首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Paleoproterozoic mafic igneous rocks (2450–1970 Ma) are exposed in the form of layered intrusions, dykes, and volcanic rocks in the Karelian, Kola and Murmansk provinces and in the form of dykes and small intrusions in the Belomorian Province, Eastern Fennoscandian Shield. The age and sequence of mafic dyke emplacement during the Paleoproterozoic are very similar in these regions. Further comparisons of geochemical characteristics of mafic dyke swarms in the Belomorian Province and neighboring cratons show considerable similarities.  相似文献   

2.
The Jönköping Anorthositic Suite (JAS) in S. Sweden has characteristics typical for (Proterozoic) massif-type anorthosites. The interstitial liquid of these plagioclase-porphyritic rocks solidified at 1,455 ± 6 Ma, as determined by U–Pb isotope analysis of baddeleyite. The JAS developed during a regional 1.47–1.44 event in Fennoscandia that generated widespread mafic magmatism (basalts, and diabase dykes and sills) in the north and emplacement of felsic plutons in the south. The event of 1.47–1.44 Ga magmatism in Fennoscandia largely coincides in age with dynamic high-grade metamorphism in SW Sweden and was probably related to convergent active-margin processes during the Danopolonian orogeny.  相似文献   

3.
New data on the age and composition of doleritic dykes of the Karelian Craton on the Fennoscandian Shield are reported. Based on the results of U–Pb dating of baddeleyite, a new age episode (2404 ± 5 Ma) in the formation of basic rocks on the Karelian Craton is established. Comparison of the composition of the studied dolerite with that of dykes of the same age from other Archean cratons worldwide shows their essential similarity and allows us to suggest their formation within a single large igneous province. The data obtained support the current models of supercontinental reconstructions for the period of 2400 Ma.  相似文献   

4.
Geology of Ore Deposits - Detrital zircons with an age of 3.65–3.87 Ga have been found earlier in Jatulian terrigenous rocks from the eastern Fennoscandian Shield, i.e., the Karelian and Kola...  相似文献   

5.
We present new geochemical data on alkali and nepheline syenites from various complexes of different age within the Ukrainian Shield. The results reveal a correlation between the content of trace elements in the syenites, their assignment to a particular rock complex, the chemistry of primary melts, and the degree of their differentiation. The data also suggest regional geochemical heterogeneity in the ultramafic-alkaline complexes of the Ukrainian Shield. The alkali and nepheline syenites in the ultramafic-alkaline massifs from the eastern and western parts of the region exhibit similar REE contents and Eu/Eu* ratios but are markedly different in Nb, Ta, Zr, and Hf content and are of the miaskitic type. These rocks have lower REE, Nb, and Zr and higher Sr and Ba compared with early foidolites. The rocks of the gabbro-syenite complexes define a distinct Fe-enrichment fractionation trend from early syenitic intrusions to more differentiated varieties; they are also characterized by lower Sr, Ba, and Eu/Eu* and significantly lower contents of some major elements, e.g., Ti, Mg, and P. The agpaitic index and concentrations of Zr, Nb, Y, and REE increase in the same direction. A similar geochemical feature is observed in the alkali syenites genetically associated with anorthositerapakivi-granite plutons, which show incompatible-element enrichment and strong depletion in Sr and Ba. The distinctive evolutionary trends of alkali and nepheline syenites from different rock complexes of the Ukrainian Shield can be explained by different mechanisms of their formation. The main petrogenetic mechanism controlling the distribution of trace elements in the rocks of ultramafic-alkaline complexes was the separation of parent melts of melanephelinite and melilitite types into immiscible phonolite and carbonatite liquids. The gabbro-syenite complexes and alkali syenites from anorthosite-rapakivi granite plutons evolved via crystallization differentiation, which involved extensive feldspar fractionation.  相似文献   

6.
《Precambrian Research》2001,105(2-4):269-287
The Kolvitsa Belt in the south-western Kola Peninsula formed coeval with the earliest Palaeoproterozoic rift-belts in the Fennoscandian Shield. The Palaeoproterozoic history of this belt comprises the deposition of the 2.47 Ga Kandalaksha amphibolite (metabasalt) sequence onto 2.7 Ga granitoid gneisses, the intrusion of the 2.45–2.46 Ga Kolvitsa Massif of gabbro-anorthosite and the subsequent multiple injection of mafic dykes and magmatic brecciation, followed by the intrusion of 2.44 Ga dioritic dykes, and extensive shearing at 2.43–2.42 Ga. The gabbro-anorthosite and dykes contain high-pressure garnet-bearing assemblages that have previously been considered as evidence for metamorphism in a compressional setting of the Kolvitsa Belt at 2.45–2.42 Ga, i.e. coeval with the formation of the Imandra–Varzuga rift-belt and layered mafic intrusions in an extensional setting. The Kochinny Cape study area on the White Sea coast presents an unique remnant of a 2.44 Ga mafic dyke swarm that endured ca. 1.9 Ga collision but preserved its primary structural pattern well. All these dykes were intruded along numerous NW-trending shear zones within the Kolvitsa Massif and contain angular xenoliths of sheared gabbro-anorthosite. Every new batch of mafic melt underwent shearing during or immediately after solidification, and later dykes intruded into already sheared dykes. Thus, rocks of the Kolvitsa Massif and its dyke complex were successively injected into a large-scale shear zone which was active from ca. 2.46 to 2.42 Ga. Multiple injection of mafic melts, the presence of mutually intruding, composite, sheared mafic dykes, of magmatic breccias with gabbroic groundmass, and of host rocks fragments (showing no evidence of tectonic stacking at the time of brecciation), all indicate an extensional setting. Shearing was also extensional as it occurred simultaneously with the multistage magmatism. The asymmetric morphology of deformed dykes, and asymmetric flexures within weakly deformed lenses show that all these extensional shear zones, apart from a few exceptions, are dextral, were formed in a transtensional setting and are attributed to general W–E to WSW–ENE extension. Structural data available for 2.4–2.5 Ga magmatic rocks elsewhere in the Kola region suggest that the same kinematics operated on a regional scale. The presence of the garnet-bearing assemblages in gabbro-anorthosite and dykes may be explained by crystallisation and shearing of the magmatic rocks at deep crustal levels. Alternatively, corona development might have occurred much later as a result of tectonic loading due to the juxtaposition and overthrusting of the Umba Granulite Terrane onto the Kolvitsa Belt at ca. 1.9 Ga. In view of the field evidence and published ages, an overall extensional setting rather than a combination of compressional and extensional zones is preferable for Palaeoproterozoic tectonics in the north-eastern Fennoscandian Shield at 2.5–2.4 Ga.  相似文献   

7.
Field studies in the Eucalyptus area, northeastern Yilgarn Block have shown intrusive and extrusive rocks in an Archaean greenstone sequence to be comagma‐tic, and have suggested the sequence of subsequent granitoid intrusion and gold mineralisation. Andesitic volcanic rocks and related subvolcanic granodiorite porphyry and epiclastic sediments were followed by tholeiitic basalt with gabbro/dolerite sills and dykes, which were in turn succeeded by high‐Mg basalt with associated peridotite intrusions. Large, irregular gabbro and peridotite intrusions, which are inferred to represent subvolcanic magma chambers, occur in lower stratigraphic levels, whereas comformable subvolcanic sills occur in higher stratigraphic levels. Granodiorite plutons were followed by adamellite plutons; at least some gold mineralisation was contemporaneous with granitoid emplacement.  相似文献   

8.
Early Ordovician (Late Arenig) limestones from the SW margin of Baltica (Scania–Bornholm) have multicomponent magnetic signatures, but high unblocking components predating folding, and the corresponding palaeomagnetic pole (latitude=19°N, LONGITUDE=051°E) compares well with Arenig reference poles from Baltica. Collectively, the Arenig poles demonstrate a midsoutherly latitudinal position for Baltica, then separated from Avalonia by the Tornquist Sea.Tornquist Sea closure and the Baltica–Avalonia convergence history are evidenced from faunal mixing and increased resemblance in palaeomagnetically determined palaeolatitudes for Avalonia and Baltica during the Mid-Late Ordovician. By the Caradoc, Avalonia had drifted to palaeolatitudes compatible with those of SW Baltica, and subduction beneath Eastern Avalonia was taking place. We propose that explosive vents associated with this subduction and related to Andean-type magmatism in Avalonia were the source for the gigantic Mid-Caradoc (c. 455 Ma) ash fall in Baltica (i.e. the Kinnekulle bentonite). Avalonia was located south of the subtropical high during most of the Ordovician, and this would have provided an optimum palaeoposition to supply Baltica with large ash falls governed by westerly winds.In Scania, we observe a persistent palaeomagnetic overprint of Late Ordovician (Ashgill) age (pole: LATITUDE=4°S, LONGITUDE=012°E). The remagnetisation was probably spurred by tectonic-derived fluids since burial alone is inadequate to explain this remagnetisation event. This is the first record of a Late Ordovician event in Scania, but it is comparable with the Shelveian event in Avalonia, low-grade metamorphism in the North Sea basement of NE Germany (440–450 Ma), and sheds new light on the Baltica–Avalonia docking.  相似文献   

9.
Based on relationships between Paleoproterozoic mafic dykes, lithotectonic complexes, and tectonic structures of the Gridino Zone in the Belomorian eclogite province of the Fennoscandian Shield, deformations have been divided into groups differing in age and the succession of tectonic events has been reconstructed. The formation of Neoarchean eclogite-bearing melange was related to disintegration of large eclogite sheets in the course of near-horizontal ductile flow accompanied by syntectonic granitoid magmatism, multiple migmatization, and granulite-to amphibolite-facies metamorphism. The exotic blocks, including eclogites, were incorporated into TTG gneisses as sheets and lenses up to a few hundreds of meters in thickness and oriented conformably with gneissic banding. As a result of ductile flow, the lithotectonic complexes were transported at the level of discrete brittle-ductile deformations expressed as strike-slip faults and associated folds. Under conditions of a relatively rigid medium, individual structural elements underwent rotation approximately through 90° in plan view. Under the extension regime in the Early Paleoproterozoic, several swarms of mafic dykes were injected into the already cold framework rocks, as is evident from dyke morphology. The dykes crosscut all predated structures, included turned blocks, and are therefore important reference points for subdivision of Neoarchean and Paleoproterozoic processes. The Svecofennian postdyke tectonic activity was accompanied by local shearing and boudinage of metabasic rocks, development of quartz and pegmatite veins along tension cracks, disharmonic folding, and discrete retrograde metamorphism up to amphibolite-facies conditions. The postdyke deformations did not exert a substantial effect on the previously formed regional structure.  相似文献   

10.
Macquarie Island offers a rare opportunity to investigate outcropping ocean crust. In this study, palaeomagnetic samples were collected from 32 sites. After frequency demagnetization, 15 of these sites were found to be stable. Stable sites were from lavas, dykes, and gabbros, representing different depths of formation in the oceanic crust.

A successful bedding correction, assuming a simple model for the oceanic crust, was applied to the directions of magnetization. The former assumed dykes were injected vertically, lavas laid down horizontally, and gabbros layered horizontally. However, the palaeomagnetic poles from the centre and south of the island were not conformable at their 95 percent confidence levels. To remedy this, a structural correction was then applied to sites from the south of the island, where the average strike of dykes is 55° different from that in the centre of the island, which parallels regional seafloor‐spreading anomalies. This correction involved rotation around a vertical axis, which could not be accounted for in a simple bedding correction. When the average strike of the dykes was brought into parallelism with that of the regional seafloor‐spreading anomalies (and presumably that of the fossil spreading ridge), the result was to bring the palaeomagnetic poles from the centre and the south of the island into conformity.

The final pole for Macquarie Island was found to be consistent with a pole of similar age from the Australian Continent. This is consistent with Macquarie Island being formed as part of the Indian plate.

The magnetic properties of the rocks are consistent with seafloor‐spreading anomalies originating from the lavas, with a possible deeper contribution from the gabbros. The dolerite dykes which are palaeomagnetically stable appear to have natural remanent magnetizations (NRM) which are too low to contribute significantly to seafloor‐spreading anomalies.  相似文献   

11.
A palaeomagnetic study of dolerites spread over a large area in the coastal part of Ångermanland, central Sweden, introduces a palaeopole close to poles obtained from Jotnian or post-Jotnian dolerites in Finland, implying that all these rocks belong to the same intrusive phase.  相似文献   

12.
It has been demonstrated for the first time that the Svecofennian crustal porphyric granites in the southeastern part of the Fennoscandian Shield are clearly subdivided into two age groups of 1.87 and 1.80 Ga. The representative of the first group is the Kuznechenskii Massif of porphyric granites with a U–Pb age of 1874 ± 4 Ma belongs to the group of plutons formed during the orogenic stage of Svecofennide evolution. The Borodinskii Massif with an age of 1797 ± 2 Ma is a member of the second group: these plutons were formed under tectonically stable (epiplatform) conditions. Therefore, the formation of porphyric granites occurred as the result of repeated generation of crustal magmas during multistage accretional growth of the Svecofennian crust.  相似文献   

13.
《Comptes Rendus Geoscience》2007,339(3-4):200-211
At the end of the Neoproterozoic, the Earth may have experienced important environmental changes, with a transition between two supercontinents (from Rodinia to Gondwana), extensive glaciations with ice caps reaching the Equator and the beginning of metazoan diversification. In such a context, the palaeomagnetic record can be used to constrain both the palaeogeography and the palaeoclimate (palaeolatitudinal distribution of glacial deposits). Here we present an up-to-date geochronological and palaeomagnetic database for the Neoproterozoic glacial deposits, including poles recently obtained on ‘cap carbonates’ from China, Oman, and Amazonia. The database comprises ten poles (from eight different cratons), obtained directly on the glacial deposits or on the overlying ‘cap carbonate’, and two other palaeolatitudes derived from reference poles coeval to well-dated glacial units in the same craton. The occurrence of glacial deposition at low latitudes (<30 °) is attested by some good-quality poles, two of them well dated at ∼740 and ∼635 Ma. Based on these poles and on reference poles obtained on igneous rocks, tentative palaeogeographic reconstructions for ∼750, ∼620, and ∼580 Ma (ages for which the database has limited but still sufficient entries) were performed in order to investigate the tectonic context within which the glacial events were produced.  相似文献   

14.
Paleomagnetic study of dykes and intrusions remanent in the central part of the Kola Peninsula has been carried out; the Devonian age of these objects has been confirmed by isotopic-geochronological studies. The component analysis of the magnetization vector in the samples has shown that there are two magnetization components in most samples. The paleomagnetic pole corresponding to the direction of a more stable component is located in the close vicinity of the Middle Devonian segment of the apparent polar wander path (APWP) for the East European Craton, so this enables us to estimate its age to be as old as the Devonian. The second magnetization component was found in Devonian dykes of both northern and southern parts of the Kola Peninsula; the paleomagnetic pole corresponding to this component is located close to the Mesozoic (Early Jurassic) part of the APWP for the East European Craton. It is suggested that the extensive remagnetization of Devonian intrusions in the Kola Peninsula was caused by the thermal effect of the Barents-Amerasian superplume and by the appearance of an extensive area with trap magmatism within the modern Arctic Basin region. Discovery of a significant thermal event that covered the Fennoscandian northeast allows us to explain the geochronological problem concerning the Mesozoic ages of particular singular zircon grains from Precambrian rocks of the shield derived via the SHRIMP method.  相似文献   

15.
The Kola Alkaline Province in the northeastern Fennoscandian Shield comprises the world’s biggest agpaitic region consisting of the Khibina and Lovozero agpaitic complexes in addition to numerous carbonatite intrusions. Gravity data were used to create 3D models of the deep structure of these alkaline complexes down to the upper crustal level. Computer modelling was used for data analysis and presentation.The obtained data give strong evidence for the different internal structures of the Khibina and the Lovozero complexes. Both complexes at deeper levels are suggested to be composed not only of agpaitic nepheline syenites, but also of alkaline ultramafic rocks. The total volume of peridotite, foidite and melilitic rocks which form the lower zones of these two plutons range from 20 to 30% of their total volume. The Khibina and the Lovozero complexes have no common magma conduits within the uppermost crustal levels.Carbonatite intrusions of the Kola Peninsula form (i) subvertical lens-shaped igneous bodies, (ii) lopolith-like subsurface bodies with thin conduits, (iii) subvertical concentric bodies widening downwards which are suggested to represent the upper parts of large alkaline ultrabasic intrusions. The results support the idea of the uniform vertical zonality of carbonatite intrusions which may have had initially uniform magmatic reservoirs. Originally, the shape of the magma chambers for the carbonatite intrusions was close to a lens-like symmetric stock body 16–18 km in height with a vertical length/maximum diameter ratio close to 2:1. Differences in the on-surface structure of the carbonatite intrusions mostly depend on the level of erosion of the magma chambers. Comparative analysis of the morphology and internal structure of carbonatite intrusions have shown varying levels of erosion in different parts of the Kola Peninsula. This leads to the conclusion that the Precambrian crust, together with enclosed carbonatite intrusions, has undergone nonuniform erosion since the time of late Devonian alkaline magmatism. The southern part of the Kola basement appears to be the most eroded portion of northeastern Fennoscandia whereas the western and northwestern shield areas experienced less uplift since the time of the late Devonian alkaline magmatism.  相似文献   

16.
95 analyses of ore lead isotope ratios from 23 Phanerozoic ore deposits from the Swedish segment of the Fennoscandian Shield form a marked linear trend on a 207Pb/204Pb versus 206Pb/204Pb diagram. The line may be interpreted in a two-stage model, the lead being derived from 1.8±0.15 Ga old Svecokarelian basement and mineralization occurring at 0.4±0.15 Ga. The initial composition of the Svecokarelian rock lead was similar to the lead in early Proterozoic volcanogenic sulfide ores in Sweden. — The large spread in the isotope ratios was caused by a combination of selective leaching of different minerals in the source rocks, mixing with less radiogenic Caledonian lead, and local or regional variations in the U, Th and Pb contents of the basement. As a consequence, conventional methods of identifying source rocks from lead isotopic data (e.g. mu-values, Th/U ratios) may not be directly applicable. Phanerozoic ore lead development in the Swedish section of the Fennoscandian Shield was ensialic. That is, the ore lead was almost entirely derived from the Precambrian basement, although this basement does not appear to be anomalously enriched in Pb. No juvenile or mantle lead was apparently contributed to this section of the crust after the Precambrian, except for that mechanically transported onto the western edge of the Shield by the Caledonian nappes. However, some of Europe's largest lead deposits are included in these Swedish Phanerozoic mineralizations, suggesting that it was the nature of the processes involved rather than the richness of the source, that determined their formation.  相似文献   

17.
在冈瓦纳大陆裂解的同时及其后,出现了岩浆作用过程,它影响到远离安第斯山链的南美地台的大部分。这个岩浆作用过程构成了几种类型的记录:(1)拉斑玄武质侵入岩和喷出岩,如沉积盆地中的熔岩流、岩床、岩墙和基底中的岩墙。最大活动强度出现于中侏罗世至前阿普第阶早白垩世。在大陆的北部,出现局部的二叠—三叠纪拉斑玄武质岩墙。(2)碱性和过碱性镁铁质至长英质岩浆活动和共生的碳酸盐岩,它们出现于巴西Serra do Mar、巴拉那盆地周边以及在亚马孙地盾周边和玻利维亚,呈孤立的小面积出现,时代上大部分属后阿尔必阶。由于此期岩浆作用发生于南美和非洲移开之时,所以一直延续至中新世。少量的侵入岩是与侏罗纪—始自垩纪火山活动同时的。(3)在前寒武纪末期结束造山作用的地区以及在时代为中元古代的巴西克拉通区,已找到了几个金伯利岩体,少量的同位素资料指出其年龄属中生代。 地质构造影响了中新生代岩浆活动。玄武质熔岩流和岩床在克拉通内盆地中下沉较大的内部更常见,厚度也较大。许多前寒武纪断裂受到辉绿岩墙的影响,这些岩墙可以构成岩墙群。其它岩墙明显与古老断裂无关,但是它们位于大陆分离过程中遭受张应力的地区。巴拉那盆地周边的碱性岩浆作用通常受穹窿和断开的单褶的控制。相似的机制——也发现  相似文献   

18.
TWO TYPES OF CENOZOIC HIGH-K MAGMATINSM IN EASTERN TIBET:IMPLICATIONS FOR THE NATURE OF MANTLE SOURCES1 ArnaudNO ,VidalP ,TapponnierP ,etal.ThehighK2 OvolcanismofnorthwesternTibet:geochemistryandtectonicim plications[J] :EarthPlanetSciLett,1991,11:351~ 36 7. 2 DengW .CenozoicvolcanicrocksinthenorthernNgaridistrictoftheTibet Discussionontheconcurrentsubduction[J] .Ac taPetrolSinica ,1989( 3) :1~ 11. 3 HarrisonTM ,LeloupPH ,RyersonFJ,…  相似文献   

19.
The Central Scandinavian Dolerite Group (CSDG) occurs in five separate complexes in central Sweden and SW Finland. U–Pb baddeleyite ages of dolerite dikes and sills fall into three age intervals: 1264–1271 (the Dalarna complex), 1256–1259 (the Västerbotten-Ulvö-Satakunta complexes) and 1247 Ma (the Jämtland complex). Timing and spatial distribution of CSDG are unlike expressions of the voluminous and short-lived magmatism which characterises plume-associated large igneous provinces (LIPs). Protracted mafic magmatism in association with mantle plume tail (hotspot) activity beneath the Fennoscandian lithosphere or discrete events of extension behind an active margin (subduction) are considered more plausible tectonic settings. Both settings are consistent with timing, relative magma volumes between complexes and vertical ascent of individual magma pulses through the crust, as inferred from seismic sections [Korja, A., Heikkinen, P., Aaro, S., 2001. Crustal structure of the northern Baltic Sea palaeorift. Teconophysics 331, 341–358]. In the hotspot model, the lack of a linear track of intrusions can be explained by an almost stationary position of Fennoscandia relative to the hotspot, in agreement with palaeomagnetic data [Elming, S.-Å., Mattsson, H., 2001. Post Jotnian basic intrusion in the Fennoscandian Shield, and the break up of Baltica from Laurentia: a palaeomagnetic and AMS study. Precambrian Res. 108, 215–236]). Together with geological evidence, dolerite sill complexes and dike swarms in Labrador (Canada), S Greenland and central Scandinavia in the range 1234–1284 Ma are best explained by long-lived subduction along a continuous Laurentia-Baltica margin preceding Rodinia formation. There is no support for the hypothesis that CSDG was fed by magma derived from a distal mantle plume located between Baltica and Greenland and, hence, for rifting between the cratons at 1.26 Ga.The epsilon-Hf in various members of the CSDG varies between 4.7 and 10.3, which are overall higher than both older and younger Mesoproterozoic mafic intrusions in central Fennoscandia. Magma generated from a hotspot mantle source that was mixed to highly variable degrees with an enriched subcontinental lithospheric mantle could account for the wide range in Hf isotope composition. In the course of Hf isotope development work during this project we have analysed four fragments of the Geostandard 91500 reference zircon and after evaluating the existing ICPMS and TIMS data we calculate a mean 176Hf/177Hf value of 0.282303 ± 0.000003 (2σ).  相似文献   

20.
Early Palaeozoic volcanic and sedimentary rocks from the Saxothuringian Basin (Franconian Forest, northern Bavaria) have been subjected to detailed radiometric and palaeomagnetic studies in order to determine the tectonic environment and geographic setting in which they were deposited. Two hand samples were collected from the as yet undated pyroclastic flow deposits for 207Pb/206Pb age dating. Radiometric results for these samples, obtained by the single-zircon evaporation technique, are identical within error, and the mean age of all measured grains is 478.2ǃ.8 Ma (n=11). This age is considered to be primary and firmly constrains the eruption of the ignimbrites and formation of the subaqueous pyroclastic flows as having occurred in Early Ordovician (Arenig) times. Palaeomagnetic studies were carried out on these Early Ordovician volcanic rocks, and also on the biostratigraphically dated, Late Ordovician (Ashgillian) Döbra sandstones. The volcanic rocks carry up to three directions of magnetisation. The poorly defined, low and intermediate unblocking temperature directions are thought to represent secondary overprint directions of post-Ordovician age. The high temperature component, however, identified at temperatures of up to 580 °C, is of mixed polarity and passes the fold test with 99% confidence. The overall mean direction after bedding correction is 189°/76°, !95=11.6°, k=44.7 (25 samples, five sites), and is considered to be primary and Early Ordovician in origin. It yields a palaeo-south pole at 24°N and 007°E, which translates into palaeolatitudes of 63°+21.7°/-17.3° S for the Saxothuringian Terrane. Samples from the Late Ordovician Döbra sandstone are generally very weakly magnetised. A high temperature D component of magnetisation can be identified in some samples and yields a mean direction of 030°/-58°, !95=18.5°, k=25.7 (15 samples, four sites) after bedding correction. The Arenig palaeomagnetic results indicate high palaeolatitudes, but separation from northern Gondwana. This is in basic agreement with data from elsewhere in the Armorican Terrane Assemblage, all of which suggest high southerly palaeolatitudes in the Early Ordovician. The geochemical signatures of these rocks indicate emplacement in an extensional environment. These new data, therefore, are interpreted as marking the onset of rifting of Saxothuringia from the north African margin of Gondwana, and the start of the relative northward migration of the Saxothuringian Terrane. Although the Late Ordovician palaeomagnetic results presented here are only poorly constrained, they suggest an intermediate palaeolatitude for Saxothuringia in Ashgillian times, in good agreement with Late Ordovician palaeomagnetic data from the Barrandian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号