首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Damming effect on the distribution of mercury in Wujiang River   总被引:2,自引:0,他引:2  
Seasonal changes in total mercury concentrations in surface water were observed for the Wujiang River, with higher values at the time of greater flow. The total mercury in this river was mostly associated with suspended particles, particulate mercury accounting for 84% of the total mercury flux on average during the high flow period, and 52% of the total mercury flux on average in the low flow period. Significant losses of Hg from the water were observed in the downstreams of the reservoir. In addition, the concentrations of particulate mercury in the downstreams of reservoir appeared to have been enhanced by sediment re-suspension and shoreline erosion caused by flood discharge, while the filtered portion decreased. These observations suggested that reservoirs played an important role in controlling the transport and fate of mercury in the Wujiang River.  相似文献   

2.
Hydrogeochemistry of Wujiang River Water in Guizhou Province,China   总被引:9,自引:3,他引:9  
The chemical composition of Wujiang River water represents that of river water from the typical carbonate areas.Ite hydrogeochemical characteristics are different from those of global major rivers.The Wujiang River and its tributaries have high total dissolved solid concentrations,with Ca^2 and HCO3^- being dominant,Mg^2 and SO4^2- coming next.Both Na^ K^ and Cl^- Si account for 5%-10% of the total cations and anions,respectively,These general features show the chemical composition of river water is largely controlled by carbonate weathering,with the impact of silicate and evaporate weathering being of less importance.Production activity,minin practice and industrial pollution also have some influence on the chemical composition of rive water.  相似文献   

3.
Water samples from the Wujiang River, a typical karst river system, were analyzed for major ion concentrations and δ^34S values of dissolved sulfate in order to identify the sources of sulfate, quantify the sulfate export flux and understand the role of sulfur cycling in chemical weathering rate of carbonate. Spatial variations in sulfate concentration and sulfur isotopic composition of tributaries over the catchment area are obvious, allowing to decipher S sources between rocks and atmosphere. According to the variations in sulfate concentration and isotopic composition, it is inferred that sulfate ions in the upper-reach river waters may have three sources, rain water, sulfate resultant from oxidation of pyrite in coal, and sulfate from sulfide deposits. In the lower reaches, the S isotopic composition of the samples lies mainly on a mixing trend between evaporite sulfate and rainwater sulfate, the contribution of sulfate from oxidation of pyrite being lesser. A pronounced seasonal variation in both content and isotopic composition of sulfate characterizes the Wujiang River. The average sulfate concentration of the waters is 0.65 mmol/L in winter, 0.17 mmol/L higher than that in summer. River water δ^34S values range from -15.7‰ to 18.9‰ in winter, while the δ^34S values of river waters in summer vary to a lesser extent than in winter, from -11.5‰ to 8.3‰. The δ^34S values of the main stream range from -6.7‰ to -3.9‰ in summer, averaging 3‰ lower than in winter. This indicates that in summer, when the discharge increases, the contribution of a source enriched in light isotopes to the atmosphere or the oxidation of pyrite in coal is more important.  相似文献   

4.
The Yangtze (Changjiang) River as the largest fiver originating from eastern Tibetan Plateau, has increasingly attracted considerable attention of many researchers for almost one hundred years. The fiver linking the Tibetan Plateau with the West Pacific Marginal Sea, encompasses variable source rocks and complicated drainage patterns and spans across distinct climate zones. The increasing human activities in the last 2000 years have significantly changed the weathering process and sediment source-to-sink pattern in the fiver basins. In terms of this, the Yangtze drainage basin as well as the deltaic and coastal areas can be regarded as one of the best regions in the world to investigate the source-to-sink process of continental sediments into the marginal sea. In the past ten years we systematically measured elemental and Sr-Nd-Pb isotopic compositions of the Yangtze riverine sediments which were collected from the mainstream and main tributaries. Analytical results clearly showed that the Yangtze sediments yield geochemical compositions different from those of other fiver sediments due to the very complicated source rock types and variable chemical weathering regimes in the large drainage basin. REE and Sr-Nd isotopic compositions suggest that the sediment source-to-sink pattern in the modern Yantze River basins varies considerably from the upper basin to the lower valley. Different chemical compositions among the main tributaries and the mainstream are responsible for the compositional variations of the Yangtze River sediments. It is a piece of quite challenging work to establish a sediment source-to-sink model to quantifying the contributions of the main tributaries to the mainstream.  相似文献   

5.
Damming is a common anthropogenic intervention along the course of rivers, which is defined as "artificial-lake effect", both in China and across the world. Today as many as 48000 dams and/or reservoirs are in operation in the Changjiang River (Yangtze River) drainage area, and more are being constructed. While damming is well known to affect riverbome nutrient loads, and thus the riverine ecosystems owing to removal of carbon fixation, and removal of particles in reservoir sediments, there is limited information on the detailed early diagenesis of sediments in reservoirs including the regeneration processes of nutrients deposited in sediments and exchange flux across the sediment-water interface, which is important for mass balance of riverbome nutrients. In the present study, two large-size reservoirs, Wujiangdu Reservoir (WJDR) and Dongfeng Reservoir (DFR), located on the main steam of the Wujiang River and with uniformity hydrography and discrepancy biogeochemical activity (e. g. primary production), were selected for a comparative study on the detailed processes of nutrient regeneration. Water, pore water and sediment were sampled from these two reservoirs and dissolved organic carbon (DOC), NH4^+, NO3^-, PO4^3-, dissolved silica (DSi) in the overlying water and pore water, and total organic matter in sediments were determined. The results of correlation analysis suggested that in these two reservoirs, processes of nutrient regeneration near the sediment-water interface were significantly different. As a result of rapid decomposition of algae-derived "labile" organic matter in upper sediments, nutrient regeneration processes and upward fluxes in WJDR are dramatically stronger than those of DFR. NH4^+ upward flux from sediment in WJDR was about 17 times higher than that in DFR. PO4^3- flux in WJDR is about 13 times above that in DFR. DOC flux in WJDR is larger that in DFR by 5 times, and DSi by 1 time.  相似文献   

6.
The chemical and isotopic characteristics of the water and suspended particulate materials(SPM)in the Yellow River were investigated on the samples collected from 29 hydrological monitoring stations in the mainstem and several major tributaries during 2004 to 2007.TheδD andδ~(18)O values of the Yellow River water vary in large ranges from-32‰to-91‰and from-3.1‰to-12.5‰,respectively.The characters of H and O isotope variations indicate that the major sources of the Yellow River water are meteoric water and snow melting water,and water cycle in the Yellow River basin is affected strongly by evaporation process and human activity.The average SPM content(9.635g/L)of the Yellow River is the highest among the world large rivers.Compared with the Yangtze River,the Yellow River SPM has much lower clay content and significantly higher contents of clastic silicates and carbonates.In comparison to the upper crust rocks,the Yellow River SPM contains less SiO_2,CaO,K_2O and Na_2O,but more TFe_2O_3,Co,Ni,Cu,Zn,Pb and Cd.The abnormal high Cd contents found in some sample may be related to local industrial activity.The REE contents and distribution pattern of the Yellow River SPM are very close to the average value of the global shale.The averageδ~(30)Si_(SPM)in the Yellow River(-0.11‰)is slightly higher than the average value(-0.22‰)of the Yangtze River SPM.The major factors controlling theδ~(30)Si_(SPM)of the Yellow River are the soil supply,the isotopic composition of the soil and the climate conditions.The TDS in the Yellow River are the highest among those of world large rivers.Fair correlations are observed among Cl~-,Na~+,K~+,and Mg~(2+)contents of the Yellow River water,indicating the effect of evaporation.The Ca~(2+)and Sr~(2+)concentrations show good correlation to the SO_4~(2-)concentration rather than HCO_3~-concentration,reflecting its origin from evaporates.The NO_3~-contents are affected by farmland fertilization.The Cu,Zn and Cd contents in dissolved load of the Yellow River water are all higher than those of average world large rivers,reflecting the effect of human activity.The dissolved load in the Yellow River water generally shows a REE distribution pattern parallel to those for the Yangtze River and the Xijiang River.Theδ~(30)Si values of the dissolved silicon vary in a range from 0.4‰to 2.9‰,averaging1.34‰.The major processes controlling the D_(Si)andδ~(30)Si_(Diss)of the Yellow River water are the weathering process of silicate rocks,growth of phytolith in plants,evaporation,dissolution of phytolith in soil,growth of fresh water diatom,adsorption and desorption of aqueous monosilicic acid on iron oxide and human activities.The averageδ~(30)Si_(Diss)value of the Yellow River is significantly lower than that of the Nile River,Yangtze River and Siberia rivers,but higher than those of other rivers,reflecting their differences in chemical weathering and biological activity.Theδ~(34)S_(SO4)values of the Yellow River water range from-3.8‰to 14.1‰,averaging 7.97‰.There is some correlation between SO_4~(2-)content andδ~(34)S_(SO4).The factors controlling theδ~(34)S_(SO4)of the Yellow River water are the SO_4 in the meteoric water,the SO_4 from gypsum or anhydrite in evaporite rocks,oxidation and dissolution of sulfides in the mineral deposits,magmatic rocks and sedimentary rocks,the sulfate reduction and precipitation process and the sulfate from fertilizer.The~(87)Sr/~(86)Sr ratios of all samplesrange from 0.71041 to 0.71237,averaging 0.71128.The variations in the~(87)Sr/~(86)Sr ratio and Sr concentration of river water are primarily caused by mixing of waters of various origins with different~(87)Sr/~(86)Sr ratios and Sr contents resulting from water-rock interaction with different rock types.  相似文献   

7.
The isotopic composition of dissolved boron, in combination with the elemental concentrations of B, Cl and salinities in freshwater-seawater mixed samples taken from the estuary of the Changjiang River, the largest one in China, was investigated in detail in this study. Brackish water and seawater samples from the estuary of the Changjiang River were collected during low water season in November, 1998. Boron isotopic compositions were determined by the Cs2BO^+2-graphite technique with a analytical uncertainty of 0.2‰ for NIST SRM 951 and an average analytical uncertainty of 0.8‰ for the samples. The isotopic compositions of boron, expressed in δ^11B, and boron concentrations in the Changjiang River at Nanjing and seawater from the open marine East Sea, China, are characterized by δ^11B values of -5.4‰ and 40.0‰, as well as 0.0272 and 4.43 mg B/L, respectively. Well-defined correlations between δ^11B values, B concentrations and Cl concentrations are interpreted in terms of binary mixing between fiver input water and East Sea seawater by a process of straightforward dilution. The offsets of δ^11B values are not related to the contents of clastic sediment and to the addition of boron. These relationships favor a conservative behavior of boron at the estuarine of the Changjiang River.  相似文献   

8.
Water samples from the Wujiang River, a typical karst river system, were analyzed for major ion concentrations and δ34S values of dissolved sulfate in order to identify the sources of sulfate, quantify the sulfate export flux and understand the role of s…  相似文献   

9.
Selenium (Se) is an essential micronutrient to biota, but can become a potent toxicant at elevated concentrations. The natural sources and chemical properties of Se species make the boundary between deficiency and toxicity narrow for some biota, with both phenomena common around the globe. Large areas of farmland in the Colorado River Basin (CRB) generate salinized drainage water with Se concentrations much higher than 5 μg/L, the U.S. Environmental Protection Agency chronic water-quality criterion for the protection of aquatic life. We have carried out detailed field and laboratory studies to investigate Se geochemistry and remediation in two of these areas: the Middle Green River Basin, Utah and the Salton Sea Basin, California, located respectively in the Upper and Lower CRB. Results from these and other studies show that approximately 90% of the dissolved Se in the Colorado River and its tributaries originally is derived from the Upper Cretaceous Mancos Shale and equivalent pyritic marine units that outcrop in the Upper CRB. Selenium is mobilized commonly by biogeochemical oxidation of this pyritic shale and is concentrated mainly as selenate (SeO4^2-) in soils and agricultural drainage water of dry climates by evaporation. Minor (0%-5%) amounts of Se are present as the selenite species (HSeO3^-) and (SEO3^2-), but these species and the more reduced species, elemental Se (SeO) and selenide (Se^2-), have much lower solubility and/or have high sorptive affinity towards organic matter, clay minerals and iron oxyhydroxides. The concentration of dissolved Se (-2.5 μg/L) and salinity in the Lower Colorado River water are among the highest of the world major rivers. Because of low precipitation (7 cm/a) and extreme evapotranspiration (-1.8 m/a) rates in the Salton Sea Basin, California, Se values in irrigation water imported from the Colorado River increase to 〉300 μg/L in drainage wastewater. Removal of Se from contaminated wastewater by nanofiltration membranes was demonstrated in laboratory and pilot-scale field experiments.  相似文献   

10.
Caohai Lake which is situated in Guizhou Province, has suffered drain project many times since 1958.The main mercury contamination includes industry waste water, litter and waste residue from refine zinc furnace and so on. The water and sediment samples which were collected from Caohai Lake in different seasons using metal clean protocols. Study sites were selected at the upper and down reaches and the tributaries of this lake, respectively. Total mercury (THg), reactive mercury (RHg) and dissolved mercury (DHg) concentrations were measured by trap pre-concentration and CVAFS detection methods, and the concentrations of particulate mercury (PHg) are equal to difference of THg and DHg. Total methylmercury (MeH) and dissolved methylmercury (DMeHg) concentrations were measured by GC-CVAFS detection method. Mercury in sediment was measured by AAS method. The results in autumn were obtained as follows: the average concentrations of total mercury, reactive mercury,  相似文献   

11.
乌江渡水库中溶解性硅的时空分布特征   总被引:6,自引:0,他引:6       下载免费PDF全文
在2003年10月-2004年9月期间每月一次采集了乌江干流上乌江渡水库大坝前开阔水域中的表层水;并于2003年10月、2004年4月和7月在同一采样点采集了分层水样及其底部的柱状沉积物。分别测定了其中溶解性硅(DSi)和叶绿素a(Chl-a)的浓度,同时还现场测定了水体中的温度(T),溶解氧(DO)和pH值。结果表明:乌江渡水库表层水中DSi的浓度范围为0.53~3.96 mg/L,平均值为1.74 mg/L;但沉积物孔隙水中DSi浓度大约是上覆水体中DSi浓度的7倍。分层期间,水体中DSi浓度在垂直方向上随水深增加而升高,而孔隙水中DSi浓度随沉积深度先增加后降低。同时还发现乌江渡水库中DSi与叶绿素a之间存在较好的反相关关系,这表明该水库中DSi的含量和分布可能主要受到浮游植物尤其是硅藻的生物活动调节。  相似文献   

12.
A preliminary assessment of the Wujiangdu Reservoir examined nutrient distribution and transport. Water samples were collected in the summer (July) of 2004, during the high-flow season. Inorganic nutrients (N, P, Si) and chlorophyll a (chl a) concentrations of the Wujiangdu Reservoir and its inflow rivers were analyzed. Other water parameters (dissolved oxygen, pH, temperature, and electrical conductivity) were measured as well. The results show gradually decreasing concentrations of NO3 ?-N and dissolved silicate in the surface water moving downstream to the dam of the Wujiangdu Reservoir. Additionally, soluble reactive phosphorus concentrations measured very low, with most falling below the sensitivity threshold of the method used in surface waters. Particulate phosphorus and NO3 ?-N were the predominant species of phosphorus and nitrogen in the reservoir, respectively. The concentration of nutrients in the Yeji River was the largest of all inflow rivers. The maximum concentration of chl a was found near the dam. These results reflect upstream conditions similar to that of a river, and reservoir conditions near the dam similar to that of a natural lake system.  相似文献   

13.
贵州乌江渡水电站至楠木渡磷迁移转化机制分析   总被引:1,自引:0,他引:1  
通过2009年3月~4月对排入乌江的废水水质监测结果进行分析,可以看出废水总磷浓度高、强度大且相当稳定,严重污染了乌江的水质.乌江总磷的主要来源是流域内磷化工企业排放的废水废渣且废水中大颗粒总磷含量高.本文通过乌江总磷的分布特征,总磷的存在形态,分析总磷在乌江的迁移转化机制.乌江总磷在迁移转化过程中主要是在水动力条件下...  相似文献   

14.
The Delaware Estuary is heavily urbanized with elevated concentrations of phosphorus from industrial and municipal inputs. For 24 research cruises during 1986–1988, total phosphorus (TP) concentration was highest near maximum inputs in the tidal river and at low salinity where turbidity was maximal. In these contiguous regions, average TP concentration over the study period was 5.3–6.1 μM. Downstream of the TP peak in the high turbidity zone of the estuary, TP decreased to minimum concentrations (1.3–1.5 μM) near the mouth of Delaware Bay. Distributions of dissolved reactive (DRP), dissolved organic (DOP), and particulate (PP) phosphorus along the estuary reflected spatial and temporal patterns in phosphorus inputs, turbidity, river flow, and biological production. In the river, DRP was 2–4 μM (51–65% of TP) and inversely related to river flow. PP, although enriched in the river (1–3 μM), was highest (>4 μM) in the turbidity maximum at low salinity. In the bay, distributions of DRP, PP, and DOP were all linked, in different ways, to biological production. The dependence of DOP on production was, however, complex and affected by DRP concentrations. During the past 30 yr, there has been a fourfold decrease in TP concentrations in the tidal river of the Delaware Estuary. This dramatic decrease in TP, however, is contrasted by an apparent increase in DRP concentration over the past 12 yr. This apparent increase in DRP may be linked to improved water quality (e.g., higher pH) in the river over the past decade.  相似文献   

15.
A large environmental restoration project designed to improve the hydrological conditions of the Florida Everglades and increase freshwater flow to Florida Bay is underway. Here we explore how changing freshwater inflow to the southern Everglades is likely to change the input of nutrients to Florida Bay. We calculated annual inputs of water, total phosphorus (TP), total nitrogen (TN), and dissolved inorganic nitrogen (DIN) to Everglades National Park (ENP) since the early 1980s. We also examined changes in these nutrient concentrations along transects through the wetland to Florida Bay and the Gulf of Mexico. We found that the interannual variability of the water discharge into ENP greatly exceeded the interannual variability of flow-weighted mean nutrient concentrations in this water. Nutrient inputs to ENP were largely determined by discharge volume. These inputs were high in TN and low in TP; for two ENP watersheds TN averaged 1.5 mg l?1 (0.11 mM) and 0.9 mg l?1 (0.06 mM) and TP averaged 15 μg l?1 (0.47 μM) and 9 μg l?1 (0.28 μM). Both TP and DIN that flowed into ENP wetlands were rapidly removed from the water. Over a 3-km section of Taylor Slough, TP decreased from a flow-weighted mean of 11.6 μg l?1 (0.37 μM) (0.20 μM) and DIN decreased from 240 μg l?1 (17μM) to 36 μ l?1 (2.6 μM). In contrast, TN, which was generally 95% organic N, changed little as it passed through the wetland. This resulted in molar TN:TP ratios exceeding 400 in the wetland. Decreases in TN concentrations only occurred in areas with relatively high P availability, such as the wetlands to the north of ENP and in the mangrove streams of western ENP. Increasing freshwater flow to Florida Bay in an effort to restore the Everglades and Florida Bay ecosystems is thus not likely to increase P inputs from the freshwater Everglades but is likely to increase TN inputs. Based on a nutrient budget of Florida Bay, both N and P inputs from the Gulf of Mexico greatly exceed inputs from the Everglades, as well as inputs from the atmosphere and the Florida Keys. We estimate that the freshwater Everglades contribute <3% of all P inputs and <12% of all N inputs to the bay. Evaluating the effect of ecosystem restoration efforts on Florida Bay requires greater understanding of the interactions of the bay with the Gulf of Mexico and adjacent mangrove ecosystems.  相似文献   

16.
为保护乌江干流水生生态系统,实现水能资源开发和生态环境双赢,进行乌江水电梯级开发联合生态调度。分析计算了乌江主要生态控制断面洪家渡、乌江渡和思林的最小、适宜及理想生态流量过程;构建了乌江干流梯级水电站多目标联合优化调度模型,采用智能优化算法对其进行求解。计算得到乌江干流9座水库多年平均发电量和典型年年发电量、3个主要控制断面的生态用水保证率及其典型年水库调度过程。结果表明,通过乌江干流梯级水电站联合优化调度,在保证水电站防洪安全和发电效益正常发挥的同时,可提高乌江干流生态流量保证率;对于偏枯年和枯水年,即使通过梯级水电站优化调度,其理想生态流量用水需求也难以满足。  相似文献   

17.
长江氮的输送通量   总被引:13,自引:0,他引:13       下载免费PDF全文
沈志良 《水科学进展》2004,15(6):752-759
1997年枯水期(11~12月)和1998年丰水期(8月和10月),对长江流域从金沙江至河口干流和主要支流、湖泊各种形态的氮(N)进行了调查。各种形态N的基本输送模式为,从上游至河口通量逐渐增加,其中以硝酸盐(NO3-N)、溶解无机氮(DIN)、总溶解氮(TDN)和总氮(TN)最显著,这与它们的稳定程度有关。长江口各种形式N的输出通量大部分是由中、下游贡献的,特别是枯水期。支流和湖泊贡献的N大约占输出通量的一半以上,其中洞庭湖水系贡献最大,鄱阳湖水系次之。长江枯、丰期三态无机N的输送和输出通量中,NO3 N占绝大部分。各种形式的溶解N输送和输出通量中,DIN是主要的。在所有形式的N中,溶解形式的N占绝大部分。长江枯、丰期干、支流各种形式N通量和长江口各种形式N的输出通量主要受径流量所控制,与人类活动密切相关。并提出了长江各种形式N的输送方程式。  相似文献   

18.
While it is critical to accurately understand the sources and transformation of sulfate based on time-series analysis, there are limited studies on temporal variation of sulfate in rivers and on rock weathering by sulfuric acids. We conducted a monthly sampling campaign in the Beipan, Nanpan, and Hongshui Rivers over the course of one hydrological year. This study examined seasonal variations in riverine sulfate impacted by the monsoon climate in the upper reaches of the Xijiang River basin. In general, the SO4 2? contents in these rivers dropped from relatively high levels to low values during the high-flow season, in response to increasing discharge. The sulfate was generally enriched in heavy isotopes during the low-flow season compared to the high-flow season. The calculated results indicate that the riverine sulfate was mainly derived from sulfide oxidation, but that evaporite dissolution could be an important source during the low-flow season, based on isotopic evidence. Mine drainage is likely an important source of sulfate to these rivers during the high-flow season due to contributions from fast surface flow, which responds to frequent heavy rain in monsoonal climate regions. A relatively high proportion of HCO3 ? was found to be derived from rock weathering by sulfuric acid during the high-flow season when compared to that observed during the low-flow season. The results suggest that approximately one quarter of the HCO3 ? in the Hongshui River originated from carbonate weathering by sulfuric acid derived from the oxidation of sulfide. Such information on the specific dual isotopic characteristics of riverine sulfate throughout a hydrological year can provide unique evidence for understanding the temporal variability of sulfate concentrations and weathering processes in rivers.  相似文献   

19.
Water samples were collected from the Changjiang River (Yangtze River) in May 2005, after the impoundment of the Three Gorges Reservoir (TGR), to examine the influence of the TGR and large lakes on material delivery to the estuary of the Changjiang River. The concentrations of suspended particle material (SPM), dissolved silica (DSi) and biogenic silica (BSi) in the main stream were analyzed. The concentrations of DSi and BSi in the main channel of the Changjiang varied between 73 and 100 and 1.1–15 μmol/l, with a distance weighted average of 81 and 8.0 μmol/l, respectively. A calculation shows that live diatom comprises only an average value of 5.2 % of the BSi in the Changjiang River, and most of BSi may come from drainage basin. The concentrations of BSi and the ratios of BSi/SPM were relatively low in the Changjiang River compared to other rivers throughout the world, but the BSi carried in suspension by the Changjiang River was an important component of the rivers silicon load (i.e. ~13 %). SPM, DSi and BSi concentrations as observed in the Changjiang River tend to decrease from the upper sections of the river to the Three Gorges Dam (TGD), reflecting sedimentation associated with BSi trapping and DSi retention in the TGR in the normal-water period. SPM and BSi retention are more strongly influenced by the TGD compared to DSi. About 98 % of SPM, 72 % of BSi and 16 % of DSi were retained within the TGR in May 2005. The fluxes variations of DSi, BSi and SPM suggested that the large lakes and dams had a coupled effect on the transportation of DSi, BSi and SPM in the normal-water period. Such a change in silicon (DSi and BSi) balances of the Changjiang River will affect the ecological environment of the Changjiang estuary and its adjacent sea to some extent.  相似文献   

20.
Winter seasonal concentrations of dissolved rare earth elements (REE) of two major river systems (the Wujiang River system and the Yuanjiang River system) in karst-dominated regions in winter were measured by using a method involving solvent extraction and back-extraction and subsequent ICP-MS measurements. The dissolved REE concentrations in the rivers and their tributaries are lower than those in most of the large rivers in the world. High pH and high cation (i.e., Na+ + Ca2+) concentrations of the rivers are the most important factors controlling the concentrations of dissolved REE in the river water. The dissolved load (<0.22 μm) REE distribution patterns of high-pH river waters are very different from those of low-pH river waters. The shale (PAAS)-normalized REE patterns for the dissolved loads are characterized by light REE-enrichment and heavy REE-enrichment. Water in the upper reaches of the Wujiang River generally shows light REE-enriched patterns, while that in the middle and lower reaches generally shows heavy REE-enriched patterns. The Yuanjiang River is heavy REE enriched with respect to the light REE in the same samples. Water of the Wuyanghe River draining dolomite-dominated terrains has the highest heavy REE-enrichment. Most river water samples show the shale-normalized REE patterns with negative Ce and Eu anomalies, especially water from Wuyanghe River. Y/Ho ratios show that the water/particle interaction might have played an important role in fractionation between HREE and LREE.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号