首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
为考察泰山地区第四纪沉积环境,采用石英砂表面特征分析法,采集泰山南坡第四纪沉积物样品,经观察研究后,随机挑选W1~W6共6颗石英砂颗粒进行扫描电镜观察。除W4外,其余颗粒表面均表现出形态不规则、边缘棱角清晰、具有多样的贝壳状断口和解理片特征,该特征所指示的沉积环境为冰川沉积环境条件。沉积物样品热释光测得年龄为30.54±2.59 ka B.P.与末次冰期主冰期时段具有时间上的吻合性。  相似文献   

2.
如何根据沉积物中的炭屑记录准确重建火历史是当前古火研究的热点.在古火研究中,大于125μm的大炭屑和小于125μm的微炭屑是最常用的炭屑数据.本文根据大兴安岭以北的漠河县图强泥炭剖面(TQ)的微炭屑面积浓度(AC)、微炭屑颗粒浓度(MiN)和大炭屑颗粒浓度(MaN)这3种不同类型的炭屑数据并利用目前国际上使用比较广泛的CharAnalysis模型定量重建了该地区的火历史.研究结果表明,同一沉积剖面不同类型的炭屑数据所重建的火历史总体规律基本一致,均表现出在距今1690年以来着火次数为12~14次;火事件间隔期变化均较为平缓,单次火事件的平均间隔期为81~124年;火事件发生频率经历了先上升后下降再上升的变化趋势,平均频率为3.5~4.1次/500年.但3种不同类型的炭屑数据重建火事件的次数、频率和间隔期之间仍有一些差异.这种差异可能是由于炭屑破碎程度不同所致.  相似文献   

3.
利用气相色谱-质谱联用仪(GC-MS)对连续取样的洛川黄土剖面弱古土壤层(L1 SS1)和相邻黄土层(L1LL1,L1LL2)的分子化石进行了检测,获得正构烷烃、正烷基-2-酮和酰胺等种类众多、丰度较高的分子化石。W草/植=nC31/(nC27+nC29+nC31),W木/植=(nC27+nC29)/(nC27+nC29+nC31)和W木/草=(nC27+nC29)/nC31记录了草本与植被、木本与植被、木本与草本比例变化规律的古植被信息。检测样品的CPI值为5.60~11.50,地质作用影响较小;通过磁化率、粒度和分子化石指标的相关性分析,认为磁化率、粒度记录了环境变化及主要气候事件(相关系数达-0.81);而分子化石能较好地反映古植被变化。当气候环境由干冷向温湿变化、水热配置条件改善时,植被变化响应较迅速;当环境恶化、转向干冷时,响应较弱或滞后,这种现象可能是由于植被生态系统稳定性造成的结果。整个研究剖面段样品以nC31为主峰的高碳数优势,分子化石表明末次冰期间冰段洛川地区(黄土高原)发育草本植被而没有出现以森林为主的植被。  相似文献   

4.
江苏连云港藤花落遗址孢粉记录研究   总被引:1,自引:0,他引:1  
对江苏连云港藤花落遗址两个剖面的55个样品进行孢粉分析,对比Rb/Sr,结果表明:1)龙山文化出现之前,银杏科、胡桃科、榆属、常绿栎属、桑属百分含量高,松属、云杉属少,莎草科含量很高,藜、蒿花粉含量很低,植被特征以落叶阔叶树为主。2)龙山文化早期,木本花粉含量逐渐降低直至处于低谷期,草本花粉逐渐占主导。胡桃、枫杨、落叶栎、桑等阔叶树数量显著减少,松的数量显著增加,草本花粉中藜科、蒿属含量少,莎草科、香蒲属数量仍较高,此时植被特征为含少量针叶树种的落叶阔叶林,林下草本植物繁盛。Rb/Sr较低,推测该阶段可能存在显著的降温;草本花粉中,禾本科花粉占主导地位,说明人类活动影响显著;木本花粉百分含量、Rb/Sr变化波动较大,可能存在气候突变事件。3)在龙山文化之间的自然沉积层,乔木和灌木数量增加,草本数量减少,木本植物占优势。落叶栎、栗、榆、桑含量高,出现常绿栎,莎草科数量很低,水龙骨数量多,此时为含常绿树种的落叶阔叶树为主的植被特征。4)龙山文化晚期,木本植物占优势。在乔木和灌木植物中,榆属、常绿栎属、落叶栎属、枫杨属数量较高,含少量的银杏科、松属;草本植物中,藜科、蒿属植物数量少,莎草科植物含量高,反映了含常绿成分的亚热带落叶阔叶林景观,此时,Rb/Sr值较高,因此推测此时的气候较温暖湿润。5)藤花落遗址地层记录了4500~4000aB.P.植被与气候环境信息,响应于中国东部季风区中晚全新世转型期间由暖湿转向温凉干燥的气候环境变化特点。  相似文献   

5.
为了研究鄂尔多斯盆地东胜砂岩型铀矿成矿水化学过程,利用光薄片、电子探针、X射线衍射、扫描电镜和化学分析等方法对比分析了氧化带无矿化样品、氧化还原过渡带中低矿化及高铀样品的矿物学和地球化学特征。矿物学研究表明:①所有样品中斜长石均表现出强烈粘土化和绢云母化的特征;②铀矿物主要为铀石,呈胶状吸附在矿物颗粒(部分为炭屑)表面、粒间或裂隙中;③相对氧化带,氧化还原过渡带往往含有更多的炭屑和碳酸盐胶结物。稀土元素地球化学研究表明,氧化带无矿化样品和过渡带低矿化样品表现出较平坦的低分异的稀土配分模式;而过渡带高铀含炭屑样品表现出MREE富集的配分模式,高铀富碳酸盐胶结物的样品表现出轻稀土强烈左倾、重稀土平坦的配分模式。对比分析上述差异后认为,铀成矿与水化学作用密切相关,且成矿水溶液中无机络阴离子以CO32-为主,倾向于络合UO22+和HRE3+;而阳离子主要为斜长石的粘土化释放的Ca2+和SiO44-。当水溶液从盆地边缘向中心运移时,物化环境从氧化及酸性环境向还原及碱性环境转变,此时发生铀酰离子的还原并与SiO44-沉淀形成铀石、Ca2+与CO32-沉淀形成碳酸盐以及HREE的沉淀富集。  相似文献   

6.
对处于中国西北黄土高原沙漠边缘曹岘厚层黄土剖面上部进行了光释光年代初步研究。实验结果表明,45~63μm石英颗粒的光释光信号以快组分为主,适合应用单片再生剂量法(SAR)测年。在自然和再生剂量预热温度为260℃持续10秒,检测剂量预热温度为160℃持续0秒的条件下,石英单片再生剂量法获得的光释光年龄随样品深度而增加。但是,剖面底部S1古土壤和L2顶部黄土样品的光释光年龄仅为69.1±5.5ka和72.0±4.6ka,表现出30 % ~50 % 的年龄低估。利用多片再生剂量法(MAR)得到的年龄与SAR方法所得年龄无显著差异,即出现了类似的年龄低估现象。在20.1~18.8ka时段内,该剖面的沉积速率超过500cm/ka。末次冰盛期的寒冷气候,与沙漠的距离以及近邻黄河的地貌特点共同造成了如此高的沉积速率。  相似文献   

7.
张慧娟 《地质与勘探》2019,55(1):152-159
为了更好地了解干旱-半干旱区的植被类型及其演化规律,利用气相色谱仪对银川盆地冰沟剖面河湖相沉积物中的正构烷烃进行了检测,结果显示其正构烷烃碳数分布范围为C15~C34,奇碳优势明显,以C29或C31为主峰的单峰型为主,但少量样品也出现双峰型分布模式。通过对冰沟剖面正构烷烃分布特征、碳优势指数CPI和L/H(ΣC21-/ΣC22+)指标的详细分析得知其有机质来源以陆生高等植物占主导优势。结合年代数据、有机碳同位素、长链正构烷烃平均链长ACL和C33/(C33+C27)值重建出35.0ka以来银川盆地植被类型以 C3植物为主,并且C3和C4植物的相对比例变化主导受温度制约,而木本和草本植被的演化主要受控于水分条件。  相似文献   

8.
中国新疆博斯腾湖全新世沉积环境年代学特征   总被引:18,自引:1,他引:18  
通过对博斯腾湖沉积物湖芯样品进行137Cs,14C-AMS测年分析,湖芯剖面上有明显的1986年的切尔诺贝利核事故蓄积峰,以及1975年和1963年次蓄积峰,这些137Cs蓄积峰对博斯腾湖现代沉积有明显的时标意义。通过质量深度与年代分析,博斯腾湖的沉积速率相对稳定,平均沉积速率为0.13±0.01g/cm2.a。与14C年代获得的中全新世以来的平均沉积速率0.13±0.03cm/a和0.12±0.05cm/a相似,表明博斯腾湖中全新世以来的沉积环境较稳定,并且也说明14C-AMS测年分析所得的结果较为可靠,可以利用博斯腾湖沉积物样品测定的14C年代进行线性回归作年代校正,由于湖泊沉积物中老碳效应的影响,博斯腾湖沉积物有机质14C测年偏老约650a左右。  相似文献   

9.
利用GC-MS对西北干旱区-半干旱区兰州兴隆山森林区典型植被与现代土壤样品中可抽提的类脂物进行了系统分析,检测出包括正构烷烃和α正构脂肪酮等一系列类脂物分子化石。在未进行族分离的情况下,检出兴隆山现代森林木本植物的正构烷烃以C27或C29为主峰,草本植物则以C31为主峰;  土壤样品中均保留有很强的、几乎均势的C27,C29和C31信号; α正构脂肪酮具有明显的奇碳优势,植物中以C23,C25或C29为主峰,土壤样品以C27或C29为主峰;  其反映的信息是植被与微生物共同作用的结果。本研究为理解现代土壤和古土壤中类脂物所指示的植被信息、进一步探讨类脂物分子在植被(有机质)-微生物-土壤-湖泊沉积体系中存在与相互转换关系这一基础理论问题提供了科学资料。同时,为分子化石分析方法的改进和不同处理过程所得数据之间的对比和科学解释提供资料。  相似文献   

10.
泸沽湖是云贵高原上典型西南季风区的一半封闭湖泊,本文通过研究水深69.3m处长度为18.3m岩芯中15个样品的陆源高等植物正构烷烃分布特征及碳同位素组成,揭示了湖区木本/草本植被和C3/C4植被的变化历史,并试图探讨C3/C4植被变化的可能影响机制.在末次盛冰期至全新世早期,正构烷烃含量及(C27+C29)/2C31比值逐渐增加,正构烷烃(碳数>C25)的平均碳链长度(ACL)值逐渐减少,指示木本植物比例相比草本植物较多且呈逐渐增加态势,表明气候逐渐向暖湿方向发展;而同一时期,陆源高等植物正构烷烃(C27、C29和C31)δ13C值均逐渐偏正,无法用气候变化来解释,应该反映了C3/C4植被变化,由此,通过二元模式计算得出的C4植物比例从19.6%逐渐增加至31.9%,上述结果表明该时期温度升高对C4植物增多起了主要作用.到全新世中期,正构烷烃分布特征表明木本植物比例依然较高,表明此时气候温暖湿润,而δ13C值则呈偏负的趋势,我们认为这是降雨增加和C4植物减少协同导致的.在全新世晚期,正构烷烃分布特征指出草本植物比例相对增加,而该时期的δ13C值则稍微偏正,这可能是因为气候变干所导致的.陆源高等植物正构烷烃分布特征所揭示的植被变化可以与研究区域孢粉记录进行较好对比.研究进一步明确了温度是C4植物出现的主控因素,而在温度满足要求时降雨的增多会降低C4对C3植物的竞争优势.  相似文献   

11.
Black carbon is degraded slowly in the environment and its formation can therefore be an effective sink for atmospheric CO2. This study examined whether charcoal is assimilated by microorganisms or not and estimated the rate of mineralization depending on the degree of thermal alteration of the black carbon. Charcoals were produced at three different temperatures from homogeneously 14C labelled plant material and incubated in soil, and 14C in the evolved CO2 and the microbial biomass was measured. Unlike parallel plant samples, CO2 evolution from the charcoals showed no lag phase, but a period of faster CO2 evolution for the first 5–8 days followed by a period of slow evolution. The mineralization of charcoal appeared to decrease with increasing temperature at which it was produced. This was also the case after the initial period of fast CO2 evolution. With the techniques used, it was not possible to observe any microbial assimilation of charcoal, either because it did not occur, or because the methods used were not sufficiently sensitive. However, the lack of a lag phase in the CO2 evolution from the charcoals is in line with earlier evidence that charcoal is initially oxidized at the surfaces by abiotic processes.  相似文献   

12.
This paper presents an image analysis method for automated quantification of charcoal total area, focusing on the charcoal fractions less than 160 μm observed on 14 pollen slides from Grotta Reali samples. Four fire signals were recorded with 4 high values in the microcharcoal concentration curve. On the basis of modern microcharcoal study, mean length/width ratio of the microcharcoal particles was applied in an archeological context as an indicator of vegetal type (wood, grass or leaves). Therefore, the 4 fire signals were separated into two types: high concentration with high length/width ratio, and high concentration with low length/width ratio. Two fire signals might be interpreted as anthropic fire based on hearth or combustion areas, as inferred from archeological remains.  相似文献   

13.
The age of the upland grasslands of the Vosges Mountains is still not well known. On the basis of the study of historical archives, it was assumed that the forest clearings, which led to grasslands establishment, were done by the monks who colonized the Vosges valleys between the 7th and the 8th centuries. Our pedo-anthracological study raises questions about this hypothesis, based on the discovery of Juniperus communis charcoal in soils from the 2nd or 1st century BC. This plant specie is characteristic of grasslands developing into fallows. The occurrence of Juniperus communis charcoals indicates that upland grasslands did exist at least 800 years earlier than it was expected before our study, i.e. at least since the late Iron Age. To cite this article: D. Schwartz et al., C. R. Geoscience 337 (2005).  相似文献   

14.
An integrated study on biological stabilisation of a dump slope has indicated that biological reclamation with grass and tree species should be considered for long term stability of this coal mine dump in India. The grasses have greater soil binding capacity and help to control soil erosion and improve dump stability. Native grasses such as Bamboo (Dendrocalmus strictus) and Kashi (Saccharum spontaneum) are the important constituents of grass species which can stabilise the dump slopes. Field observation of growth performance of grasses have indicated that mean grass height, root depth and below-ground root biomass are 185 cm (±68), 45 cm (±5) and 467 g m–2 (±170), respectively after three years of grass growth on Mudidih overburden dump slope in India. The growth performance of tree species, namely Sisum (Dalbergia sisoo) and Subabool (Leucena lecocephala), in terms of height, diameter increment, below-ground biomass and root depth have shown mean values of 219 cm (±94), 48 mm (±6), 4.0 kg m–2 (±1.5) and 1 m (±0.1), respectively. This acts as biological fertility which helps in root proliferation and enhancement of dump stability. From the numerical modelling it is suggested that roots of these grass and tree species have significantly enhanced the factor of safety of dump from 1.4 to 1.8 and therefore have a positive role in maintaining long term stability.  相似文献   

15.
Quantifying the role of black carbon (BC) in geochemical processes is difficult due to the heterogeneous character of its chemical structure. Chestnut wood charcoal samples produced at heat treatment temperatures (HTT) from 200-1000 °C were analysed using two different solid state 13C NMR techniques. First, aromaticity was determined as the percentage of total signal present in the aromatic region of 13C direct polarisation (DP) spectra. This was found to increase through the low temperature range of 200-400 °C; at higher temperatures, aromaticity was found to be >90%. Second, aromatic condensation was determined through the measurement of the chemical shift of 13Cbenzene sorbed to the charcoals, which is influenced by the presence of “ring currents” in the aromatic domains of the charcoals. This technique was less sensitive to molecular changes through the lower temperature range, but showed there was a smooth increase in the degree of condensation of the aromatic structures with increasing temperature through the temperature range 400-1000 °C. Ab initio molecular modelling was used to estimate the size of aromatic domains in the charcoals based on the strength of the ring currents detected. These calculations indicated that charcoals produced at temperatures below 500 °C contain aromatic domains no larger than coronene (7 ring). At higher temperatures the size of these domains rapidly increases, with structures larger than a 19 ring symmetrical PAH being predominant in charcoals produced at temperatures above 700 °C. Data from this study were found to be generally consistent with previously published measurements using the benzenepolycarboxylic acid (BPCA) molecular marker method on the same set of samples.  相似文献   

16.
We present δDwax values from different forms of plants and soils, and δDsw values from soil water along the northern slope of Mount Taibai, China. The results show a highly negative linear correlation of the δDwax values for soils with altitude (R2 0.74) and we observed the same correlation for δDsw values of soil water with altitude (R2 0.68). The δDwax of living plants behaves like the soil, but does not exhibit a significant linear correlation with altitude (R2 0.11). The δDwax values of woody plants and grasses also show a similar trend with respect to altitude with significant and no linear correlation, respectively (R2 0.50 for woody plants and 0.17 for grass), which suggest that the “altitude effect” can not be well documented for the δDwax values of living plants, which may be due to differences in plant type and/or evapotranspiration controlled by the plant microclimate. The εwax-sw values of woody plants, grasses and soil show minor fluctuations with altitude. However, the εwax-sw and δDwax values of woody plants are roughly 51‰ and 50‰ more positive, respectively, than those of grasses, suggesting that an “altitude effect” could be documented in the δDwax of woody plants and grasses, with each responding independently to changes in precipitation along the altitude transect. Additionally, the εwax-sw values of soil are relatively constant with altitude, suggesting that the altitudinal change in the proportions between woody plant and grass input to soils will likely change the relationship between the δDwax values of soil n-alkanes and altitude.  相似文献   

17.
The partitioning of As and Au between rhyolite melt and low-salinity vapor (2 wt% NaCl eq.) in a melt-vapor-Au metal ± magnetite ± pyrrhotite assemblage has been quantified at 800 °C, 120 MPa and fO2=NNO. The S-bearing runs have calculated values for the fugacities of H2S, SO2 and S2 of logfH2S=1.1, logfSO2=-1.5, and logfS2=-3.0. The ratio of H2S to SO2 is on the order of 400. The experiments constrain the effect of S on the partitioning behavior of As and Au at magmatic conditions. Calculated average Nernst-type partition coefficients (±1σ) for As between vapor and melt, , are 1.0 ± 0.1 and 2.5 ± 0.3 in the S-free and S-bearing assemblages, respectively. These results suggest that sulfur has a small, but statistically meaningful, effect on the mass transfer of As between silicate melt and low-salinity vapor at the experimental conditions. Efficiencies of removal, calculated following Candela and Holland (1986), suggest that the S-free and S-bearing low-salinity vapor can scavenge approximately 41% and 63% As from water-saturated rhyolite melt, respectively, during devolatilization assuming that As is partitioned into magnetite and pyrrhotite during second boiling. The S-free data are consistent with the presence of arsenous acid, As(OH)3 in the vapor phase. However, the S-bearing data suggest the presence of both arsenous acid and a As-S complex in S-bearing magmatic vapor. Apparent equilibrium constants, , describing the partitioning of As between melt and vapor are −1.3 (0.1) and −1.1 (0.1) for the S-free and S-bearing runs, respectively. The increase in the value of with the addition of S suggests a role for S in complexing and scavenging As from the melt during degassing.The calculated vapor/melt partition coefficients (±1σ) for Au between vapor and melt, , in S-free and S-bearing assemblages are 15 ± 2.5 and 12 ± 0.3, respectively. Efficiencies of removal (Candela and Holland, 1986) for the S-free melt, calculated assuming that magnetite is the dominant Au-sequestering solid phase during crystallization (Simon et al., 2003), suggest that magmatic vapor may scavenge on the order of 72% Au from a water-saturated melt. Efficiencies of removal calculated for the S-bearing assemblage, assuming pyrrhotite and magnetite are the dominant Au-sequestering solid phases, indicate that vapor may scavenge on the order of 60% Au from the melt. These model calculations suggest that the loss of pyrrhotite and magnetite from a melt, owing to punctuated differentiation during ascent and emplacement, does not prohibit the ability of a rhyolite melt to generate a large-tonnage Au deposit. Apparent equilibrium constants describing the partitioning of Au between melt and vapor were calculated using the mean values for the S-free and S-bearing assemblages; only S-bearing data from runs longer than 400 h were used as shorter runs may not have reached equilibrium with respect only to vapor/melt partitioning of Au. The values for are −4.4 (0.1) and −4.2 (0.2) for the S-free and S-bearing runs, respectively. These data suggest that the presence of S does not affect the mass transfer of Au from degassing silicate melt to an exsolved, low-salinity vapor in a low-fS2 assemblage (i.e., pyrrhotite-magnetite at NNO) at the experimental conditions reported here. Efficiencies of removal are calculated and used to model the mass transfer of Au from a crystallizing silicate melt to an exsolved, low-salinity vapor phase. The calculations suggest that the model, absolute tonnage of Au scavenged and transported by S-free and S-bearing vapors, from a crystallizing melt, would be comparable and that the time-integrated flux of low-salinity vapor could be responsible for a significant quantity of the Au in magmatic-hydrothermal ore deposits.  相似文献   

18.
Charcoal is a key component of the Black Carbon (BC) continuum, where BC is characterized as a recalcitrant, fire-derived, polyaromatic material. Charcoal is an important source of palaeoenvironmental data, and of great interest as a potential carbon sink, due to its high apparent environmental stability. However, at least some forms of charcoal are clearly susceptible to environmental alteration and degradation over relatively short timescales. Although these processes have importance for the role of charcoal in global biogeochemistry, they remain poorly understood.Here we present results of an investigation into the susceptibility of a range of charcoal samples to oxidative degradation in acidified potassium dichromate. The study examines both freshly-produced charcoal, and charcoal exposed to environmental conditions for up to 50,000 years. We compare the proportion of carbon present in different forms between the samples, specifically with respect to the relative chemical resistance of these forms. This was undertaken in order to improve understanding of the post-depositional diagenetic changes affecting charcoal within environmental deposits.A wide range in chemical compositions are apparent both within and between the sample groups. In freshly-produced charcoal, material produced at 300 °C contains carbon with more labile forms than charcoal produced at ?400 °C, signifying a key chemical change over the 300-400 °C temperature range. Charcoal exposed to environmental depositional conditions is frequently composed of a highly carboxylated aromatic structure and contains a range of carbon fractions of varying oxidative resistance. These findings suggest that a significant number of the environmental charcoals have undergone post-depositional diagenetic alteration. Further, the data highlight the potential for the use of controlled progressive oxidative degradation as a method to characterize chemical differences between individual charcoal samples.  相似文献   

19.
An investigation of glassy volcanics erupted within the last ten-million years along various segments of the mid-Atlantic Ridge and the East Pacific Rise has revealed major crustal compositional changes. The available data from the mid-Atlantic Ridge shows the existence of two petrological provinces: One, located between latitudes 33° and 53° N, is characterized by volcanics which have a tendency to be oversaturated ocean ridge basalts (OSORB) with respect to normative quartz; the second group of rocks, found between 25° S and 33° N, is generally composed of saturated ocean ridge basalts (SORB). In addition, the SORB volcanics have higher TiO2 (1.7±0.3%), higher Na2O (2.8±0.2%) and higher FeO*/MgO (1.36±0.2) values than do the OSORB types (with 1.1±0.2%, 2.2±0.2% and 1.22±0.2 for the TiO2, Na2O, and FeO*/MgO respectively), There is a correlation between the rate of crustal spreading and the compositional changes observed on the volcanics erupted along various segments of oceanic ridges. Slow-accreting plate boundaries having a total spreading rate of 2–3 cm/year are characterized by a low TiO2 content (1.1±0.2%), low FeO*/ MgO ratio (1.22±0.2) and a high an/an+ab ratio (0.62±0.05). Segments of fast-spreading ridges (total rate 11–13 cm/year) show a higher range of TiO2 (2.1±0.4%) and FeO*/MgO (1.6±0.4) and a lower range of the an/an + ab ratio (0.5±0.07). Ridge segments with a total spreading rate of 5–9 cm/year con sist of volcanics having intermediate values for the above parameters. Different degrees of partial melting of rising mantle material are suggested as a possible mechanism for explaining the compositional diversities encountered along oceanic ridge systems.Contribution n 677 du Département de Géophysique, Géologie, Géochimie Marines du C.O.B.  相似文献   

20.
Detailed Rb-Sr and Sm-Nd isotopic analyses have been completed on the lherzolitic shergottites ALH77005 and LEW88516. ALH77005 yields a Rb-Sr age of 185 ± 11 Ma and a Sm-Nd age of 173 ± 6 Ma, whereas the Rb-Sr and Sm-Nd ages of LEW88516 are 183 ± 10 and 166 ± 16 Ma, respectively. The initial Sr isotopic composition of ALH77005 is 0.71026 ± 4, and the initial εNd value is +11.1 ± 0.2. These values are distinct from those of LEW88516, which has an initial Sr isotopic composition of 0.71052 ± 4 and an initial εNd value of +8.2 ± 0.6. Several of the mineral and whole rock leachates lie off the Rb-Sr and Sm-Nd isochrons, indicating that the isotopic systematics of the meteorites have been disturbed. The Sm-Nd isotopic compositions of the leachates appear to be mixtures of primary igneous phosphates and an alteration component with a low 143Nd/144Nd ratio that was probably added to the meteorites on Mars. Tie lines between leachate-residue pairs from LEW88516 mineral fractions and whole rocks have nearly identical slopes that correspond to Rb-Sr ages of 90 ± 1 Ma. This age may record a major shock event that fractionated Rb/Sr from lattice sites located on mineral grain boundaries. On the other hand, the leachates could contain secondary alteration products, and the parallel slopes of the tie lines could be coincidental.Nearly identical mineral modes, compositions, and ages suggest that these meteorites are very closely related. Nevertheless, their initial Sr and Nd isotopic compositions differ outside analytical uncertainty, requiring derivation from unique sources. Assimilation-fractional-crystallization models indicate that these two lherzolitic meteorites can only be related to a common parental magma, if the assimilant has a Sr/Nd ratio near 1 and a radiogenic Sr isotopic composition. Further constraints placed on the evolved component by the geochemical and isotopic systematics of the shergottite meteorite suite suggest that it (a) formed at ∼4.5 Ga, (b) has a high La/Yb ratio, (c) is an oxidant, and (d) is basaltic in composition or is strongly enriched in incompatible elements. The composition and isotopic systematics of the evolved component are unlike any evolved lunar or terrestrial igneous rocks. Its unusual geochemical and isotopic characteristics could reflect hydrous alteration of an evolved Martian crustal component or hydrous metasomatism within the Martian mantle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号