首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
The behaviour of trace elements (Al, As, Cd, Co, Cr,Cu, Fe, Mn, Ni, V, Zn) was studied in five humus-richstreams (dissolved organic carbon = 14–40 mg/L)impacted by acid sulphate soils developed in marinesulphide-bearing fine-grained sediments. During heavyrainfalls in autumn, on which the study focusses, themetals Al, Cd, Co, Cu, Mn, Ni and Zn are extensivelyleached from these acidic soils (pH = 2.5–4.5), whileAs, Cr, Fe and V are not leached more strongly fromthis soil type than from areas of till and peat. Aspeciation experiment, based on anion and cationexchange of the stream waters in the field, showedthat (1) the metals Al, Cd, Co, Mn, Ni and Zn aretransported in the streams mainly as inorganiccations, (2) Cu exists mainly in cationic form but isalso to a significant extent associated with dissolvedhumic substances, (3) Fe occurs mainly in the anionicfraction explained by organic coating on colloidal Feoxyhydoxides and (4) the hydrochemistry of As, Cr andV is complex as these elements may exist in severalunquantified anionic fractions and to a minor extentin cationic species/forms. Whereas the proportion ofacid sulphate soils in the catchments had a largeimpact on concentrations levels of several elements inthe stream waters, these soils did not have a largeaffect on the speciation of elements in water.  相似文献   

2.
贵州水城二叠系茅口组内发现新锰矿。通过对含锰岩系的地质地球化学研究,其富集Zn,Ni,As,Sb,Sr,Ba,Ga,Ag,V,U元素;锰含量较高层位,Th/U比值小于1,锰含量较低层位,Th/U比值往往高达4~5。Co/Ni比值小于1。含锰岩石的(Fe+Mn)/Ti均大于47,高于20,特别是含锰高的岩石,其(Fe+Mn)/Ti值在300以上。含锰岩石的Al/(Al+Fe+Mn)均远远低于0.35,一般为小于0.02。稀土配分模式与峨眉山玄武岩相似,∑REE较高,LREE/HREE值偏低等特征。根据锰岩系地球化学和区域构造特征分析,水城二叠系茅口组含锰岩系属于热水喷流沉积的产物。  相似文献   

3.
The old Senhora das Fontes uranium mine, located in central Portugal, was closed down in 1971. The treatment of ores from this mine and other mines by heap-leach ended in 1982. Seven dumps partially covered by vegetation were left in the area. Soil and stream sediment samples were collected in December 2009. The remediation was carried out from May 2010 to January 2011. Stream sediment samples were collected again in October 2013. Before the remediation, soils from inside the mine influence area have higher Al, As, Co, Cr, Cu, Fe, Ni, Sr, Th, U and Zn concentrations than soils from outside this area, due to radionuclides, metals and metalloid released from the mine dumps. The principal component analysis (PCA) shows a distinction between soils from inside and outside the mine influence area. The U(VI), As(V) and metals from soils can be adsorbed to Fe-oxyhydroxides and the humic acid can increase the U uptake. Soils must not be used for public or private green and residential areas, because they are contaminated in U, As, Co, Cd and Ni. Before the remediation, downstream sediments have higher Al, As, Cu, Mn, Ni, Pb, U and Zn than upstream sediments, due to erosion and percolation of water through the mine dumps. The PCA shows a distinction between downstream and upstream sediments. The U(VI), Th and As(V) can be adsorbed to Fe-oxyhydroxides. The stream sediments are contaminated in As, Mn, Th and U. Downstream sediments are the most contaminated in U and As. After the remediation, upstream and downstream sediments have generally higher Al, Fe, As, Cr, Ni, Th, U and Zn concentrations than before the remediation, attributed to the relocation of dumps. Radionuclides, metals and metalloids were transported by surface water. Consequently downstream sediments have higher Al, As, Cu, Mn, Ni, Th, U and Zn concentrations than upstream sediments. The U(VI), Th and As(V) can be adsorbed to Fe-oxyhydroxides. Stream sediments became more contaminated in U, Th and As than before the remediation, but more intensively downstream.  相似文献   

4.
About 6,400 water samples were collected from small catchments in northern Finland and Norway above 66° N latitude as a part of the Nordkalott Project carried out jointly by the Geological Surveys of Finland, Norway, and Sweden. Electrical conductivity (EC) was measured in situ and Ca, Mg, Sr, Ba, Na, K, Si, Fe, Mn, Al, and Zn concentrations were determined from filtered and acidified samples by the ICAP method. The relative abundance of mafic, ultramafic, and carbonate rock components in the catchments is the most influential factor controlling the EC values and the main cation concentrations (Ca, Mg, Sr). These components also determine the HCO3 alkalinity or acid-neutralizing capacity (ANC) of streamwater. In the northern coastal belt, Na is derived largely from airborne sea salts, but in the southwestern corner of the research area it may be derived partly from relict sea salts in sediments. The concentrations of Na, K, and Si do not depend solely on the lithological environment. Fe and, to a lesser extent, Mn and Al occur in the highest abundances in the low-lying, intensely paludified southern part of the area, suggesting that these metals tend to go into solution and are transported in complexed forms with dissolved and colloidic humic matter. The areal distribution patterns of the main cations (Ca, Mg, Sr) and of some heavy metals (Fe, Mn) in streamwater are fairly consistent with those of till and minerogenic stream sediments, although, in a statistical approach, only a few significant correlation coefficients were established.  相似文献   

5.
Removal of trace elements from landfill leachate by calcite precipitation   总被引:1,自引:0,他引:1  
Spontaneous precipitation of secondary calcite (CaCO3) has been observed in 25 samples of landfill leachate-polluted stream waters. During the 6-month precipitation experiment, the formation of calcite acts as a principal trace-element scavenging process. The concentrations of Fe, Sr, Ba and Mn and other trace elements in solution significantly decreased as calcite formed during the experiments. The PHREEQC-2 geochemical code indicated high supersaturation of the initial leachate-polluted waters with respect to calcite. The chemical/mineralogical study (SEM/EDS, XRD, ICP MS) revealed that this newly formed calcite contains considerable amounts of metals and metalloids removed from solution. Such a geochemical process can be considered to be important for spontaneous decontamination in landfill-affected environments (stream sediments, soils) or landfill technical facilities (settling basins). This removal takes place especially during dry periods with low rain precipitation, when the landfill waters exhibit both higher alkalinity and higher trace element concentrations.  相似文献   

6.
《Applied Geochemistry》2002,17(8):1061-1067
Loch Bradan, a drinking water reservoir in SW Scotland, frequently exhibits unacceptably high dissolved Mn concentrations. Both the surrounding catchment and the loch sediments are potential sources of Mn to the loch water. This study focused on the catchment soils, which are peaty, and found that redox cycling was an important process with respect to retention of Mn in the top sections (0–15 cm). Under more reducing conditions, reduction to Mn(II) and subsequent complexation by humic substances was observed at greater depth in some soil profiles. Complexation by humic substances is important because lateral water flow can remove soluble complexes and indeed this study observed that about 50% of Mn was humic-complexed in the stream waters feeding into the loch. It was particularly evident that the soil profile with the lowest Mn inventory exhibited the greatest extent of humification and that the remaining Mn was predominantly in a non-easily reducible form.  相似文献   

7.
《Applied Geochemistry》2006,21(8):1322-1334
The Ervedosa Mine, in north-eastern Portugal, has Sn-bearing quartz veins containing cassiterite and sulphides that cut Silurian schists and a Sn-bearing muscovite granite. These veins were mined for Sn and As2O3 until 1969. Cassiterite, the main Sn ore, has alternate lighter and darker growth-zones. The darker zones are richer in Fe, Nb, Ta and Ti, but poorer in Sn than the adjoining lighter zones. Exsolution blebs of ferrocolumbite, manganocolumbite, Ti ixiolite, rutile, ilmenite and rare wolframite were found in the darker zones. Arsenopyrite is the most abundant sulphide and contains inclusions of pyrrhotite, bismuth, bismuthinite and matildite. Other sulphides are pyrite, sphalerite, chalcopyrite and stannite. Secondary solid phases consisting mainly of hydrate sulphate complexes of Al, Fe, Ca and Mg (aluminocopiapite, copiapite, halotrichite, pickeringite, gypsum and alunogen, meta-alunogen) occur at the surface of the Sn-bearing quartz veins and their wall rocks (granite and schist), while oxides, hydroxides, arsenates and residual mineral phases (albite, muscovite and quartz) occur in mining tailings. Toxic acid mine waters (acid mine drainage AMD), which have high conductivity and significant concentrations of As, SO4 and metal (Cu, Zn, Pb, Fe, Mn, Cd, Ni and Co), occur in an area directly affected by the mine. Surface stream waters outside this area have low conductivity and a pH that is almost neutral. Metal and As concentrations are also lower. Stream waters within the impact area have an intermediate composition, falling between that of the AMD and the natural stream waters outside impact area. Waters associated directly with mineralised veins must not be used for human consumption or agriculture.  相似文献   

8.
The Parnok ferromanganese deposit is confined to the black shales of the western slope of the Polar Urals. The deposit area is made up of weakly metamorphosed terrigenous-carbonate rocks formed in a marine basin at a passive continental margin. Ore-bearing sequence is composed of coaliferous clayey-siliceous-calcareous shales comprising beds and lenses of pelitomorphic limestones, and iron and manganese ores. The iron ores practically completely consist of micrograined massive magnetite. The manganese ores are represented by lenticular-bedded rocks consisting of hausmannite, rhodochrosite, and diverse manganese silicates. With respect to relations between indicator elements (Fe, Mn, Al, Ti), the shales are ascribed to pelagic sediments with normal concentrations of Fe and Mn, the limestones correspond to metalliferous sediments, ferruginous sediments are ore-bearing sediments, while manganese rocks occupy an intermediate position. It was found that the concentrations of trace elements typical of submarine hydrothermal solutions (As, Ge, Ni, Pb, Sb, Zn, etc.) in both the ore types are in excess of those in lithogenic component. At the same time, the indicator elements of terrigenous material (Al, Ti, Hf, Nb, Th, Zr, and others) in the ores are several times lower than those in the host shales (background sediments). REE distribution patterns in iron ores show the positive Eu anomaly, while those in manganese ores, the positive Ce anomaly. In general, the chemical composition of the ores indicates their formation in the hydrothermal discharge zone. The peculiar feature of the studied object is the manifestation of hydrothermal vents in sedimentary basin without evident signs of volcanic activity. Hydrothermal solutions were formed in terrigenous-carbonate sequence mainly at the expense of buried sedimentation waters. The hydrothermal system was likely activated by rejuvenation of tectonic and magmatic processes at the basement of sedimentary sequences. Solutions leached iron, manganese, and other elements from sedimentary rocks and transported them to the seafloor. Their discharge occurred in relatively closed marine basin under intermittent anaerobic conditions. Eh-pH variations led to the differentiation of Fe and Mn and accumulation of chemically contrasting ore-bearing sediments.  相似文献   

9.
《Applied Geochemistry》1997,12(2):225-228
In this paper the main results of an experimental acidification of 5 Galician soils are presented. The acid input caused decrease in pH and mobilization of Al and some heavy metals. Owing to the great differences in the soils studied, the type of metal released and its concentrations in solution varied greatly. pH and metal content of the soils were the factors most influencing metal mobilization. The acid input greatly enhanced the mobilization of Al in the most acidic soils, particularly those developed from mica schist or shale. Large increases in Mn were observed in the soils developed from serpentinite and mica schist. The greatest Zn increase took place in soils derived from granulite and shale. Nickel increased only in the soil developed on serpentinite. Mobilization of Cu and Pb did not occur in any soil.  相似文献   

10.
Stream-water samples were collected during a 4-year-period in twosmall streams, one whose catchment was ditched for forestry halfway through the sampling period and another nearby reference stream whose catchment was not ditched during this period. The main aim was to study the impact of forest ditching on stream-water quality. Whereas the artificial drainage did not change the hydrograph pattern, it had a large effect on stream hydrochemistry: the concentrations of suspended material, Mn, Ca, Mg and Al increased, theconcentrations of total organic carbon decreased, and pH increased by approximately one unit, from an average of 4.4 to 5.4. The increase in suspended material, Mn and Al concentrations is explainedby the physical mobilisation of mineral particulates/colloids from mineral soils (till) exposed on the ditch slopes beneath the peat layer, while the increase in Ca and Mg loads is explained by the release of Ca2+ and Mg2+ in exchange reactions in this same soil layer. The increase in pH and decrease in TOC concentrations after ditching are related to changes in hydrological flow paths in the catchments, and most likely to immobilisation of both hydrogen ions and humic substances in the near neutral till horizon exposed beneath the peat layer. Only the aquatic abundance of Fewas not significantly affected by the ditching.  相似文献   

11.
Mining operations in the Pinpet Fe deposit, which is the second‐largest Fe deposit in Myanmar, are currently suspended, in part because of possible contamination of heavy metals and hazardous elements (e.g., Fe, As, Cu, Zn, and U) into the surrounding aquatic environment and associated public concern. However, a scientific investigation of the source and degree of contamination in streams near the deposit has not yet been conducted. Therefore, we quantified heavy‐metal and hazardous‐element concentrations of stream waters and sediments in stream beds, and measured the speciation and concentration of these metals in deposit Fe ores using the sequential extraction method, to better understand the influence of mining activities on the surrounding environment. Geochemical results for Nan‐tank‐pauk stream and its tributaries indicate that the chemical compositions of their waters are controlled by carbonate bedrock and that no detectable contamination has occurred as a result of mining activity or hematite and limonite ore beneficiation processes in either the wet or dry seasons. All measured heavy‐metal and hazardous‐element concentrations were below the World Health Organization standards for drinking water and the proposed national drinking water quality standards in Myanmar. Bulk chemical compositions of stream‐bed and tailings dam sediments show that As, Zn, and Cu concentrations are similar to those in uncontaminated sediments. Results of bulk mineralogical and chemical analyses of ore samples reveal that some limonite ore samples contain substantial amounts of As (up to 2 wt%). However, sequential extraction results indicate that most (>90%) of the As in these As‐rich ores is hosted in insoluble fractions (e.g., crystalline Fe hydroxides and clays). Therefore, arsenic is unlikely to be released into the aquatic environment by interacting with water during ore beneficiation processes should the mine resume operations.  相似文献   

12.
《Applied Geochemistry》2002,17(5):569-581
This study examined the sorption of trace metals to precipitates formed by neutralization of 3 natural waters contaminated with acid mine drainage (AMD) in the former Ducktown Mining District, Tennessee. The 3 water samples were strongly acidic (pH 2.2 to 3.4) but had distinctively different chemical signatures based on the mole fractions of dissolved Fe, Al and Mn. One sample was Fe-rich (Fe=87.5%, Al=11.3%, and Mn=1.3%), another was Al-rich (Al=79.4%, Mn=18.0%, and Fe=2.5%), and the other was Mn-rich (Mn=51.4%, Al=25.7%, and Fe=22.9%). In addition, these waters had high concentrations of trace metals including Zn (37,700 to 17,400 μg/l), Cu (13,000 to 270 μg/l), Co (1,500 to 520 μg/l), Ni (360 to 75 μg/l), Pb (30 to 8 μg/l), and Cd (30 to 6 μg/l). Neutralization of the AMD-contaminated waters in the laboratory caused the formation of either schwertmannite at pH<4 or ferrihydrite at pH>4. Both phases were identified by XRD analyses of precipitates from the most Fe-rich water. At higher pH values (∼5) Al-rich precipitates were formed. Manganese compounds were precipitated at pH∼8. The removal of trace metals depended on the precipitation of these compounds, which acted as sorbents. Accordingly, the pH for 50% sorption (pH50) ranged from 5.6 to 7.5 for Zn, 4.6 to 6.1 for Cu, 5.4 to 7.7 for Ni, 5.9 to 7.9 for Co, 3.1 to 4.3 for Pb, and 5.5 to 7.7 for Cd. The pH dependence of sorption arose not only because of changes in the sorption coefficients of the trace metals but also because the formation and composition of the sorbent was controlled by the pH, the chemical composition of the water, and the solubilities of the oxyhydroxide-sulfate complexes of Fe, Al, and Mn.  相似文献   

13.
丁阳  薛纪越 《地质论评》1997,43(4):415-419
新近在我国山西省娄烦县尖山铁矿的角闪片岩中发现一种取向连生的镁铁质闪石与钙质闪石共存对。电子探针分析确定它们分别为铁闪石K0.001(Na0.027Ca0.073Mn0.031Fe^2+1.801)1.932(Fe^2+2.948Mg1.964Ti0.002Al0.087)5Si8.069O22.10(OH)2与铁韭闪石(K0.135Na0.461)0.596(Na0.088Ca1.853Mn0.  相似文献   

14.
Abstract. Whole-rock chemical compositions of the Besshi basic schist closely associated with the Besshi massive sulfide deposit from the Sanbagawa Belt are reported. Studied samples were collected from four outcrops around the Dozan-goe, central Shikoku. Common metamorphic mineral assemblage of the basic schist is albite + epidote + actinolite + chlorite ± muscovite ± quartz. Major element contents are similar to those of typical tholeiitic basalts. Trace element patterns of the basic schist normalized to normal mid-ocean ridge basalt (N-MORB) are generally flat, although concentrations of highly mobile large-ion lithophile elements are quite variable. Chondrite-normalized rare earth element (REE) patterns are flat to slightly light REE-depleted patterns. In the Hf-Th-Ta and Nb-Zr-Y discrimination diagrams, basic schist samples closely associated with the sulfide deposit are plotted within the N-MORB field. The Th/Nb ratios of the basic schist are also comparable to those of N-MORB. These geo-chemical lines of evidence indicate that the protolith of the Besshi basic schist is N-MORB and the Besshi sulfide deposit was formed by hydrothermal activity in conjunction with MOR volcanism.  相似文献   

15.
Florida Bay is a shallow carbonate estuary in South Florida. It receives fresh waters from the Everglades that contribute a number of metals to the Bay. The Bay is the largest estuary in Florida with nearly pristine conditions. In this paper we report the first extensive studies of trace metals in the Bay. The seasonal distributions of trace metals (Sc, V, Cr, Co, Cu, Fe, Pb, Mn, Ni and Al) were determined on surface waters in Florida Bay and adjacent waters. The measurements in the Bay were made from May 2000 to May 2001, and the adjacent waters were sampled in September 2000 and May 2002. Most of the dissolved trace metals exhibited their maximum concentrations in summer, except Al and Pb that did not show any seasonal variability. The seasonal variations of the metals are related to the influx of fresh water from rainfall. The lowest concentrations are found during the dry season in the winter and the highest during the wet season in the summer. Several metals (V, Mn, Al, Sc, Fe, Co, Ni and Cr) exhibited their highest concentrations in the western zone of the Bay. These waters from agricultural areas are influenced by Gulf of Mexico waters, which carry metals coming from Barron, Broad and Shark rivers into the Bay. The Shark River always exhibited high concentrations of V, Mn, Al, Sc, Co and Cr. Other possible influences in the western and north-central zone of the Bay are from Flamingo Center, the creeks of Taylor Slough and the mangrove fringe of the Everglades. High concentrations of Al, Co, Ni, Cr, Cu, Fe, and Pb were detected in the eastern zone. The high values found in the northeast are influenced by Taylor Slough runoff and in the southeast by Key Largo, Tavernier Marina and the drainage from the main highway (US1) on Tavernier Key. The minimum concentrations for most of the metals were found in areas near the Key channels that exchange waters between Florida Bay and the Atlantic Ocean (Gulf Stream). The adjacent waters in the Atlantic side including the Gulf Stream waters showed very low concentrations for all the metals studied except for V. In the Bay correlations of V were found: (1) V with salinity and Al and (2) Sc with Si. Most of the other metals did not show any strong correlations with nutrients or salinity. Florida Bay is thus not a typical estuary due to the unique structure of its mud banks and multiple inputs of metals from the mangrove fringe in the north.  相似文献   

16.
The paper presents data on the specifics of the distributions of chemical elements in natural waters of the Kola North depending on the landscape–geochemical characteristics of the water catchment areas and aerotechnogenic pollution. The territory is subdivided into seven zones with different dominant rock types and typical landscapes. Lakes in the Kola region generally contain elevated concentrations of Cu, Ni, Co, Cr, V, Mo, U, Sb, Bi, Al, Fe, Mn, Sr, Li, Rb, Pb, Zn, Cd, La, and Ce. The waters of lakes in the influence zones of Cu–Ni mines are enriched in La, Ce, Sm, Gd, Pr, and Nd. In waterlogged landscapes, waters are enriched in certain trace elements because of their migration with humic acids. Technogenic acidic precipitation is proved to result in leaching of several elements, first of all Cd, Zn, and As (as well as other elements contained in rocks composing the water catchment areas) and their transfer into the waters.  相似文献   

17.
Mn-rich beds occur within the “Brecce di Seravezza” Formation (BSFm) intercalated between Norian metadolostone-Megalodontic marble and Hettangian marble in the Alpi Apuane, (Italy). The BSFm is a rockfall talus deposit that accumulates at the base of the footwall scarp of normal faults bordering extensional marine coastal basins. The type sequence of metabreccia ends with a bed of chloritoid schist interpreted as the metamorphic equivalent of lateritic soils. The four main types of Mn mineral assemblages are: (1) braunite, piemontite, and rare hausmannite; (2) piemontite, braunite, hollandite and minor rhodochrosite and kutnahorite; (3) braunite, hollandite and rare piemontite. The other minerals are: quartz, calcite, muscovite, phlogopite, baryte and minor hematite, rutile and apatite. During the Alpine orogeny pressures of 4–6 kb and temperatures of 350 °–380 °C were attained; Mn assemblages with hematite and phlogopite indicate ƒO2 > 10−8 for T= 350 °C and ƒO2 ≥ 10−6 when braunite appears.

On the Mn-rich rocks Ti, Fe, Nb, Sn, Ta, Hf, Th, Ga, Rb, Pr, K, Na, Nd were identified as detrital in origin and are positively correlated with Al. U is positively correlated with Co, Pb, Bi, Mo. The rare earth element patterns normalized to seawater show a negative slope towards the heavy rare earth elements, with positive Ce anomalies in some samples, positive Ce and Eu anomalies in other samples and negative Ce and positive Eu anomalies in a third group. The Eu concentrations are nearly constant and the Eu anomalies reflect differences in the concentration of other rare earth elements; for Ce, a positive correlation with Al2O3 + SiO2 indicate that a detrital signature prevails on that produced by duration of seawater exposure.

But a significant good correlation of La, Tm, Lu with Mg could indicate, at least for these elements a seawater signature. Only in some samples, Ba, Eu, Sr show anomalously high concentrations, likely of hydrothermal origin.

However, generally in all the chemical variation diagrams the BSFm samples fall outside the field of hydrothermal and hydrogenous deposits as defined in the literature for other Mn deposits.

In addition, metabasites and metavolcaniclastic beds are absent from the BSFm sequence and BSFm coastal basins were for the most part separated from the open ocean and related streams, that must be excluded as possible Mn-sources.

Owing to the arid climate of Late Triassic the runoff was negligible and the groundwater, oxidizing and alkaline, were unable to mobilize Mn.

The BSFm basins are then the most suitable depositional environment for Mn. The water column was stagnant and stratified. Only where bottom of the basin was deeper than the oxic-anoxic boundary, reducing marine bottom waters percolated within the fractured basement and leached Mn from disseminated minerals of metamorphic rocks and, then, rising along fault and fractures, supplied Mn to the bottom waters. Afterwards, when tectonic uplift and sealevel drop brought the bottom into the oxic field, Mn precipitated and formed the Mn-rich matrix of the BSFm deposits.  相似文献   


18.
In all geological scenarios, mineral water reactions will affect the water chemistry. As such, water resources in different rocks commonly involve different hydrogeological compartments. The aim of this work is to evaluate the influence of geology in the geochemistry signature of Itacolomi State Park waters. To do so, a survey of the geological units in the area was carried out, a geological/stratigraphic division was made, and its correlation with the main geological events was determined. Using the advantages of GIS, all the catchments were delimited. Based on this division, near 30 stream and lake segments were chosen for analyses. In each point, all physiochemical properties of the water were measured, and samples were collected to determine the concentrations of major and trace elements by ICP–OES. The dynamics of the Itacolomi State Park rock-soil and stream water solutions suggest that mixing of drainage waters from different bedrock and soil sources regulates stream water physical–chemical parameters and solute concentrations. The analytical data showed a clear correlation between the chemical compositions of the solute and the geological characteristics of the catchment. Units that are covered by iron oxide hardpan (Manso unit) and iron-banded formations (Custódio unit) show a large amount of soluble elements, including high values of Fe and Mn. On the other hand, the presence of high values of Al and K (Itacolomi unit) are a direct consequence of the presence of quartzite associated with low pH values.  相似文献   

19.
Published experimental data for Al(III) and Fe(III) binding by fulvic and humic acids can be explained approximately by the Humic Ion-Binding Model VI. The model is based on conventional equilibrium reactions involving protons, metal aquo ions and their first hydrolysis products, and binding sites ranging from abundant ones of low affinity, to rare ones of high affinity, common to all metals. The model can also account for laboratory competition data involving Al(III), Fe(III) and trace elements, supporting the assumption of common binding sites. Field speciation data (116 examples) for Al in acid-to-neutral waters can be accounted for, assuming that 60-70 % (depending upon competition by iron, and the chosen fulvic acid : humic acid ratio) of the dissolved organic carbon (DOC) is due to humic substances, the rest being considered inert with respect to ion binding. After adjustment of the model parameter characterizing binding affinity within acceptable limits, and with the assumption of equilibrium with a relatively soluble form of Fe(OH)3, the model can simulate the results of studies of two freshwater samples, in which concentrations of organically complexed Fe were estimated by kinetic analysis.The model was used to examine the pH dependence of Al and Fe binding by dissolved organic matter (DOM) in freshwaters, by simulating the titration with Ca(OH)2 of an initially acid solution, in equilibrium with solid-phase Al(OH)3 and Fe(OH)3. For the conditions considered, Al, which is present at higher free concentrations than Fe(III), competes significantly for the binding of Fe(III), whereas Fe(III) has little effect on Al binding. The principal form of Al simulated to be bound at low pH is Al3+, AlOH2+ being dominant at pH >6; the principal bound form of Fe(III) is FeOH2+ at all pH values in the range 4-9. Simulations suggest that, in freshwaters, both Al and Fe(III) compete significantly with trace metals (Cu, Zn) for binding by natural organic matter over a wide pH range (4-9). The competition effects are especially strong for a high-affinity trace metal such as Cu, present at low total concentrations (∼1 nM). As a result of these competition effects, high-affinity sites in humic matter may be less important for trace metal binding in the field than they are in laboratory systems involving humic matter that has been treated to remove associated metals.  相似文献   

20.
张银波 《矿物岩石》1994,14(3):79-88
西峡金红石矿床位于秦岭造山带东段南缘,是一个大型角闪质片岩型金红石矿床。矿体赋存于古生界信阳群龟山组第三段,含矿岩石为含金红石角闪质片岩。本文阐述了矿区地质、矿体和矿石特征、钛的赋存状态及分布规律、热液蚀变等,认为该矿床属变质热液改热门造的火山─沉积变质型金红石矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号