Eastern region, Ghana. The objective was to determine approximate levels of groundwater recharge, estimate aquifer hydraulic parameters, and then test various scenarios of groundwater extraction under the current conditions of recharge. A steady state groundwater flow model has been calibrated against measured water levels of 19 wells in the area. The resulting recharge is estimated to range from 8.97 × 10?5 m/d to 7.14 × 10?4 m/d resulting in a basin wide average recharge of about 9.6% of total annual precipitation, which results in a basin wide quantitative recharge of about 2.4 million m3/d in the area. This compares to recharge estimated from the chloride mass balance of 7.6% of precipitation determined in this study. The general groundwater flow in the area has also been determined to conform to the general northeast–southwest structural grain of the country. The implication is that the general hydrogeology is controlled by post genetic structural entities imposed on the rocks to create ingresses for sufficient groundwater storage and transport. Calibrated aquifer hydraulic conductivities range between 0.99 m/d and over 19.4 m/d. There is a significant contribution of groundwater discharge to stream flow in the study area. Increasing groundwater extraction will have an effect on stream flow. This study finds that the current groundwater extraction levels represent only 0.17% of the annual recharge from precipitation, and that groundwater can sustain future increased groundwater demands from population growth and industrialization.  相似文献   

18.
降水模拟实验证明,鄂尔多斯北部沙土层单次降水入渗最大深度小于1 m,降水在土壤中受到蒸发后排泄到大气中。实验证实,只有当土壤含水率达到最大田间持水率,吸附在土颗粒表面的薄膜水才能克服电磁引力转化为重力水,在重力的作用下继续下渗。鄂尔多斯北部的年降水量小而蒸发量大,降水入渗土壤不能形成累积效应,无法形成连续下渗的重力水流。同位素示踪分析表明,土壤水主要来源于地下潜水,结合土壤含水率与TDS分析证实,地下水是通过薄膜水与蒸发-凝结方式补给到土壤水中,薄膜水从高温区向低温区流动,对于等温的薄膜水而言,薄膜水从厚层向薄层流动。同位素分析表明,都思兔河流域的河水、泉水、井水、湖泊、土壤水接受相同的外源水补给。鄂尔多斯盆地降水比地表水与地下水明显富集重同位素,不符合补给区降水同位素特征。鄂尔多斯盆地地下水分水岭与基底断裂带重合,据此推断,外源水以深循环方式通过基底断裂带补给鄂尔多斯盆地,在干旱地区形成自流井群。  相似文献   

19.
Chloride is a conservative, natural tracer found in precipitation, soil water, and groundwater. The chloride mass-balance approach, long used to estimate groundwater recharge, also provides a downward flux of moisture and solute at sites where there is a potential for groundwater contamination. The flux is obtained by dividing the product of the mean annual precipitation and total annual chloride input (via precipitation and dust) by the mean soil-water chloride content. Chlorideversusdepth profiles can also be used to determine optimum depth of waste burial to minimize deterioration of waste containers. The method has been applied to three sites in arid alluvial-basin settings in New Mexico, U.S.A.: a proposed landfill, a battery recycling plant, and a hazardous-waste disposal facility. It is concluded that the method is reliable, economical, and practical. Furthermore, it can be applied at any stage in the development of a site. The chloride method should apply in any recharge area where the base of the root zone is separated from the water table by at least 3 m or so and chloride in soil water comes only from precipitation and dust.  相似文献   

20.
Investigation of water sources and flow pathways is crucial to understand and evaluate the characteristics of surface water and groundwater systems. This article aims to identify the hydrochemical and hydrological processes in different landscape zones based on hydrochemical analyses of various samples, including samples from glacier, snow, frozen soil meltwater, surface water, groundwater, and precipitation, in the alpine cold region of China. Hydrochemical tracers indicated that chemical compositions are characterized by the Ca-HCO3 type in the glacier-snow zone; the Mg-Ca-SO4 type in the alpine cold desert zone; the Ca-HCO3-SO4 type in the marsh meadow zone; the Ca-Mg-HCO3 type in the alpine shrub zone; and the Ca-Na-SO4 type in the mountain grassland zone. An end-member mixing model was used for hydrograph separation. The results showed that the Mafengou River in the wet season was recharged by groundwater in the alpine cold desert and alpine shrub zones (67%), surface runoff in the glacier-snow zone (11%), surface runoff in the alpine cold desert zone (8%), thawed water from frozen soil in the marsh meadow and mountain grassland zones (9%), and direct precipitation on the river channel (5%). This study suggests that precipitation from the whole catchment yielded little direct surface runoff; precipitation was mostly transformed into groundwater or interflow and was then concentrated into the river channel. This study provides a scientific basis for evaluation and management of water resources in the basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号