首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Variations in sulfur mineralogy and chemistry of serpentinized peridotites and gabbros beneath the Lost City Hydrothermal Field at the southern face of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were examined to better understand serpentinization and alteration processes and to study fluid fluxes, redox conditions, and the influence of microbial activity in this active, peridotite-hosted hydrothermal system. The serpentinized peridotites are characterized by low total sulfur contents and high bulk δ34S values close to seawater composition. Low concentrations of 34S-enriched sulfide phases and the predominance of sulfate with seawater-like δ34S values indicate oxidation, loss of sulfide minerals and incorporation of seawater sulfate into the serpentinites. The predominance of pyrite in both serpentinites and gabbros indicates relatively high fO2 conditions during progressive serpentinization and alteration, which likely result from high fluid fluxes during hydrothermal circulation and evolution of the Lost City system from temperatures of ∼250 to 150 °C. Sulfate and sulfide minerals in samples from near the base of hydrothermal carbonate towers at Lost City show δ34S values that reflect the influence of microbial activity. Our study highlights the variations in sulfur chemistry of serpentinized peridotites in different marine environments and the influence of long-lived, moderate temperature peridotite-hosted hydrothermal system and high seawater fluxes on the global sulfur cycle.  相似文献   

2.
In-situ uplifted portions of oceanic crust at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) were drilled during Expeditions 304 and 305 of the Integrated Ocean Drilling Program (IODP) and a 1.4 km section of predominantly gabbroic rocks with minor intercalated ultramafic rocks were recovered. Here we characterize variations in sulfur mineralogy and geochemistry of selected samples of serpentinized peridotites, olivine-rich troctolites and diverse gabbroic rocks recovered from Hole 1309D. These data are used to constrain alteration processes and redox conditions and are compared with the basement rocks of the southern wall of the Atlantis Massif, which hosts the Lost City Hydrothermal Field, 5 km to the south. The oceanic crust at the central dome is characterized by Ni-rich sulfides reflecting reducing conditions and limited seawater circulation. During uplift and exhumation, seawater interaction in gabbroic-dominated domains was limited, as indicated by homogeneous mantle-like sulfur contents and isotope compositions of gabbroic rocks and olivine-rich troctolites. Local variations from mantle compositions are related to magmatic variability or to interaction with seawater-derived fluids channeled along fault zones. The concomitant occurrence of mackinawite in olivine-rich troctolites and an anhydrite vein in a gabbro provide temperature constraints of 150-200 °C for late circulating fluids along local brittle faults below 700 m depth. In contrast, the ultramafic lithologies at the central dome represent domains with higher seawater fluxes and higher degrees of alteration and show distinct changes in sulfur geochemistry. The serpentinites in the upper part of the hole are characterized by high total sulfide contents, high δ34Ssulfide values and low δ34Ssulfate values, which reflect a multistage history primarily controlled by seawater-gabbro interaction and subsequent serpentinization. The basement rocks at the central dome record lower oxygen fugacities and more limited fluid fluxes compared with the serpentinites and gabbros of the Lost City hydrothermal system. Our studies are consistent with previous results and indicate that sulfur speciation and sulfur isotope compositions of altered oceanic mantle sequences commonly evolve over time. Heterogeneities in sulfur geochemistry reflect the fact that serpentinites are highly sensitive to local variations in fluid fluxes, temperature, oxygen and sulfur fugacities, and microbial activity.  相似文献   

3.
The Lost City hydrothermal system at the southern Atlantis Massif (Mid-Atlantic Ridge, 30°N) provides a natural laboratory for studying serpentinization processes, the temporal evolution of ultramafic-hosted hydrothermal systems, and alteration conditions during formation and emplacement of an oceanic core complex. Here we present B, O, and Sr isotope data to investigate fluid/rock interaction and mass transfer during detachment faulting and exhumation of lithospheric sequences within the Atlantis Massif. Our data indicate that extensive serpentinization was a seawater-dominated process that occurred predominately at temperatures of 150-250 °C and at high integrated W/R ratios that led to a marked boron enrichment (34-91 ppm). Boron removal from seawater during serpentinization is positively correlated with changes in δ11B (11-16‰) but shows no correlation with O-isotope composition. Modeling indicates that B concentrations and isotope values of the serpentinites are controlled by transient temperature-pH conditions. In contrast to prior studies, we conclude that low-temperature marine weathering processes are insignificant for boron geochemistry of the Atlantis Massif serpentinites. Talc- and amphibole-rich fault rocks formed within a zone of detachment faulting at temperatures of approximately 270-350 °C and at low W/R ratios. Talc formation in ultramafic domains in the massif was subsequent to an early stage of serpentinization and was controlled by the access of Si-rich fluids derived through seawater-gabbro interactions. Replacement of serpentine by talc resulted in boron loss and significant lowering of δ11B values (9-10‰), which we model as the product of progressive extraction of boron. Our study provides new constraints on the boron geochemical cycle at oceanic spreading ridges and suggests that serpentinization associated with ultramafic-hosted hydrothermal systems may have important implications for the behavior of boron in subduction zone settings.  相似文献   

4.
Bulk-rock chlorine content and isotopic composition (δ37Cl) were determined in oceanic serpentinites, high-pressure metaperidotites and metasediments in order to gain constraints on the global chlorine cycle associated with hydrothermal alteration and subduction of oceanic lithosphere. The distribution of insoluble chlorine in oceanic serpentinites was also investigated by electron microprobe. The hydrothermally-altered ultramafic samples were dredged along the South West Indian Ridge and the Mid-Atlantic Ridge. The high-pressure metamorphic samples were collected in the Western Alps: metaperidotites in the Erro-Tobbio unit and metasediments in the Schistes Lustrés nappe.Oceanic serpentinites show relatively large variations of bulk-rock Cl contents and δ37Cl values with mean values of 1105 ± 596 ppm and −0.7 ± 0.4‰, respectively (n = 8; 1σ). Serpentines formed after olivine (meshes) show lower Cl content than those formed after orthopyroxene (bastites). In bastites of two different samples, Cl is positively correlated with Al2O3 and negatively correlated with SiO2. These relationships are interpreted as reflecting preferential Cl-incorporation into the bastite structure distorted by Al (substituted for Si) rather than different alteration conditions between olivine and orthopyroxene minerals. High-pressure metaperidotites display relatively homogeneous Cl contents and δ37Cl values with mean values of 467 ± 88 ppm and −1.4 ± 0.1‰, respectively (n = 7; 1σ). A macroscopic high-pressure olivine-bearing vein, formed from partial devolatilization of serpentinites at ∼2.5 GPa and 500-600 °C, shows a Cl content and a δ37Cl value of 603 ppm and −1.6‰, respectively. Metasediments (n = 2) show low whole-rock Cl contents (<15 ppm Cl) that did not allow Cl isotope analyses to be obtained.The range of negative δ37Cl values observed in oceanic serpentinites is likely to result from water-rock interaction with fluids that have negative δ37Cl values. The homogeneity of δ37Cl values from the high-pressure olivine-bearing vein and the metaperidotite samples implies that progressive loss of Cl inherited from oceanic alteration throughout subduction did not significantly fractionate Cl isotopes. Chlorine recycled in subduction zones via metaperidotites should thus show a range of δ37Cl values similar to the range found in oceanic serpentinized peridotites.  相似文献   

5.
The carbon geochemistry of serpentinized peridotites and gabbroic rocks recovered at the Lost City Hydrothermal Field (LCHF) and drilled at IODP Hole 1309D at the central dome of the Atlantis Massif (Mid-Atlantic Ridge, 30°N) was examined to characterize carbon sources and speciation in oceanic basement rocks affected by long-lived hydrothermal alteration. Our study presents new data on the geochemistry of organic carbon in the oceanic lithosphere and provides constraints on the fate of dissolved organic carbon in seawater during serpentinization. The basement rocks of the Atlantis Massif are characterized by total carbon (TC) contents of 59 ppm to 1.6 wt% and δ13CTC values ranging from −28.7‰ to +2.3‰. In contrast, total organic carbon (TOC) concentrations and isotopic compositions are relatively constant (δ13CTOC: −28.9‰ to −21.5‰) and variations in δ13CTC reflect mixing of organic carbon with carbonates of marine origin. Saturated hydrocarbons extracted from serpentinites beneath the LCHF consist of n-alkanes ranging from C15 to C30. Longer-chain hydrocarbons (up to C40) are observed in olivine-rich samples from the central dome (IODP Hole 1309D). Occurrences of isoprenoids (pristane, phytane and squalane), polycyclic compounds (hopanes and steranes) and higher relative abundances of n-C16 to n-C20 alkanes in the serpentinites of the southern wall suggest a marine organic input. The vent fluids are characterized by high concentrations of methane and hydrogen, with a putative abiotic origin of hydrocarbons; however, evidence for an inorganic source of n-alkanes in the basement rocks remains equivocal. We propose that high seawater fluxes in the southern part of the Atlantis Massif likely favor the transport and incorporation of marine dissolved organic carbon and overprints possible abiotic geochemical signatures. The presence of pristane, phytane and squalane biomarkers in olivine-rich samples associated with local faults at the central dome implies fracture-controlled seawater circulation deep into the gabbroic core of the massif. Thus, our study indicates that hydrocarbons account for an important proportion of the total carbon stored in the Atlantis Massif basement and suggests that serpentinites may represent an important—as yet unidentified—reservoir for dissolved organic carbon (DOC) from seawater.  相似文献   

6.
Sulfide sulfur in mid-oceanic ridge hydrothermal vents is derived from leaching of basaltic-sulfide and seawater-derived sulfate that is reduced during high temperature water rock interaction. Conventional sulfur isotope studies, however, are inconclusive about the mass-balance between the two sources because 34S/32S ratios of vent fluid H2S and chimney sulfide minerals may reflect not only the mixing ratio but also isotope exchange between sulfate and sulfide. Here, we show that high-precision analysis of S-33 can provide a unique constraint because isotope mixing and isotope exchange result in different Δ33S (≡δ33S-0.515 δ34S) values of up to 0.04‰ even if δ34S values are identical. Detection of such small Δ33S differences is technically feasible by using the SF6 dual-inlet mass-spectrometry protocol that has been improved to achieve a precision as good as 0.006‰ (2σ).Sulfide minerals (marcasite, pyrite, chalcopyrite, and sphalerite) and vent H2S collected from four active seafloor hydrothermal vent sites, East Pacific Rise (EPR) 9-10°N, 13°N, and 21°S and Mid-Atlantic Ridge (MAR) 37°N yield Δ33S values ranging from −0.002 to 0.033 and δ34S from −0.5‰ to 5.3‰. The combined δ34S and Δ33S systematics reveal that 73 to 89% of vent sulfides are derived from leaching from basaltic sulfide and only 11 to 27% from seawater-derived sulfate. Pyrite from EPR 13°N and marcasite from MAR 37°N are in isotope disequilibrium not only in δ34S but also in Δ33S with respect to associated sphalerite and chalcopyrite, suggesting non-equilibrium sulfur isotope exchange between seawater sulfate and sulfide during pyrite precipitation. Seafloor hydrothermal vent sulfides are characterized by low Δ33S values compared with biogenic sulfides, suggesting little or no contribution of sulfide from microbial sulfate reduction into hydrothermal sulfides at sediment-free mid-oceanic ridge systems. We conclude that 33S is an effective new tracer for interplay among seawater, oceanic crust and microbes in subseafloor hydrothermal sulfur cycles.  相似文献   

7.
《Comptes Rendus Geoscience》2003,335(10-11):825-852
Serpentinites are an important component of the oceanic crust generated in slow to ultraslow spreading settings. In this context, the MOHO likely corresponds to a hydration boundary, which could match the 500 °C isotherm beneath the ridge axis. Textures from serpentinites sampled in ridge environments demonstrate that most of the serpentinization occurs under static conditions. The typical mineralogical association consists of lizardite ± chrysotile + magnetite ± tremolite ± talc. Despite the widespread occurrence of lizardite, considered as the low temperature serpentine variety, oxygen isotope fractionation suggests that serpentinization starts at high temperature, in the range of 300–500 °C. The fluid responsible for serpentinization is seawater, possibly evolved by interaction with the crust. Compared with fresh peridotites, serpentinites are strongly hydrated (10–15% H2O) and oxidized. Serpentinization, however, does not seem to be accompanied by massive leaching of major elements, implying that it requires a volume increase. It results in an increase in chlorine, boron, fluorine, and sulfur, but its effect on other trace elements remains poorly detailed. The presence of serpentinites in the oceanic crust affects its physical properties, in particular by lowering its density and seismic velocities, and modifying its magnetic and rheological properties. Serpentinization may activate hydrothermal cells and generate methane and hydrogen anomalies which can sustain microbial communities. Two types of hydrothermal field have been identified: the Rainbow type, with high temperature (360 °C) black smokers requiring magmatic heat; the low temperature (40–75 °C) Lost City type, by contrast, can be activated by serpenintization reactions. To cite this article: C. Mével, C. R. Geoscience 335 (2003).  相似文献   

8.
This paper provides the first measurements of the nitrogen (N) concentrations and isotopic compositions of high- and ultrahigh-pressure mafic eclogites, aimed at characterizing the subduction input flux of N in deeply subducting altered oceanic crust (AOC). The samples that were studied are from the Raspas Complex (Ecuador), Lago di Cignana (Italy), the Zambezi Belt (Zambia) and Cabo Ortegal (Spain), together representing subduction to 50-90 km depths. The eclogites contain 2-20 ppm N with δ15Nair values ranging from −1 to +8‰. These values overlap those of altered oceanic crust, but are distinct from values for fresh MORB (for the latter, ∼1.1 ppm N and δ15Nair ∼ −4‰). Based on N data in combination with other trace element data, the eclogite suites can be subdivided into those that are indistinguishable from their likely protolith, AOC, with or without superimposed effects of devolatilization (Lago di Cignana, Cabo Ortegal), and those that have experienced metasomatic additions during subduction-zone metamorphism (Zambezi Belt, Raspas). For the former group, the lack of a detectable loss of N in the eclogites, compared to various altered MORB compositions, suggests the retention of N in deeply subducted oceanic crust. The metasomatic effects affecting the latter group can be best explained by mixing with a (meta)sedimentary component, resulting in correlated enrichments of N and other trace elements (in particular, Ba and Pb) thought to be mobilized during HP/UHP metamorphism. Serpentinized and high-pressure metamorphosed peridotites, associated with the eclogites at Raspas and Cabo Ortegal, contain 3-15 ppm N with δ15Nair values ranging from +3 to +6‰, significantly higher than the generally accepted values for the MORB mantle (δ15Nair ∼ −5‰). Based on their relatively high N contents and their homogeneous and positive δ15N values, admixing of sedimentary N is also indicated for the serpentinized peridotites.One possible pathway for the addition of sediment-derived N into eclogites and peridotites involves mixing with fluids along the slab-mantle wedge interface. Alternatively, sedimentary N could be incorporated into peridotites during serpentinization at bending-related faults at the outer rise and, during later deserpentinization, released into fluids that then infiltrate overlying rocks. Deep retention of N in subducting oceanic crust should be considered in any attempt to balance subduction inputs with outputs in the form of arc volcanic gases. If materials such as these eclogites and serpentinized peridotites are eventually subducted to beyond sub-arc depths into the deeper mantle, containing some fraction of their forearc-subarc N inventory (documented here), they could deliver isotopically heavy N into the mantle to potentially be sampled by plume-related magmas.  相似文献   

9.
Carbon and hydrogen concentrations and isotopic compositions were measured in 19 samples from altered oceanic crust cored in ODP/IODP Hole 1256D through lavas, dikes down to the gabbroic rocks. Bulk water content varies from 0.32 to 2.14 wt% with δD values from −64‰ to −25‰. All samples are enriched in water relative to fresh basalts. The δD values are interpreted in terms of mixing between magmatic water and another source that can be either secondary hydrous minerals and/or H contained in organic compounds such as hydrocarbons. Total CO2, extracted by step-heating technique, ranges between 564 and 2823 ppm with δ13C values from −14.9‰ to −26.6‰. As for water, these altered samples are enriched in carbon relative to fresh basalts. The carbon isotope compositions are interpreted in terms of a mixing between two components: (1) a carbonate with δ13C = −4.5‰ and (2) an organic compound with δ13C = −26.6‰. A mixing model calculation indicates that, for most samples (17 of 19), more than 75% of the total C occurs as organic compounds while carbonates represent less than 25%. This result is also supported by independent estimates of carbonate content from CO2 yield after H3PO4 attack. A comparison between the carbon concentration in our samples, seawater DIC (Dissolved Inorganic Carbon) and DOC (Dissolved Organic Carbon), and hydrothermal fluids suggests that CO2 degassed from magmatic reservoirs is the main source of organic C addition to the crust during the alteration process. A reduction step of dissolved CO2 is thus required, and can be either biologically mediated or not. Abiotic processes are necessary for the deeper part of the crust (>1000 mbsf) because alteration temperatures are greater than any hyperthermophilic living organism (i.e. T > 110 °C). Even if not required, we cannot rule out the contribution of microbial activity in the low-temperature alteration zones. We propose a two-step model for carbon cycling during crustal alteration: (1) when “fresh” oceanic crust forms at or close to ridge axis, alteration starts with hot hydrothermal fluids enriched in magmatic CO2, leading to the formation of organic compounds during Fischer-Tropsch-type reactions; (2) when the crust moves away from the ridge axis, these interactions with hot hydrothermal fluids decrease and are replaced by seawater interactions with carbonate precipitation in fractures. Taking into account this organic carbon, we estimate C isotope composition of mean altered oceanic crust at ∼ −4.7‰, similar to the δ13C of the C degassed from the mantle at ridge axis, and discuss the global carbon budget. The total flux of C stored in the altered oceanic crust, as carbonate and organic compound, is 2.9 ± 0.4 × 1012 molC/yr.  相似文献   

10.
We investigate the Logatchev Hydrothermal Field at the Mid-Atlantic Ridge, 14°45′N to constrain the calcium isotope hydrothermal flux into the ocean. During the transformation of seawater to a hydrothermal solution, the Ca concentration of pristine seawater ([Ca]SW) increases from about 10 mM to about 32 mM in the hydrothermal fluid endmember ([Ca]HydEnd) and thereby adopts a δ44/40CaHydEnd of −0.95 ± 0.07‰ relative to seawater (SW) and a 87Sr/86Sr isotope ratio of 0.7034(4). We demonstrate that δ44/40CaHydEnd is higher than that of the bedrock at the Logatchev field. From mass balance calculations, we deduce a δ44/40Ca of −1.17 ± 0.04‰ (SW) for the host-rocks in the reaction zone and −1.45 ± 0.05‰ (SW) for the isotopic composition of the entire hydrothermal cell of the Logatchev field. The values are isotopically lighter than the currently assumed δ44/40Ca for Bulk Earth of −0.92 ± 0.18‰ (SW) [Skulan J., DePaolo D. J. and Owens T. L. (1997) Biological control of calcium isotopic abundances in the global calcium cycle. Geochim. Cosmochim. Acta61,(12) 2505-2510] and challenge previous assumptions of no Ca isotope fractionation between hydrothermal fluid and the oceanic crust [Zhu P. and Macdougall J. D. (1998) Calcium isotopes in the marine environment and the oceanic calcium cycle. Geochim. Cosmochim. Acta62,(10) 1691-1698; Schmitt A. -D., Chabeaux F. and Stille P. (2003) The calcium riverine and hydrothermal isotopic fluxes and the oceanic calcium mass balance. Earth Planet. Sci. Lett. 6731, 1-16]. Here we propose that Ca isotope fractionation along the fluid flow pathway of the Logatchev field occurs during the precipitation of anhydrite. Two anhydrite samples from the Logatchev Hydrothermal Field show an average fractionation of about Δ44/40Ca = −0.5‰ relative to their assumed parental solutions. Ca isotope ratios in aragonites from carbonate veins from ODP drill cores indicate aragonite precipitation directly from seawater at low temperatures with an average δ44/40Ca of −1.54 ± 0.08‰ (SW). The relatively large fractionation between the aragonite precipitates and seawater in combination with their frequent abundance in weathered mafic and ultramafic rocks suggest a reconsideration of the marine Ca isotope budget, in particular with regard to ocean crust alteration.  相似文献   

11.
The coexistence of magmatic anhydrite and sulfide minerals in non-arc-related mafic magmas has only rarely been documented. Likewise the S isotope fractionation between sulfate and sulfide in mafic rocks has infrequently been measured. In the Kharaelakh intrusion associated with the world-famous Noril’sk ore district in Siberia coexisting magmatic anhydrite and sulfide minerals have been identified. Sulfur isotope compositions of the anhydrite-sulfide assemblages have been measured via both ion microprobe and conventional analyses to help elucidate the origin of the anhydrite-sulfide pairs. Magmatic anhydrite and chalcopyrite are characterized by δ34S values between 18.8‰ and 22.8‰, and 9.3‰ and 13.2‰, respectfully. Coexisting anhydrite and chalcopyrite show Δ values that fall between 8.5‰ and 11.9‰. Anhydrite in the Kharaelakh intrusion is most readily explained by the assimilation of sulfate from country rocks; partial reduction to sulfide led to mixing between sulfate-derived sulfide and sulfide of mantle origin. The variable anhydrite and sulfide δ34S values are a function of differing degrees of sulfate reduction, variable mixing of sulfate-derived and mantle sulfide, incomplete isotopic homogenization of the magma, and a lack of uniform attainment of isotopic equilibrium during subsolidus cooling. The δ34S values of sulfide minerals have changed much less with cooling than have anhydrite values due in large part to the high sulfide/sulfate ratio. Variations in both sulfide and anhydrite δ34S values indicate that isotopically distinct domains existed on a centimeter scale. Late stage hydrothermal anhydrite and pyrite also occur associated with Ca-rich hydrous alteration assemblages (e.g., thomsonite, prehnite, pectolite, epidote, xonotlite). δ34S values of secondary hydrothermal anhydrite and pyrite determined by conventional analyses are in the same range as those of the magmatic minerals. Anhydrite-pyrite Δ values are in the 9.1-10.1‰ range, and are smaller than anticipated for the low temperatures indicated by the silicate alteration assemblages. The small Δ values are suggestive of either sulfate-sulfide isotopic disequilibrium or closure of the system to further exchange between ∼550 and 600 °C. Our results confirm the importance of the assimilation of externally derived sulfur in the generation of the elevated δ34S values in the Kharaelakh intrusion, but highlight the sulfur isotopic variability that may occur in magmatic systems. In addition, our results confirm the need for more precise experimental determination of sulfate-sulfide sulfur isotope fractionation factors in high-T systems.  相似文献   

12.
We examined small-scale shear zones in drillcore samples of abyssal peridotites from the Mid-Atlantic Ridge. These shear zones are associated with veins consisting of chlorite + actinolite/tremolite assemblages, with accessory phases zircon and apatite, and they are interpreted as altered plagiogranite melt impregnations, which originate from hydrous partial melting of gabbroic intrusion in an oceanic detachment fault. Ti-in-zircon thermometry yields temperatures around 820°C for the crystallization of the evolved melt. Reaction path modeling indicates that the alteration assemblage includes serpentine of the adjacent altered peridotites. Based on the model results, we propose that formation of chlorite occurred at higher temperatures than serpentinization, thus leading to strain localization around former plagiogranites during alteration. The detachment fault represents a major pathway for fluids through the oceanic crust, as evidenced by extremely low δ18O of altered plagiogranite veins (+3.0–4.2‰) and adjacent serpentinites (+ 2.6–3.7‰). The uniform oxygen isotope data indicate that fluid flow in the detachment fault system affected veins and adjacent host serpentinites likewise. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

13.
Serpentinites occur in transverse fracture zones and adjacent areas in the Mid-Atlantic Ridge near 24° and 30° N. In two fracture zones, about 700 km distant from each other, serpentinites show practically the same trend and range of variation in chemical composition. Their CaO content ranges from 2.05 to 0.07% by weight. Serpentinites relatively high in CaO content contain pargasite, whereas those relatively low in CaO do not. Serpentinites relatively high in CaO are chemically similar to high-temperature peridotites which are widely believed to have been derived from the upper mantle. With a decrease in CaO, the Al2O3, TiO2, K2O and FeO contents and the Fe/Mg ratio tend to decrease, whereas the H2O+ content tends to increase. This compositional variation is probably due partly to heterogeneity of uper mantle peridotite from which the serpentinites were derived, and partly to chemical migration during serpentinization. The interior of the Mid-Atlantic Ridge may be mainly made up of serpentinites. Alternatively, the Mid-Atlantic Ridge Serpentinites may have been formed by serpentinization of peridotites that were intruded into fracture zones from a great depth.Lamont-Doherty Geological Observatory Contribution No. 1354.  相似文献   

14.
Iron isotope and major- and minor-element compositions of coexisting olivine, clinopyroxene, and orthopyroxene from eight spinel peridotite mantle xenoliths; olivine, magnetite, amphibole, and biotite from four andesitic volcanic rocks; and garnet and clinopyroxene from seven garnet peridotite and eclogites have been measured to evaluate if inter-mineral Fe isotope fractionation occurs in high-temperature igneous and metamorphic minerals and if isotopic fractionation is related to equilibrium Fe isotope partitioning or a result of open-system behavior. There is no measurable fractionation between silicate minerals and magnetite in andesitic volcanic rocks, nor between olivine and orthopyroxene in spinel peridotite mantle xenoliths. There are some inter-mineral differences (up to 0.2 in 56Fe/54Fe) in the Fe isotope composition of coexisting olivine and clinopyroxene in spinel peridotites. The Fe isotope fractionation observed between clinopyroxene and olivine appears to be a result of open-system behavior based on a positive correlation between the Δ56Feclinopyroxene-olivine fractionation and the δ56Fe value of clinopyroxene and olivine. There is also a significant difference in the isotopic compositions of garnet and clinopyroxene in garnet peridotites and eclogites, where the average Δ56Feclinopyroxene-garnet fractionation is +0.32 ± 0.07 for six of the seven samples. The one sample that has a lower Δ56Feclinopyroxene-garnet fractionation of 0.08 has a low Ca content in garnet, which may reflect some crystal chemical control on Fe isotope fractionation. The Fe isotope variability in mantle-derived minerals is interpreted to reflect subduction of isotopically variable oceanic crust, followed by transport through metasomatic fluids. Isotopic variability in the mantle might also occur during crystal fractionation of basaltic magmas within the mantle if garnet is a liquidus phase. The isotopic variations in the mantle are apparently homogenized during melting processes, producing homogenous Fe isotope compositions during crust formation.  相似文献   

15.
Here we calibrate the carbonate clumped isotope thermometer in modern deep-sea corals. We examined 11 specimens of three species of deep-sea corals and one species of a surface coral spanning a total range in growth temperature of 2-25 °C. External standard errors for individual measurements ranged from 0.005‰ to 0.011‰ (average: 0.0074‰) which corresponds to ∼1-2 °C. External standard errors for replicate measurements of Δ47 in corals ranged from 0.002‰ to 0.014‰ (average: 0.0072‰) which corresponds to 0.4-2.8 °C. We find that skeletal carbonate from deep-sea corals shows the same relationship of Δ47 (the measure of 13C-18O ordering) to temperature as does inorganic calcite. In contrast, the δ13 C and δ18O values of these carbonates (measured simultaneously with Δ47 for every sample) differ markedly from equilibrium with seawater; i.e., these samples exhibit pronounced ‘vital effects’ in their bulk isotopic compositions. We explore several reasons why the clumped isotope compositions of deep-sea coral skeletons exhibit no evidence of a vital effect despite having large conventional isotopic vital effects.  相似文献   

16.
At Lucky Strike near the Azores Triple Junction, the seafloor setting of the hydrothermal field in a caldera system with abundant low-permeability layers of cemented breccia, provides a unique opportunity to study the influence of subsurface geological conditions on the hydrothermal fluid evolution. Coupled analyses of S isotopes performed in conjunction with Se and Fe isotopes have been applied for the first time to the study of seafloor hydrothermal systems. These data provide a tool for resolving the different abiotic and potential biotic near-surface hydrothermal reactions. The δ34S (between 1.5‰ and 4.6‰) and Se values (between 213 and 1640 ppm) of chalcopyrite suggest a high temperature end-member hydrothermal fluid with a dual source of sulfur: sulfur that was leached from basaltic rocks, and sulfur derived from the reduction of seawater sulfate. In contrast, pyrite and marcasite generally have lower δ34S within the range of magmatic values (0 ± 1‰) and are characterized by low concentrations of Se (<50 ppm). For 82Se/76Se ratios, the δ82Se values range from basaltic values of near −1.5‰ to −7‰. The large range and highly negative values of hydrothermal deposits observed cannot be explained by simple mixing between Se leached from igneous rock and Se derived from seawater. We interpret the Se isotope signature to be a result of leaching and mixing of a fractionated Se source located beneath hydrothermal chimneys in the hydrothermal fluid. At Lucky Strike we consider two sources for S and Se: (1) the “end-member” hydrothermal fluid with basaltic Se isotopic values (−1.5‰) and typical S isotope hydrothermal values of 1.5‰; (2) a fractionated source hosted in subsurface environment with negative δ34S values, probably from bacterial reduction of seawater sulfate and negative δ82Se values possibly derived from inorganic reduction of Se oxyanions. Fluid trapped in the subsurface environment is conductively cooled and has restricted mixing and provide favorable conditions for subsurface microbial activity which is potentially recorded by S isotopes. Fe isotope systematic reveals that Se-rich high temperature samples have δ57Fe values close to basaltic values (∼0‰) whereas Se-depleted samples precipitated at medium to low temperature are systematically lighter (δ57Fe values between −1 to −3‰). An important implication of our finding is that light Fe isotope composition down to −3.2‰ may be explained entirely by abiotic fractionation, in which a reservoir effect during sulfide precipitation was able to produce highly fractionated compositions.  相似文献   

17.
Eight DSDP/ODP cores were analyzed for major ion concentrations and δ37Cl values of water-soluble chloride (δ37ClWSC) and structurally bound chloride (δ37ClSBC) in serpentinized ultramafic rocks. This diverse set of cores spans a wide range in age, temperature of serpentinization, tectonic setting, and geographic location of drilled serpentinized oceanic crust. Three of the cores were sampled at closely spaced intervals to investigate downhole variation in Cl concentration and chlorine isotope composition.The average total Cl content of all 86 samples is 0.26 ± 0.16 wt.% (0.19 ± 0.10 wt.% as water-soluble Cl (XWSC) and 0.09 ± 0.09 wt.% as structurally bound Cl (XSBC)). Structurally bound Cl concentration nearly doubles with depth in all cores; there is no consistent trend in water-soluble Cl content among the cores. Chlorine isotope fractionation between the structurally bound Cl site and the water-soluble Cl site varies from − 1.08‰ to + 1.16‰, averaging to + 0.21‰. Samples with negative fractionations may be related to reequilibration of the water-soluble chloride with seawater post-serpentinite formation. Six of the cores have positive bulk δ37Cl values (+ 0.05‰ to + 0.36‰); the other two cores (173-1068A (Leg-Hole) and 84-570) have negative bulk δ37Cl values (− 1.26‰ and − 0.54‰). The cores with negative δ37Cl values also have variable Cl / SO42 ratios, in contrast to all other cores. The isotopically positive cores (153-920D and 147-895E) show no isotopic variation with depth; the isotopically negative core (173-1068A) decreases by ∼1‰ with depth for both the water-soluble and structurally bound Cl fractions.Non-zero bulk δ37Cl values indicate Cl in serpentinites was incorporated during original hydration and is not an artifact of seawater infiltration during drilling. Cores with positive δ37Cl values are most likely explained by open system fractionation during hydrothermal alteration, with preferential incorporation of 37Cl from seawater into the serpentinite and loss of residual light Cl back to the ocean. Fluid / rock ratios were probably low as evidenced by the presence of water-soluble salts. The two isotopically negative cores are characterized by a thick overlying sedimentary package that was in place prior to serpentinization. We believe the low δ37Cl values of these cores are a result of hydration of ultramafic rock by infiltrating aqueous pore fluids from the overlying sediments. The resulting serpentinites inherit the characteristic negative δ37Cl values of the pore waters. Chlorine stable isotopes can be used to identify the source of the serpentinizing fluid and ultimately discern chemical and tectonic processes involved in serpentinization.  相似文献   

18.
The long-lived (about 20 yr) bryozoan Adeonellopsis sp. from Doubtful Sound, New Zealand, precipitates aragonite in isotopic equilibrium with seawater, exerting no metabolic or kinetic effects. Oxygen isotope ratios (δ18O) in 61 subsamples (along three branches of a single unaltered colony) range from −0.09 to +0.68‰ PDB (mean = +0.36‰ PDB). Carbon isotope ratios (δ13C) range from +0.84 to +2.18‰ PDB (mean = +1.69‰ PDB). Typical of cool-water carbonates, δ18O-derived water temperatures range from 14.2 to 17.5 °C. Adeonellopsis has a minimum temperature growth threshold of 14 °C, recording only a partial record of environmental variation. By correlating seawater temperatures derived from δ18O with the Southern Oscillation Index, however, we were able to detect major events such as the 1983 El Niño. Interannual climatic variation can be recorded in skeletal carbonate isotopes. The range of within-colony isotopic variability found in this study (0.77‰ in δ18O and 1.34 in δ13C) means that among-colony variation must be treated cautiously. Temperate bryozoan isotopes have been tested in less than 2% of described extant species — this highly variable phylum is not yet fully understood.  相似文献   

19.
To investigate the genesis of BIFs, we have determined the Fe and Si isotope composition of coexisting mineral phases in samples from the ∼2.5 billion year old Kuruman Iron Formation (Transvaal Supergroup, South Africa) and Dales Gorges Member of the Brockman Iron Formation (Hamersley Group, Australia) by UV femtosecond laser ablation coupled to a MC-ICP-MS. Chert yields a total range of δ30Si between −1.3‰ and −0.8‰, but the Si isotope compositions are uniform in each core section examined. This uniformity suggests that Si precipitated from well-mixed seawater far removed from its sources such as hydrothermal vents or continental drainage. The Fe isotope composition of Fe-bearing mineral phases is much more heterogeneous compared to Si with δ56Fe values of −2.2‰ to 0‰. This heterogeneity is likely due to variable degrees of partial Fe(II) oxidation in surface waters, precipitation of different mineral phases and post-depositional Fe redistribution. Magnetite exhibits negative δ56Fe values, which can be attributed to a variety of diagenetic pathways: the light Fe isotope composition was inherited from the Fe(III) precursor, heavy Fe(II) was lost by abiotic reduction of the Fe(III) precursor or light Fe(II) was gained from external fluids. Micrometer-scale heterogeneities of δ56Fe in Fe oxides are attributed to variable degrees of Fe(II) oxidation or to isotope exchange upon Fe(II) adsorption within the water column and to Fe redistribution during diagenesis. Diagenetic Fe(III) reduction caused by oxidation of organic matter and Fe redistribution is supported by the C isotope composition of a carbonate-rich sample containing primary siderite. These carbonates yield δ13C values of ∼−10‰, which hints at a mixed carbon source in the seawater of both organic and inorganic carbon. The ancient seawater composition is estimated to have a minimum range in δ56Fe of −0.8‰ to 0‰, assuming that hematite and siderite have preserved their primary Fe isotope signature. The long-term near-zero Fe isotope composition of the Hamersley and Transvaal BIFs is in balance with the assumed composition of the Fe sources. The negative Fe isotope composition of the investigated BIF samples, however, indicates either a perturbation of the steady state, or they have to be balanced spatially by deposition of isotopically heavy Fe. In the case of Si, the negative Si isotope signature of these BIFs stands in marked contrast to the assumed source composition. The deviation from potential source composition requires a complementary sink of isotopically heavy Si in order to maintain steady state in the basin. Perturbing the steady state by extraordinary hydrothermal activity or continental weathering in contrast would have led to precipitation of light Si isotopes from seawater. Combining an explanation for both elements, a likely scenario is a steady state ocean basin with two sinks. When all published Fe isotope records including BIFs, microbial carbonates, shales and sedimentary pyrites, are considered, a complementary sink for heavy Fe isotopes must have existed in Precambrian ocean basins. This Fe sink could have been pelagic sediments, which however are not preserved. For Si, such a complementary sink for heavy Si isotopes might have been provided by other chert deposits within the basin.  相似文献   

20.
The Yurungkash and Karakash rivers, also known respectively as the White Jade and Black Jade rivers, located in Hetian, Xinjiang Province, Northwest China, are the two main sources in China of white, green, and black placer nephrite, with a long history (~ 5000 years) of exploration and mining. The twenty-nine placer nephrite samples collected from both rivers and analyzed in the present study possess fine-grained and compact microstructures. The mineral assemblages in the samples provide clues to the metamorphic/metasomatic processes that formed the nephrite, which was the result of one of the following reactions: dolomitic marble → tremolite, or dolomitic marble → diopside → tremolite. White nephrite from the Yurungkash River and green nephrite from the Karakash River are predominantly tremolite. Based on electron probe microanalytical data, backscattered electron images, and Raman spectra, two kinds of black nephrite from the Karakash River are identified: one dominated by actinolite aggregates, and another consisting of tremolite aggregates with graphite crystals up to 2 mm in length. Compared with black nephrite, white and green nephrites contain fewer mineral inclusions and have lower FeO and MnO contents. All the amphiboles in the nephrites have very low contents of Cr2O3 (0.00–0.07 wt.%) and NiO (0.00–0.05 wt.%) relative to serpentinite-related nephrite (0.07–0.43 wt.% Cr2O3, 0.08–0.36 wt.% NiO). Most of the nephrite samples have low total rare earth element (ΣREE) contents, ranging from 12.22 to 49.40 ppm. In two nephrite samples, relatively high ΣREE concentrations (161 and 190 ppm) are related to the presence of REE-bearing minerals. Whole-rock REE chondrite-normalized patterns of all samples are characterized by strong negative Eu anomalies (0.16–0.48), moderate light-REE enrichment (La/NdN = 1.8–5.0), and nearly flat heavy-REE distributions (Gd/YbN = 0.3–1.7). Nephrite samples from both river locations have δ18O and δD isotope compositions ranging from 1.1‰ to 5.6‰ and − 55.7‰ to − 72.4‰, respectively. These values are closer to those recorded in dolomite-related nephrites than those in serpentinite-related deposits. Importantly, δ18O and δD values correspond to fluid isotope compositions of δ18O = 1.6‰ to 6.1‰ (330 °C), 1.8‰ to 6.3‰ (350 °C), and 2.5‰ to 7.0‰ (430 °C), and δD = − 34.9‰ to − 52.5‰ (350 °C to 650 °C). These values are close to or within the field of magmatic water. Geochemical and petrographic characteristics point to a dolomite-related metamorphic/metasomatic origin for nephrite at both locations. The placer nephrite is likely to have been derived from primary nephrite deposits in the Kunlun Mountains around Hetian, based on the geological occurrence of the deposits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号