首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g-1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty.  相似文献   

2.
The concentrations of fifty trace elements, including relatively volatile elements and transition metal elements, in fused glasses of Geological Survey of Japan rock reference materials GSJ JR-2, JA-1, JA-2, JB-1a, JB-3, JGb-1 and JF-1 were determined by particle (proton) induced X-ray emission (PIXE) and laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). The fused glasses were prepared by rapid fusion and subsequent quenching in welded platinum capsules and were found to be homogeneous for major elements and for trace elements with concentrations of more than 1 μg g-1 within the observed precision (± 10% mean) on a 70 μm sampling scale. The values obtained by PIXE and LA-ICP-MS for the transition elements (Cr, Mn, Fe, Ni and Cu), the relatively volatile elements (Zn, Ga, Rb and Pb) and the refractory elements (Y, Zr, Nb and Th) with concentrations greater than a few μg g-1 showed good agreement (within 10 % relative difference). The values for almost all the elements detected at concentrations higher than 1 μg g-1 as determined by LA-ICP-MS also agreed well with the reference values (mean relative difference < ± 10%), except for B and Cu. The good agreement confirmed the appropriateness of the NIST SRM 600 series glass calibration reference material for LA-ICP-MS analysis of glasses with variable major-element compositions for almost all elements. The concentrations of Cu in all the samples were lower than the reference values, which was attributed to adsorption of the transition metals onto the platinum capsule during preparation.  相似文献   

3.
The microanalytical capability of laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS) to determine ultra trace elemental concentrations has been demonstrated by the analysis of two low concentration glass standard reference materials, NIST SRM 614 and 616. Results for fifty two elements at concentrations in the low ng g-1 range are compared with those determined using secondary ion mass spectrometry (SIMS). Both techniques provide results at these concentrations that generally agree within 95% confidence limits, demonstrating the accuracy for ultra-trace level of in situ determinations by the two techniques. At concentrations of less than 20 ng g-1 in NIST SRM 616, an accuracy and precision of better than 10% has been obtained for most mono-isotopic rare earth elements, when a spot size of 50 μm is used. Limits of detection for selected elements were as low as 0.5 ng g-1.  相似文献   

4.
We report new data on the trace element concentrations of Mg, Cr, Mn, Co, Ni, Cu, Zn, Sr, Cd, Ba, La, Ce, Nd, Pb and U in USGS carbonate reference materials (MACS-1 and MACS-2) and compare solution ICP-MS and LA-ICP-MS trace element determinations on landfill calcites using calibration to different reference materials (MACS-1 and MACS-2 carbonate and NIST SRM 612 glass). Very good agreement (differences below 10% relative) was found between laser ablation and solution ICP-MS data for MACS-1 with higher concentrations of trace elements (values between 100 and 150 μg g−1), with the exception of Cu and Zn. Similarly good agreement was found for MACS-2 with lower trace element concentrations (units to tens of μg g−1), with the exception of Cr, Co and Zn. The MACS-1 reference material for calibration of LA-ICP-MS was found to be extremely useful for in situ determination of trace elements in real-world carbonate samples (landfill calcites), especially those present in calcite in higher concentrations (Mn, Sr, Ba; < 5% RSD). Less accurate determinations were generally obtained for trace elements present at low concentrations (∼ units of μg g−1). In addition, good agreement was observed between the instrument calibration to MACS and NIST SRM 612 glass for in situ measurements of trace elements in landfill calcites K-2, K-3 and K-4 (differences below 15% relative for most elements). Thus, the application of MACS carbonate reference materials is promising and points to the need for the development of new carbonate reference materials for laser ablation ICP-MS.  相似文献   

5.
A new technique for the in situ analysis of Re, Au, Pd, Pt and Rh in natural basalt glass by laser ablation (LA)-ICP-MS is described. The method involves external calibration against NIST SRM 612/613 or 614/615 glass certified reference materials, internal standardisation using Ca, and ablation with a 200 μm wide beam spot and a pulsed laser repetition rate of 50 Hz. Under these conditions, sensitivities for Re, Au, Pd, Pt and Rh analyte ions are ˜ 5000 to 100,000 cps/μg g-1. This is sufficient to make measurements precise to ˜ 10% at the 2-10 μg g-1 level, which is well within the range of concentrations expected in many basalts. For LA-ICP-MS calibration and a demonstration of the accuracy of the technique, concentrations of Re, Au, Pd, Pt and Rh in the NIST SRM 610/611 (˜ 1 to 50 μg g-1), 612/613 (˜ 1 to 7 μg g-1), 614/615 (˜ 0.2 to 2 μg g-1) and 616/617 (˜ 0.004 to 2 μg g-1) glasses were determined by solution-nebulisation (SN)-ICP-MS. Using the 612/613 or 614/615 glasses as calibration standards, LA-ICP-MS measurements of these elements in the other NIST glasses fell within ˜ 15% of those determined by SN-ICP-MS. Replicate LA-ICP-MS analyses of the 612/613 and 614/615 glasses indicate that, apart from certain anomalous domains, the glasses are homogeneous for Re, Au, Pd, Pt and Rh to better than 3.5%. Two LA-ICP-MS analyses of natural, island-arc basalt glasses exhibit large fractionations of Re, Au and Pd relative to Pt and Rh, compared to the relative abundances in the primitive mantle.  相似文献   

6.
The paper presents preliminary results of the use of a high resolution double-focussing, magnetic sector inductively coupled plasma-mass spectrometer (HR-ICP-MS) with ultraviolet laser ablation (LA) for the bulk analysis of geological materials fused with Li2B4O7. Detection limits are based on data from precision measurements of a fused SiO2 sample of high purity, and sensitivity data (cps/μg g-1) obtained on the Reference Material (RM) Syenite SY-2. For many trace elements, the detection limits are better than 0.05 μg g-1 using a sample to flux weight ratio of 1:7.
Calibration curves, which are based entirely on RMs, are established for Hf, Ta, Tb, Tm and Lu. They indicate that, even at this early stage in the development of the technique, data accurate to ˜ 25% can be collected. It is concluded that the method may prove to be a valuable supplement to XRF for low level element concentration measurements; it is also very practical, as the same sample discs can be used for both XRF and LA-ICP-MS analyses.  相似文献   

7.
Fifty-two trace elements in NIST SRM 614, 616 and MPI-DING BM90/21-G glass reference materials as well as in NIST SRM 612, USGS BCR2-G and other MPI-DING reference glasses (KL2-G, GOR132-G, GOR128-G, ATHO-G, Tl-G, StHs6/80-G and ML3B-G) were determined by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS). Accurate ultra-low trace element abundances in the NIST SRM 614, 616 and BM90/21-G reference glasses down to lower ng g−1 levels were determined with relative standard deviations (RSD) of less than 10%. Limits of detection using He as carrier gas were up to two times lower than with Ar and were 0.004 to 0.12 μg g−1 for elements of lower mass numbers (amu < 85) and 0.002 to 0.06 μg g−1 for elements having amu < 85. The measured concentrations generally agree within 15% with previous studies except for B in NIST SRM 614 and 616, which appears to be heterogeneously distributed, and Co, Zn, Ga and Ag in NIST SRM 616 for which the existing data set is too small to evaluate the discrepancies. New values for As (0.593 μg g−1), Ag (0.361 μg g−1) and Cd (0.566 μg g−1) in NIST SRM 614 and new values for Na (94864 μg g−1) and As (0.276 μg g−1) in NIST SRM 616 are reported.  相似文献   

8.
The analytical capabilities of laser ablation (LA)-ICP-MS in determining Li, Be and B at trace levels in geological samples have been tested on a series of glass reference materials and natural samples. The LA-ICP-MS instrument used consisted of a sector-field ICP-MS coupled with a laser ablation microprobe operating at either 266 or 213 nm wavelength. Reference glasses from NIST (SRM 612, 614 and 616) and MPI-DING (KL2-G, ML3B-G, StHs6/80-G, GOR128-G, GOR132-G, T1-G and ATHO-G) were selected to develop the analytical method and to assess the best instrumental configuration. A series of calcic amphiboles with different Li, Be and B concentrations were also analysed using both LA-ICP-MS and SIMS to test the applicability of the method to natural minerals. Results indicated that with a spot size of 40 μm the agreement between measured and reference values of Li, Be and B is generally better than 10% for NIST SRM 612 and 20% for NIST SRM 614. Average reproducibility at the 2s level was 10% for Li, 20% for Be and 15% for B. Limits of detection were approximately 100 ng g-1 for Be and B and 200 ng g-1 for Li. These results were confirmed by analyses carried out on natural amphiboles and compared well in terms of precision and accuracy with those commonly achieved by SIMS.  相似文献   

9.
This paper describes a technique for the preparation of a titanite (CaTiSiO5) glass calibration material for use in in situ microanalysis of major, minor, and trace elements in geological materials. The starting composition was a titanite matrix doped with minor and trace elements at ∼ 200 μg g-1. The elements Sc, Y, REEs, Th and U were added in the form of nitrates in solution, and the elements V, Cr, Mn, Fe, Co, Ni, Zr, Nb, Hf and W were added as solid oxides. The synthetic titanite glass was produced by direct fusion by resistance heating in graphite electrodes at 1600-1700 °C, and quenched in air. Backscattered electron images indicate good homogeneity, with no signs of separate phases or vesicles, and analysis of the major elements Ca, Ti and Si by electron microprobe showed relative standard deviations between 0.5 and 0.7%, based on six independent measurements. Deviations from nominal concentrations for Ca, Si and Ti were measured to -1.2, -3.3 and -0.8%, respectively. The homogeneity of the trace elements in the glass was assessed by LA-ICP-MS analyses, using NIST SRM 610, 612 and 616 as external calibrators, and Ca as the internal standard element. Determinations were made both with a quadrupole mass spectrometer and a sector field instrument, and both raster and spot modes of analysis were used. For the majority of doped elements, precision was better than 10%, and relative deviations from nominal values were, with few exceptions, between 5 and 10%.  相似文献   

10.
磁铁矿广泛分布在岩浆、热液及沉积等各类矿床中,其地球化学元素组成往往受温度、氧逸度等物理化学条件的影响,能反映矿床形成环境并指示矿床成因类型,是一种重要的勘查指示矿物。自20世纪60年代以来,磁铁矿的主微量元素数据被用来构建不同的判别图,试图来区分矿床的成因类型。然而,由于矿床成因类型的多样性以及同一类型矿床的磁铁矿的主微量元素地球化学组成的复杂性,以往基于少数磁铁矿的主微量元素地球化学成分构建的矿床成因类型判别图存在一定的局限性。基于此,本文收集了前人发表在国内外期刊上的主要矿床类型的磁铁矿的元素地球化学数据(7 388条),初步构建了基于电子探针(EPMA)和激光剥蚀-电感耦合等离子体质谱(LA-ICP-MS)磁铁矿元素地球化学大数据集,建立了基于随机森林算法的矿床成因分类模型,并对磁铁矿主微量元素在矿床成因分类中的重要性做出排序。研究结果表明,基于磁铁矿大数据和机器学习算法构建的判别模型,能有效区分主要矿床类型,整体分类准确度高达95%。由于LA-ICP-MS磁铁矿数据集的测试元素多,分析精度高,使得基于LA-ICP-MS磁铁矿数据集的矿床成因分类模型精度高于基于EPMA数据集,表明磁铁矿中元素种类多少和数据测试精度影响矿床成因分类精度。同时,研究发现V元素在矿床成因分类过程中起到了较为重要的作用。此外,基于大数据和机器学习建立的判别模型对新的磁铁矿数据进行测试,可给出该数据属于每种矿床类型的概率,能有效判别矿床成因类型。  相似文献   

11.
To understand and/or avoid small-scale chemical heterogeneities within geological materials prepared as normal thin sections, in situ multiple trace element determination coupled with the simultaneous microscopic observation of the sample during analysis is preferable. We have examined fifty trace elements in thin (< 30 μm) layers of the NIST SRM 614 and 616 glass reference materials by LA-ICP-MS using different pit diameters and internal standard elements (Ca and Si). Compositional heterogeneities of Tl, Bi, As and Cd were found in NIST SRM 614 and 616 at the spatial resolution of ca. 10 0 μm. Except for these elements, the RSDs of six determinations for most elements were better than 10% in NIST SRM 614 when ablation diameters were < 50 μm. The measured concentrations for most elements in NIST SRM 614 and 616 agree with previous values in the literature at the 95% confidence level with the exception of W and Bi. New LA-ICP-MS data for K, As and Cd are also reported. The results support the view that the latest LA-ICP-MS is a powerful and flexible analytical technique for the determination of multiple ultra-trace element compositions in geological materials prepared as normal thin sections of the type that has been used for polarising optical microscopic observations since the end of the 19th century.  相似文献   

12.
A method for the selective separation of Ag, Cd, Cr, Cu, Ni, Pb and Zn in traces from solutions of calcite (CaCO3), dolomite (CaMg(CO3)2) and gypsum (CaSO4.2H2O) before their determination by inductively coupled plasma-atomic emission spectrometry (ICP-AES) is presented. The expected interferences of Ca and Mg on intensities of trace analytes were removed by collecting the elements of interest with cobalt(III) hexamethylenedithiocar-bamate, Co(HMDTC)3. The flotation of aqueous solutions (1 l) of calcite, dolomite and gypsum was performed at pH 6.0, by 1.5 mg l−1 Co and 0.6 mmol l−1 HMDTC. To minimise the effect of the reaction between Ca/Mg, which restrains the function of the surfactant, careful selection of the most suitable foaming reagent was necessary. The accuracy of the method was established by analysing natural alkaline-earth minerals by the standard addition method as well as using the dolomite reference materials GBW 07114 and GSJ JDo-1. The ICP-AES limits of detection following flotation on different minerals were found to be 0.080 μg g−1 for Cd, 0.105 μg g−1 for Ag, 0.142 μg g−1 for Cu, 0.195 μg g−1 for Cr, 0.212 μg g−1 for Ni, 0.235 μg g−1 for Zn and 0.450 μg g−1 for Pb.  相似文献   

13.
Laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a microanalytical tool especially suitable for providing fast and precise U-Pb geochronological results on zircon grains. A new 193 nm excimer laser adapted to a micromachining workstation, equipped with a newly designed two-volume ablation cell and coupled with a quadrupole ICP-MS, is presented here. The system was tuned routinely to achieve sensitivities in the range of 3000 cps/μg g−1 for 238U (< 2% RSD), with a 34 μm spot size, at 5 Hz and ∼ 8 J cm−2, while ablating the NIST SRM 612 glass reference material. The system was capable of providing fast (< 1.5 minutes each analysis) and precise (generally < 1.5% 1s errors) 206Pb/238U zircon ages. The ages of widely used reference material zircons (Plesovice, 337 Ma; Temora, 416 Ma; R33, 418 Ma; Sri Lanka, 564 Ma; 91500, 1065 Ma) could be precisely matched, with an accuracy on isotopic ratios that ranged from ∼ 2 to ∼ 6%, depending on the homogeneity of the natural reference materials.  相似文献   

14.
In this study we evaluated the capability of a 213 nm laser ablation system coupled to a quadrupole-based ICP-MS in delivering accurate and precise U-Pb ages on zircons and monazites. Four zircon samples ( ca. 50 Ma to ca. 600 Ma) and four monazite samples ( ca. 30 Ma to ca. 1390 Ma) of known ages were analysed utilising laser ablation pits with diameters of 20 μm and 60 μm. Instrument mass bias and laser induced time-dependent elemental fractionation were corrected for by calibration against a matrix-matched reference material. Tera-Wasserburg plots of the calculated U-Pb data were employed to assess, and correct for, common Pb contributions. The results indicated that the LA-ICP-MS technique employed in this study allowed precise and accurate U-Pb isotope dating of zircon and monazite on sample areas 20 μm in diameter. At this spot size, the precisions achieved for single spot 206Pb/238U ages, were better than 5% (2s) for monazites and zircons with ages down to 30 Ma and 50 Ma, respectively. The precisions reported are comparable to those generally reported in SIMS and LA-MC-ICP-MS U-Pb isotope determinations.  相似文献   

15.
Incompatible trace element abundances have been determined in mantle-derived clinopyroxenes by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) in a comparative study with established microanalytical and bulk techniques. Individual clinopyroxene grains were sampled for the laser ablation study from sieved mineral separate fractions, from which similar mineral grains had been previously extracted for microprobe (SIMS) and bulk (INAA and ID-TIMS) analysis. Mineral grains were ablated with variable degrees of surface spatial resolution (50-200 μm) in order to maximise ICP-MS analyte count rates and to improve detection limits. A comparison of results from the different techniques reveals that for the most homogeneous samples LA-ICP-MS can achieve excellent levels of agreement with other techniques (10%) and good precision for most of the studied elements (1-5% RSD). Variations in calculated concentrations by LA-ICP-MS confirm inter- and intra-mineral heterogeneity determined by SIMS, reflecting changes in sample composition and texture. The long-term reproducibility of the technique is shown by the consistency of results for one sample analysed on thirteen occasions over a period of nine months.  相似文献   

16.
Fifty elements in NIST SRM 614 and 616 glass reference materials were determined by laser ablation microprobe-inductively coupled plasma-mass spectrometry (LAM-ICP-MS). The values determined for NIST SRM 614 agreed well with the NIST-certified and information values (mean relative difference ± 3.6%), except for B, Sc and Sb. The values determined for NIST SRM 616 agreed with the NIST-certified and information values within a mean relative difference of ± 1.5%, except for B, Sc and Ga. In addition, at an 80 μm sampling scale, NIST SRM 614 and 616 glass discs were homogeneous for trace elements within the observed precisions of 5 and 15% (mean), respectively. Detection limits were in the range 0.01 - 0.3 μg g−1 for elements of lower mass numbers (amu < 80) and 1 - 10 ng g−1 for heavy elements (amu > 80). Detection at the sub ng g−1 level is possible for most of the heavy elements by using an ablation pit size larger than 10 0 μm.  相似文献   

17.
碳酸盐岩研究中存在多种微量元素、同位素测试方法,为进一步探究各测试手段实际获取地化信息之间是否存在差异?能否进行比对?以川中下寒武统龙王庙组碳酸盐岩样品为例,通过对比研究中常用的主微量元素测试(电子探针[EPMA]、激光剥蚀—等离子质谱[LA-ICP-MS]、溶液法微量[ICP-OES])、氧同位素测定(原位离子探针[in-situ SIMS]、酸溶粉末)结果,揭示讨论各测试结果的差异性,旨在为降低地化信息的多解性提供经验依据。研究发现: (1)各测试手段(EPMA、LA-ICP-MS、ICP-OES)之间的差异性客观存在,但测试结果偏差整体随着所测元素实际浓度的增高而降低。对于主量元素(>10%)各测试结果偏差小于2%;富集元素(>1000 μg/g)各测试结果处于测试误差之内,结果偏差小于6%;微量元素浓度区间(100~1000 μg/g)各测试结果偏差显著增大,并且LA-ICP-MS与ICP-OES结果偏差要小于LA-ICP-MS与EPMA结果偏差,前者偏差幅度由6%增至45%,后者偏差幅度由9.1%增至151%;在低于100 μg/g元素浓度区间,受矿物内非均质性影响LA-ICP-MS与ICP-OES的测试结果可相差几倍。(2)微区原位限定下,EPMA测试结果在邻近检测线区间(100~300 μg/g)与LA-ICP-MS结果偏差逐渐加大,推测此偏差变化是由EPMA结果矫正过程中对低含量元素的矫正补偿机制所造成。(3)in-situ SIMS氧同位素值揭示了矿物微区尺度上的 δ18O 值差异,但其整体测试结果与传统酸溶法测试的结果存在0.5‰~2.5‰ V-PDB的负偏偏差,推测此偏差可能来自于标样矫正转换误差。(4)实例样品中可见阴极发光特征与Fe、Mn含量无关的现象,故成岩流体判定更需结合岩石学、地化证据探讨。  相似文献   

18.
碳酸盐岩研究中存在多种微量元素、同位素测试方法,为进一步探究各测试手段实际获取地化信息之间是否存在差异?能否进行比对?以川中下寒武统龙王庙组碳酸盐岩样品为例,通过对比研究中常用的主微量元素测试(电子探针[EPMA]、激光剥蚀—等离子质谱[LA-ICP-MS]、溶液法微量[ICP-OES])、氧同位素测定(原位离子探针[in-situ SIMS]、酸溶粉末)结果,揭示讨论各测试结果的差异性,旨在为降低地化信息的多解性提供经验依据。研究发现: (1)各测试手段(EPMA、LA-ICP-MS、ICP-OES)之间的差异性客观存在,但测试结果偏差整体随着所测元素实际浓度的增高而降低。对于主量元素(>10%)各测试结果偏差小于2%;富集元素(>1000 μg/g)各测试结果处于测试误差之内,结果偏差小于6%;微量元素浓度区间(100~1000 μg/g)各测试结果偏差显著增大,并且LA-ICP-MS与ICP-OES结果偏差要小于LA-ICP-MS与EPMA结果偏差,前者偏差幅度由6%增至45%,后者偏差幅度由9.1%增至151%;在低于100 μg/g元素浓度区间,受矿物内非均质性影响LA-ICP-MS与ICP-OES的测试结果可相差几倍。(2)微区原位限定下,EPMA测试结果在邻近检测线区间(100~300 μg/g)与LA-ICP-MS结果偏差逐渐加大,推测此偏差变化是由EPMA结果矫正过程中对低含量元素的矫正补偿机制所造成。(3)in-situ SIMS氧同位素值揭示了矿物微区尺度上的 δ18O 值差异,但其整体测试结果与传统酸溶法测试的结果存在0.5‰~2.5‰ V-PDB的负偏偏差,推测此偏差可能来自于标样矫正转换误差。(4)实例样品中可见阴极发光特征与Fe、Mn含量无关的现象,故成岩流体判定更需结合岩石学、地化证据探讨。  相似文献   

19.
Various zircons of Proterozoic to Oligocene ages (1060-31 Ma) were analysed by laser ablation-inductively coupled plasma-mass spectrometry. Calibration was performed using Harvard reference zircon 91500 or Australian National University reference zircon TEMORA 1 as external calibrant. The results agree with those obtained by SIMS within 2s error. Twenty-four trace and rare earth elements (P, Ti, Cr, Y, Nb, fourteen REE, Hf, Ta, Pb, Th and U) were analysed on four fragments of zircon 91500. NIST SRM 610 was used as the reference material and 29Si was used as internal calibrant. Based on determinations of four fragments, this zircon shows significant intra-and inter-fragment variations in the range from 10% to 85% on a scale of 120 μm, with the variation of REE concentrations up to 38.7%, although the chondrite-normalised REE distributions are very similar. In contrast, the determined age values for zircon 91500 agree with TIMS data and are homogeneous within 8.7 Ma (2 s ). A two-stage ablation strategy was developed for optimising U-Pb age determinations with satisfactory trace element and REE results. The first cycle of ablation was used to collect data for age determination only, which was followed by continuous ablation on the same spot to determine REE and trace element concentrations. Based on this procedure, it was possible to measure zircon ages as low as 30.37 0.39 Ma (MSWD = 1.4; 2 s ). Other examples for older zircons are also given.  相似文献   

20.
Trace elements in the Geological Survey of Japan carbonate reference materials Coral JCp-1 and Giant Clam JCt-1 were determined by inductively coupled plasma-mass spectrometry after digestion with 2% v/v HNO3. A standard addition method was adopted in this determination in order to neutralise the Ca matrix effect. In addition, Sc, Y, In and Bi were used as internal standards to control the matrix effect and correct instrumental drift. Of the eighteen elements measured in JCp-1, precisions for fourteen elements, including Cu, Cd and Ba, were better than 10% RSD and concentrations ranged from 0.002 μg g-1 (Cs) to 8.02 μg g-1 (Ba). The concentrations of measured trace elements in JCt-1, except for Cu, were lower than those in JCp-1. Precisions for all elements with concentrations higher than 0.04 μg g-1 in JCt-1 were also better than 10% RSD and concentrations were found to be between 0.001 μg g-1 (Cs) and 4.84 μg g-1 (Ba). The concentrations of more than fifteen trace elements in the aragonite reference materials are reported here for the first time. Both reference materials are suitable for use in geochemical studies of environmental reconstruction based upon biogenic carbonate materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号