首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过野外地质、光学显微镜以及背散射(BSE)电子图像的观察,南泥湖—三道庄钼(钨)矿床中矽卡岩的形成过程为:第一期流体首先与靠近岩体的大理岩发生反应生成硅灰石、钙铁榴石、钙铝榴石、钙铁辉石和透辉石,当流体继续向外运移遇到灰岩时,直接将其交代形成透辉石矽卡岩或曲卷纹层状透辉石矽卡岩;第二期流体则沿裂隙向围岩中呈面型分布,叠加交代第一期矽卡岩化过程。据此,石榴子石和辉石可以划分为两个世代,第一世代石榴子石(Gro_(3-82)And_(15-96))呈斑点状,第一世代辉石(Di_(18-86)Hd_(13-70)Jo_(0-13))可与斑点状石榴子石共生,也可与斜长石(Ab_(55-70)An_(30-44))共生;第二世代石榴子石(Gro_(23-58)And_(37-74))呈面型分布,第二世代辉石(Di_(0-68)Hd_(28-84)Jo_(3-16))沿裂隙呈面型向围岩中展布。第一世代石榴子石和辉石在空间上分布范围较第二世代广。钼钨矿化在矽卡岩的最早阶段即已开始,贯穿整个矽卡岩的形成过程,引起钼钨沉淀的原因可能是具有较高钼钨含量的流体与围岩发生反应时引起的局部还原性环境。  相似文献   

2.
Quantitative thermobarometry of inclusions in zoned garnet from a Franciscan eclogite block record a counter-clockwise PT path from blueschist to eclogite and back. Garnet retains prograde zoning from inclusion-rich Alm52Grs30Pyp6Sps12 cores to inclusion-poor Alm62Grs25Pyp12Sps1 mantles, with overgrowths of highly variable composition. Barometry using the Waters–Martin version of the garnet–phengite–omphacite thermobarometer yields conditions of 7–15 kbar, 400–500°C (garnet cores), 18–22 kbar, ∼550°C (mantles), and 10–14 kbar, 350–450°C (overgrowths), in agreement with clinozoisite–sphene–rutile–garnet–quartz barometry. These pressures are ∼10–15 kbar less than those obtained using more recent, fully thermodynamic calibrations of the phengite–omphacite–garnet thermobarometer. Low early temperatures suggest that the block was subducted in a thermally mature subduction zone and not at the inception of subduction when prograde temperature is expected to be higher. Franciscan high-grade blocks likely represent crust subducted throughout the history of this convergent margin, rather than only at the inception of the subduction zone.  相似文献   

3.
The macroscopically-zoned grandite from the garnetite skarn of Meka Presedla (Kopaonik Mountain, Serbia) was studied with optical microscopy, electron microprobe analysis (EMPA), Fourier transform infra-red (FT–IR), and Raman methods. The EMPA results indicate that the main core–rim compositional variations (Ca2.93–2.97Mn0.05–0.06Mg0.00–0.01Al1.14–1.26Fe3+0.72–0.83Ti0.00–0.02Si2.97–3.02O12) slightly differ along the zones, showing evidence for a quasi-cyclic alternation of the oscillatory zoning nature. Among this, considerable variation is observed only by the Al–Fe3+ substitutions in the octahedral site. The EMPA also indicate that the grandite zones compositionally vary, mostly within ±1 and ±2 mol% of the homogeneity level range, that is, Grs64±1Adr36±1Sps2 (A), Grs62±1Adr38±1Sps2 (B), Grs59±2Adr40±2Sps2 (C), Grs58±2Adr41±2Sps2 (D), and Grs58±1Adr41±1Sps2 (E). Therefore, the investigated garnet can be considered as relatively highly homogeneous. The majority of compositions lie within the narrow miscibility region of 0.58±2相似文献   

4.
The Francisco I. Madero deposit, central Mexico, occurs in the Mesozoic Guerrero Terrane, which hosts many ore deposits, both Cretaceous (volcanogenic massive sulfides) and Tertiary (epithermal and skarn deposits). It is hosted by a 600 m-thick calcareous-pelitic unit, of Lower Cretaceous age, crosscut by porphyritic dikes that strike NW–SE. A thick felsic volcanic Tertiary sequence, consisting of andesites and rhyolitic ignimbrites, unconformably overlies the Cretaceous series. At the base, the mineralization consists of several mantos developed within calcareous beds. They are dominantly composed of sphalerite, pyrrhotite and pyrite with minor chalcopyrite, arsenopyrite and galena. At the top of the orebody, there are calcic skarns formed through prograde and retrograde stages. The resulting mineral assemblages are rich in manganoan hedenbergite (Hd75–28Di40–4Jh40–20), andraditic garnets (Adr100–62Grs38–0), epidote (Ep95–36Czo60–5Pie8–0), chamosite, calcite and quartz. The temperature of ore deposition, estimated by chlorite and arsenopyrite geothermometry, ranges from 243° to 277 °C and from 300° to 340 °C, respectively. The pressure estimated from sphalerite geobarometry averages 2.1 kbar. This value corresponds to a moderately deep skarn and agrees with the high Cu content of the deposit. Paragenesis, PT conditions and geological characteristics are compatible with a distal, dike-related, Zn skarn deposit. Its style of mineralization is similar to that of many high-temperature carbonate replacement skarn deposits in the Southern Cordillera.  相似文献   

5.
滇东南老君山矿集区广泛分布的矽卡岩是本区锡-钨-锌-铟多金属矿床的主要赋存围岩。长期以来,该区含矿矽卡岩的成因争议较大,由此也制约了对该区锡钨多金属成矿规律的认识。本文以区内代表性的都龙和南秧田矿区含矿矽卡岩为研究对象,在对其地质特征详细研究的基础上,运用电子探针和ICP-MS分别测定了上述两个矿区含矿矽卡岩的矿物成分、微量和稀土元素组成,探讨了它们和多金属矿床的成岩成矿机制的关系。结果表明,区内同时存在与地层产状一致的"层状"含矿矽卡岩和明显切割层理的穿层含矿矽卡岩。都龙矿区含矿矽卡岩富Fe、贫Al,主要矿物端元成分为钙铁榴石(And_(52-69)Gro_(28-45)Spe_(1-4))、钙铁辉石(Di_(11-41)Hd_(51-73)Jo_(0-28))和铁阳起石等,从干矽卡岩到退化蚀变阶段,形成环境由酸性的弱还原环境向偏碱性的相对氧化环境变化。南秧田矿区含矿矽卡岩富Mg、Al,贫Fe,主要矿物端元成分为钙铝榴石(Gro_(82-89)Alm_(7-13)And_(2-5))、透辉石(Di_(55-81)Hd_(18-42)Jo_(0-5))和透闪石(阳起石)等,形成于相对还原的环境。都龙和南秧田矿区含矿矽卡岩与花岗岩都显示出相似的、LREE相对富集的右倾型稀土配分模式,多具有中等-弱Eu负异常,与典型的热液交代成因矽卡岩特征相似。综合分析认为,该区含矿矽卡岩主要形成于燕山晚期花岗岩浆热液与围岩的交代作用,"层状"矽卡岩可能是热液沿层间构造、岩相突变带等有利位置进行交代的结果。  相似文献   

6.
Skarns are developed over two temperature‐time intervals in calcite limestone adjacent to the southern extension of the Glenrock Granodiorite, a pluton of the Marulan Batholith, Southern Highlands, New South Wales. The initial volumetrically‐dominant prograde phase of skarn formation produced a suite comprising bimetasomatic skarn, including pyroxene endoskarn, potassic endoskarn and wollastonite‐bearing exoskarn, together with mineralogically‐zoned vein skarn, massive garnet‐pyroxene skarn and calcite‐vesuvianite skarn. Retrograde replacement is manifested by the development of hydrous silicate minerals, carbonate and cross‐cutting sulphide veinlets.

A genetic model is proposed to account for the development of bimetasomatic skarn in the deposit. Exoskarn geochemistry indicates addition of many components relative to an essentially pure limestone precursor, including Si, Al, Fe, Zr, Zn, S, Mn and Cu, negligible transfer of K, Na and Rb and loss of CO2. Strontium and Ca loss from the parent limestone is indicated by mass balance calculations at constant volume.

Garnet and pyroxene compositions in the massive garnet‐pyroxene skarn range from Gr30 to Gr66 and Hd61 to Hd87, respectively. Compositions from Gr67 to Gr95 are typical of the vein skarn garnets. Chemical zonation patterns in garnet, pyroxene and vesuvianite are generally characterized by rim Fe depletion relative to cores of grains.

Prograde skarn probably formed at T = 500–580°C; P < 220 MPa. The massive garnet‐pyroxene skarn evolved under conditions of log fO2 = ‐18.9 to ‐22.9 (assuming a constant fCO2 of 20 MPa) within the fS2 stability field of pyrrhotite. Retrograde skarn formed at T < 400°C, possibly under conditions of XH2O < 0.01.

Vesuvianite plus wollastonite assemblages, present in exoskarn, probably attest to very water‐rich conditions. The marble wall rocks, isolated from the source of skarn‐forming fluids, probably evolved under conditions of minimum Xco2 >0.2. Low temperature CO2 ‐rich fluid inclusions and prehnite (stable at Xco2 <0.01), present in the marble and skarn, respectively, suggest that substantial differences in Xco2: XH2O were maintained during cooling.

Observed mineralogical and chemical zonation within the skarn reflects the complex interaction of T, P, fO2, Xco2 and other chemical variables such as aSiO2 and aAl2O3 throughout the skarn system. No single variable can account adequately for the mineralogical diversity observed in the skarn deposit.  相似文献   

7.
西藏浦桑果铅锌多金属矿床位于南冈底斯成矿带火山岩浆弧内,矿区矽卡岩型铅锌矿体主要呈似层状和透镜状近东西向赋存于白垩系塔克那组第4岩性段矽卡岩化大理岩中,矽卡岩矿物较发育。为进一步查明矽卡岩矿物种属及矽卡岩类型,剖析矽卡岩的形成环境及其与成矿的关系,在对矽卡岩矿物系统的显微镜下鉴定基础上,利用电子探针对矿区内主要矽卡岩矿物化学成分进行了系统分析。结果表明,石榴子石主要为非连续的钙铁榴石钙铝榴石类质同像系列(And47.39~98.17Gro0.59~50.22Ura+Pyr+Spe0~3.53),且早期主要形成钙铁榴石,部分钙铁榴石含锰质较高;单斜辉石主要为钙铁辉石-锰钙辉石-透辉石类质同像系列(Hd37.91~74.16Jo0.91~61.66Di0.43~46.07);似辉石主要为硅灰石,端员组分为Wo99.09~99.26En0.50~0.56Fs0.13~0.24;角闪石主要为镁角闪石,具钙质角闪石属性;绿帘石贫铁、镁而富铝、钙;绿泥石属于密绿泥石类。矿床矽卡岩矿物组合特征表明,浦桑果矿床矽卡岩兼具钙质矽卡岩和锰质矽卡岩的特征。早期矽卡岩形成于高温、偏碱性、强氧化的开放体系中,成矿流体具有较高氧逸度。锰质矽卡岩矿物特征及独立银矿物的存在综合表明矿区具有银矿找矿潜力,为下步找矿工作提供了思路和方向。  相似文献   

8.
Summary At the northeastern flank of Gebel Yelleq, northern Sinai, pure limestones of Upper Cretaceous age were subjected to a thermal overprint, caused by a c. 80m thick Tertiary olivine dolerite sill. Metasomatic supply of Si, Al, Fe, Mg and Ti was greater to the c. 7m wide upper than to the c. 25m wide lower thermal aureole. The greater width of the lower aureole is possibly due to a longer duration of the thermal overprint at this contact. Mineral assemblages in both aureoles are (from the contact outward):(i) clinopyroxene + garnet ± wollastonite + calcite(ii) garnet ± wollastonite + calcite;(iii) wollastonite + calcite.In places, late stage xenoblasts of apophyllite and witherite overgrow these assemblages. Garnets are grandites to melanites with Grs56–86Adr14–42Sch0–2Sps0–0.2Prp0 in the lower, and Grs29–94Adr5–64Sch0–12Sps0–0.2Prp0–1.7 in the upper aureole. Close to the upper contact, clinopyroxene is virtually pure diopside with X Mg = Mg/(Mg + Fe2+) = 0.97–1.0, whereas clinopyroxenes farther away from the upper contact and in the lower aureole have X Mg-values of 0.49 and 0.53, respectively.The minimum temperatures reached during contact metamorphism in the upper and lower aureole are defined by the lower stability limit of wollastonite. The temperatures are inferred with a calculated T-X(CO2) projection in the system CMASCH and are estimated at c. 290 °C and 380 °C for X(CO2) values of 0.05 and 0.25, respectively. A pressure of roughly 100 bar is estimated for the lower dolerite-limestone contact. As indicated by one-dimensional thermal modelling, a maximum temperature of 695 °C was attained at this contact, assuming a magma temperature of 1150 °C. Further modelling results indicate (i) wollastonite, which occurs first 13 m away from the lower contact, formed at a maximum temperature of c. 575 °C, (ii) there, wollastonite formation lasted for approximately 170 years and, (iii) at the outer rim of the lower aureole, the maximum temperature reached was 480 °C, and temperatures sufficient for wollastonite formation lasted for about 140 years.  相似文献   

9.
The chemistry of garnet can provide clues to the formation of skarn deposits. The chemical analyses of garnets from the Astamal Fe-LREE distal skarn deposit were completed using an electron probe micro-analyzer. The three types of garnet were identified in the Astamal skarn are: (I) euhedral coarse-grained isotropic garnets (10–30 mm across), which are strongly altered to epidote, calcite and quartz in their rim and core, with intense pervasive retrograde alteration and little variation in the overall composition (Adr94.3–84.4 Grs8.5–2.7 Alm1.9–0.2) (garnet I); (II) anhedral to subhedral brecciated isotropic garnets (5–10 mm across) with minor alteration, a narrow compositional range along the growth lines (Adr82–65.4 Grs21.9–11.7 Alm11.1–2.4) and relatively high Cu (up to 1997 ppm) and Ni (up to 1283 ppm) (garnet II); and (III) subhedral coarser grained garnets (> 30 mm across) with moderate alteration, weak diffusion and irregular zoning of discrete grossular-almandine-rich domains (Adr84.2–48.8 Grs32.4–7.6 Alm19.9–3.5) (garnet III). In the third type, the almandine content increases with increasing grossular/andradite ratio and increasing substitutions of Al for Fe3 +.Almost all three garnet types have been replaced by fine-grained, dark-brown allanite that is typically disseminated and has the same relief as andradite. The Cu content increases while Ni content decreases slightly towards the rim of garnet II and garnet III. Copper in garnet II is positively correlated with increasing almandine content and decreasing andradite content, indicating that the almandine structure, containing relatively more Fe2 +, is more suitable than andradite and grossular to host divalent cations such as Cu2 +. Nickel in garnet II is positively correlated with increasing andradite content, total Fe, and decreasing almandine content. This is because Ni2 + substitutes for Fe3 + in the Y (octahedral) position. There are unusual discrete grossular-almandine rich domains within andraditic garnet III, indicating the low diffusivity of Ca compared to Fe at high temperatures.  相似文献   

10.
The Khut copper skarn deposit is located at about 50 km northwest of Taft City in Yazd province in the middle part of the Urumieh‐Dokhtar magmatic arc. Intrusion of granitoid of Oligocene–Miocene age into carbonate rocks of the Triassic Nayband Formation led to the formation of marble and a calcic skarn. The marble contains high grade Cu mineralization that occurs mainly as open space filling and replacement. Cu‐rich sulfide samples from the mineralized marble are also anomalous in Au, Zn, and Pb. In contrast, the calcic skarn is only weakly anomalous in Cu and W. The calcic skarn is divided into garnet skarn and garnet–pyroxene skarn zones. Paragenetic relationships and microthermometric data from fluid inclusions in garnet and calcite indicate that the compositional evolution of skarn minerals occurred in three main stages as follows. (i) The early prograde stage, which is characterized by Mg‐rich hedenbergite (Hd53.7Di42.3–Hd86.1Di9.5) with Al‐bearing andradite (69.8–99.5 mol% andradite). The temperature in the early prograde skarn varies from 400 to 500°C at 500 bar. (ii) The late prograde stage is manifested by almost pure andradite (96.2–98.4 mol% andradite). Based on the fluid inclusion data from garnet, fluid temperature and salinity in this stage is estimated to vary from 267 to 361°C and from 10.1 to 21.1 wt% NaCl equivalent, respectively. Pyrrhotite precipitation started during this stage. (iii) The retrograde stage occurs in an exoskarn, which consists of an assemblage of ferro‐actinolite, quartz, calcite, epidote, chlorite, sphalerite, pyrite, and chalcopyrite that partially replaces earlier mineral assemblages under hydrostatic conditions during fracturing of the early skarn. Fluids in calcite yielded lower temperatures (T < 260°C) and fluid salinity declined to ~8 wt% NaCl equivalent. The last stage mineralization in the deposit is supergene weathering/alteration represented by the formation of iron hydroxide, Cu‐carbonate, clay minerals, and calcite. Sulfur isotope data of chalcopyrite (δ34S of +1.4 to +5.2‰) show an igneous sulfur source. Mineralogy and mineral compositions of the prograde assemblage of the Khut skarn are consistent with deposition under intermediately oxidized and slightly lower fS2 conditions at shallow crustal levels compared with those of other typical Fe‐bearing Cu–Au skarn systems.  相似文献   

11.
青海尕林格铁矿床矽卡岩矿物学及蚀变分带   总被引:6,自引:2,他引:4  
尕林格矽卡岩型铁多金属矿床位于青海省西部祁曼塔格成矿亚带的中部.矿体处于花岗闪长岩与滩间山群白云质大理岩接触带内以及外接触带沿NWW向断裂构造破碎带分布的大理岩和蚀变安山岩内.从侵入接触带往东,蚀变岩石分带性明显,主要划分出3种含矿矽卡岩带:含Fe的镁质矽卡岩带,含Fe、Cu的钙质矽卡岩带,含Fe、Pb、Zn的锰-钙质矽卡岩带.镁质矽卡岩带的矽卡岩矿物主要包括镁橄榄石及其蚀变矿物蛇纹石、粒硅镁石、透辉石、斜绿泥石,有关的金属矿物主要为磁铁矿.钙质矽卡岩带的主要矽卡岩矿物有绿钙闪石、铁阳起石、钙铁辉石、铁叶绿泥石、磷灰石、中长石,有关的金属矿物为磁铁矿、磁黄铁矿和少量黄铜矿.与锰-钙质矽卡岩有关的矽卡岩矿物有锰钙铁辉石、钙铁榴石、钙铝榴石、铁镁绿泥石、绿帘石、硅灰石、磷灰石、钙长石等,金属矿物有方铅矿、闪锌矿、磁铁矿和磁黄铁矿.通过对矿物组合的研究,确定了不同矿物组合的生成关系,划分了成矿期次,分为矽卡岩期、退化蚀变期和金属硫化物期,矽卡岩期又分为早、晚2个阶段.矽卡岩早期生成的石榴子石的化学成分端员以钙铝榴石(Gro67~ 99)为主,辉石的成分端员以透辉石(Di96~ 98)为主;矽卡岩期晚期阶段石榴子石的化学成分端员以钙铁榴石(Ad78~98)为主,辉石的成分端员以钙铁辉石(Hd68~ 84)为主.与中国东部矽卡岩型矿床进行对比后发现,锰-钙质矽卡岩带是一种向锰质矽卡岩带过渡的类型,对于寻找与锰质矽卡岩有关的矿化类型具有指示意义.  相似文献   

12.
The in situ electrical conductivity of hydrous garnet samples (Py20Alm76Grs4–Py73Alm14Grs13) was determined at pressures of 1.0–4.0 GPa and temperatures of 873–1273 K in the YJ-3000t apparatus using a Solartron-1260 impedance/gain-phase analyzer for various chemical compositions and oxygen fugacities. The oxygen fugacity was controlled by five solid-state oxygen buffers (Fe2O3 + Fe3O4, Ni + NiO, Fe + Fe3O4, Fe + FeO, and Mo + MoO2). Experimental results indicate that within a frequency range from 10−2 to 106 Hz, electrical conductivity is strongly dependent on signal frequency. Electrical conductivity shows an Arrhenius increase with temperature. At 2.0 GPa, the electrical conductivity of anhydrous garnet single crystals with various chemical compositions (Py20Alm76Grs4, Py30Alm67Grs3, Py56Alm43Grs1, and Py73Alm14Grs13) decreases with increasing pyrope component (Py). With increasing oxygen fugacity, the electrical conductivity of dry Py73Alm14Grs13 garnet single crystal shows an increase, whereas that of a hydrous sample with 465 ppm water shows a decrease, both following a power law (exponents of 0.061 and −0.071, respectively). With increasing pressure, the electrical conductivity of this hydrous garnet increases, along with the pre-exponential factors, and the activation energy and activation volume of hydrous samples are 0.7731 ± 0.0041 eV and −1.4 ± 0.15 cm3/mol, respectively. The results show that small hopping polarons ( \textFe\textMg · ) \left( {{\text{Fe}}_{\text{Mg}}^{ \cdot } } \right) and protons ( \textH · {\text{H}}^{ \cdot } ) are the dominant conduction mechanisms for dry and wet garnet single crystals, respectively. Based on these results and the effective medium theory, we established the electrical conductivity of an eclogite model with different mineral contents at high temperatures and high pressures, thereby providing constraints on the inversion of field magnetotelluric sounding results in future studies.  相似文献   

13.
西藏列廷冈铁多金属矿床矽卡岩矿物学特征及其地质意义   总被引:2,自引:2,他引:0  
李壮  唐菊兴  王立强  杨毅  李松涛  王豪  王维 《矿床地质》2017,36(6):1289-1315
西藏列廷冈铁多金属矿床位于冈底斯北缘弧背断隆带内,是近年来勘查评价的规模可达中型的接触交代矽卡岩型矿床。矿区矽卡岩主要呈层状、似层状,矽卡岩型铁多金属矿体赋存于下-中三叠统查曲浦组(T_(1-2)c)矽卡岩和大理岩中,矿体呈透镜状、囊状、似层状产出,矽卡岩矿物较发育。为进一步查明矿床矽卡岩矿物种属及矽卡岩类型,剖析矽卡岩形成环境及其与矿化类型之间的关系,基于对矽卡岩矿物系统的显微镜下观测,利用电子探针对矿床主要矽卡岩矿物化学成分进行了系统分析。矽卡岩矿物主要为石榴子石、透辉石、角闪石、绿帘石、绿泥石等,矿床矽卡岩具典型钙矽卡岩特征。根据矿物共生组合及交代关系推断成矿流体经历了5个阶段,分别为早期矽卡岩阶段、退化蚀变阶段、早期热液阶段、石英硫化物阶段和碳酸盐阶段。特征矿物的电子探针分析结果表明,石榴子石主要为钙铁榴石-钙铝榴石系列(And_(18.37~99.89)Gro_(0.24~79.05)Ura+Pyr+Spe_(0.98~6.63)),且发育环带结构;辉石主要为透辉石-钙铁辉石系列(Di_(53.56~99.91)Hd_(1.61~44.55)Jo_(0.08~5.11));角闪石主要为阳起石,次为铁、镁角闪石,均属钙质角闪石系列;绿泥石主要为富铁的铁镁绿泥石;绿帘石贫Fe、Mg。在矿床成矿演化过程中,其成矿环境是发生改变的,早期矽卡岩阶段到最晚期碳酸盐阶段,成矿环境至少经历了从高温、偏碱性的氧化环境到相对低温、偏酸性的还原环境的转变。  相似文献   

14.
The eclogite facies assemblage K-feldspar–jadeite–quartz in metagranites and metapelites from the Sesia-Lanzo Zone (Western Alps, Italy) records the equilibration pressure by dilution of the reaction jadeite+quartz=albite. The metapelites show partial transformation from a pre-Alpine assemblage of garnet (Alm63Prp26Grs10)–K-feldspar–plagioclase–biotite±sillimanite to the Eo-Alpine high-pressure assemblage garnet (Alm50Prp14Grs35)–jadeite (Jd80–97Di0–4Hd0–8Acm0–7)–zoisite–phengite. Plagioclase is replaced by jadeite–zoisite–kyanite–K-feldspar–quartz, and biotite is replaced by garnet–phengite or omphacite–kyanite–phengite. Equilibrium was attained only in local domains in the metapelites and therefore the K-feldspar–jadeite–quartz (KJQ) barometer was applied only to the plagioclase pseudomorphs and K-feldspar domains. The albite content of K-feldspar ranges from 4 to 11 mol% in less equilibrated assemblages from Val Savenca and from 4 to 7 mol% in the partially equilibrated samples from Monte Mucrone and the equilibrated samples from Montestrutto and Tavagnasco. Thermodynamic calculations on the stability of the assemblage K-feldspar–jadeite–quartz using available mixing data for K-feldspar and pyroxene indicate pressures of 15–21 kbar (±1.6–1.9 kbar) at 550±50 °C. This barometer yields direct pressure estimates in high-pressure rocks where pressures are seldom otherwise fixed, although it is sensitive to analytical precision and the choice of thermodynamic mixing model for K-feldspar. Moreover, the KJQ barometer is independent of the ratio PH2O/PT. The inferred limiting a(H2O) for the assemblage jadeite–kyanite in the metapelites from Val Savenca is low and varies from 0.2 to 0.6.  相似文献   

15.
The Pan-African tectonothermal activities in areas near Sittampundi, south India, are characterized by metamorphic changes in an interlayered sequence of migmatitic metapelites, marble and calc-silicate rocks. This rock sequence underwent multiple episodes of folding, and was intruded by granite batholiths during and subsequent to these folding events. The marble and the calc-silicate rocks develop a variety of skarns, which on the basis of mineralogy; can be divided into the following types: Type I: wollastonite?+?clinopyroxene (mg#?=?71–73)?+?grandite (16–21 mol% Adr)?+?quartz?±?calcite, Type II: grandite (25–29 mol% Adr )?+?clinopyroxene (mg#?=?70)?+?calcite?+?quartz, and Type III: grandite (36–38 mol% Adr)?+?clinopyroxene (mg#?=?55–65)?+?epidote?+?scapolite?+?calcite?+?quartz. Type I skarn is 2–10 cm thick, and is dominated by wollastonite (>70 vol%) and commonly occurs as boudinaged layers parallel to the regional foliation Sn1 related to the Fn1 folds. Locally, thin discontinuous lenses and stringers of this skarn develop along the axial planes of Fn2 folds. The Type II skarn, on the other hand, is devoid of wollastonite, rich in grandite garnet (40–70 vol%) and developed preferentially at the interface of clinopyroxene-rich calc-silicates layers and host marble during the later folding event. Reaction textures and the phase compositional data suggest the following reactions in the skarns: 1. calcite?+?SiO2?→?wollastonite?+?V, 2. calcite?+?clinopyroxene?+?O2?→?grandite?+?SiO2?+?V, 3. scapolite?+?calcite?+?quartz?+?clinopyroxene?+?O2?→?grandite?+?V and 4. epidote?+?calcite?+?quartz?+?clinopyroxene?+?O2?→?grandite?+?V Textural relations and composition of phases demonstrate that (a) silica metasomatism of the host marble by infiltration of aqueous fluids (XCO2?<?0.15) led to production of large volumes of wollastonite in the wollastonite-rich skarn whereas mobility of FeO, SiO2 and CaO across the interface of marble and calc-silicate and infiltration of aqueous fluids (XCO2?<?0.35) were instrumental for the formation of grandite skarns. Composition of minerals in type II skarn indicates that Al2O3 was introduced in the host marble by the infiltrating fluid. Interpretation of mineral assemblages observed in the interlayered metapelites and the calcareous rocks in pseudosections, isothermal P-XCO2 and isobaric T-XCO2 diagrams tightly bracket the “peak” metamorphic conditions at c.9?±?1 kbar and 750°?±?30°C. Subsequent to ‘peak’ metamorphic conditions, the rocks were exhumed on a steeply decompressive P–T path. The estimated ‘peak’ P–T estimates are inconsistent with the “extreme” metamorphic conditions (>11 kbar and >950°C) inferred for the Pan-African tectonothermal events from the neighboring areas. Field and petrological attributes of these skarn rocks are consistent with the infiltration of aqueous fluid predominantly during the Fn1 folding event at or close to the ‘peak’ metamorphic conditions. Petrological features indicate that the buffering capacity of the rocks was lost during the formation of type I and II skarns. However, the host rock could buffer the composition of the permeated fluids during the formation of type III skarn. Aqueous fluids derived from prograde metamorphism of the metapelites seem to be the likely source for the metasomatic fluids that led to the formation of the skarn rocks.  相似文献   

16.
The Kozbudaklar scheelite skarn deposit in the Tavşanlı Zone, located approximately 22 km southeast of Bursa, is hosted by the Triassic calcic İnönü Marble and Eocene Topuk Pluton. At least four stages have been recognized through skarn evolution. Scheelite skarn distributed close to the Topuk Pluton occurred during the early (stage 1) and late (stage 2) prograde substages. The early prograde endo and exoskarn are composed of hedenbergite (Hd96Joh4)–plagioclase (An55–64) and hedenbergite (Hd61–94Joh4–7), accompanied by calcic garnet (Grs38–94Sps1–5Alm0) and scheelite (Pow1–6). The second stage represents a relatively oxidized mineralogy dominated by diopside (Hd16–48Joh0–9), subcalcic garnet (Grs24–92Sps0–11Alm0–31) and scheelite (Pow7–32). The stage 3 and 4 mineral assemblages are characterized by few hydrous minerals in the retrograde stage and intense fracturing.Fluid inclusions from skarn rocks are indicative of multiple fluid events: (1) low-moderate salinity (5–16 wt.%NaCl equiv.) inclusions homogenized dominantly by a high-temperature (308 °C to > 600 °C) liquid phase in stage 1. Fluid inclusions in an early garnet homogenized over a similar temperature range (440 °C and 459 °C) into both liquid and vapor phases. Eutectic temperatures ranging from − 61.7 °C to − 35.0 °C that indicate the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (2) coexisting daughter mineral-bearing high salinity (29.5  70 wt.%NaCl equiv.) and vapor-rich moderate salinity (11.5–16.7 wt.%NaCl equiv.) inclusions that homogenized in the liquid phase by the disappearance of the vapor phase at a similar temperature range (308 °C to > 600 °C) in stage 2. Eutectic temperatures range from − 67.9°C to − 51.8°C that shows the presence of H2O–NaCl–CO2–(± CH4/N2) solutions; (3) low-moderate salinity (12.5–7.6 wt.%NaCl equiv.) and temperature (320 °C to 215 °C) inclusions homogenized by the liquid phase in stage 3. Eutectic temperatures range from − 59.5 °C to − 44.2 °C indicating the presence of H2O–NaCl–(± MgCl2 ± CaCl2)–CO2 solutions; (4) inclusions of low salinity (9.9–0.9 wt.%NaCl equiv.) and homogenization temperature (183 °C to 101 °C) in stage 4.These data show that the Kozbudaklar skarn deposit was formed in a magmatic–hydrothermal system. In this model, carbonaceous fluids may have been exsolved from the plutonic rock during its emplacement and crystallization. Fluid inclusion data indicate that fluid boiling and immiscibility occurred at temperatures between 440 °C and 459 °C and pressures ranging from 50 MPa to 60 MPa based on hydrostatic considerations. Early scheelite was precipitated with relatively reduced mineral compositions. As a result of depressurization, Mo-rich scheelite with oxidized minerals formed via high salinity and vapor-rich inclusions. The second scheelite mineralization occurred in a normal hydrothermal system by an infiltration mechanism at pressures between approximately 40 and 1.5 MPa. At shallow depths (< 1.5 MPa) with increasing permeability, sulfide and oxide minerals were deposited in the retrograde stage, greatly assisted by meteoric water. Finally, as a result of the diminishing of ore-forming fluids, post-depositional barren quartz and calcite veins were formed.  相似文献   

17.
滇西红牛矽卡岩型铜矿床石榴子石特征   总被引:13,自引:7,他引:6  
高雪  邓军  孟健寅  闫寒  李建新  杨春海  孙诺  魏超 《岩石学报》2014,30(9):2695-2708
红牛矽卡岩型铜矿床是义敦岛弧南段格咱火山-岩浆弧新探明的铜矿床之一,目前探明铜金属资源量已达大型规模。与由侵入岩和大理岩直接接触形成的典型矽卡岩矿床不同,红牛铜矿床是隐伏岩体远程矽卡岩化的产物,其矽卡岩矿体与地层产状基本一致,通常相间排列,且距离岩体较远,大理岩中可见粗粒石榴子石和硅灰石,矽卡岩中常见大理岩捕掳体。根据矽卡岩矿物组合可将该矿床矽卡岩类型划分为石榴子石矽卡岩、石榴子石透辉石(或透辉石石榴子石)矽卡岩、透辉石矽卡岩、符山石-石榴子石矽卡岩、硅灰石-石榴子石矽卡岩、绿帘石-石榴子石矽卡岩、阳起石-绿帘石矽卡岩、硅灰石矽卡岩和绿帘石矽卡岩,其中以石榴子石矽卡岩、透辉石矽卡岩和硅灰石矽卡岩为主。石榴子石是最重要的矽卡岩矿物,分布广泛、颜色变化大,且石榴子石矽卡岩中黄铜矿、黄铁矿、磁黄铁矿化最好。本文通过对0ZK10、3ZK11和7ZK16钻孔岩芯的地质编录,查明石榴子石在红牛铜矿床的空间分布和矿化特征,采集该矿区新鲜的石榴子石矽卡岩、矽卡岩化大理岩和角岩磨制成光薄片,开展详细的显微镜下鉴定工作,观察石榴子石的颜色、粒度、结构、光性等岩相学特征,并通过电子探针分析其化学成分。红牛铜矿床石榴子石集中产出于矽卡岩中,少量产出于矽卡岩化大理岩和角岩中,具有明显的两期。早期石榴子石分布广泛,多呈褐色-红褐色,非均质性,异常干涉色,粒径一般在0.2~4mm之间,半自形-自形中细粒结构,韵律环带发育。SiO2含量变化范围为35.18%~37.69%、CaO为33.34%~36.35%、Al2O3为3.64%~13.69%、FeO为11.90%~24.18%、MgO为0.00%~0.08%,FeO和Al2O3含量变化呈负相关,SiO2和CaO含量变化整体呈正相关。石榴子石端员组分总体以钙铁榴石(36.88%~82.36%)为主,其次为钙铝榴石(16.59%~60.75%),还有少量的镁铝榴石、铁铝榴石和锰铝榴石,属于钙铁榴石-钙铝榴石系列(And37-82Gro17-61Spe+Pyr+Alm0.33-3.71)。晚期石榴子石呈浅褐色-浅红色,多发育于矽卡岩化角岩和大理岩中,少量发育于矽卡岩中,半自形-他形粒状结构,均质性,全消光,常具有溶蚀结构。SiO2含量变化范围为35.06%~36.27%、CaO为33.07%~33.77%、Al2O3为0.04%~1.05%、FeO为27.38%~28.18%、MgO为0.00%~0.04%,属于钙铁榴石(94.42%~98.46%)。早期石榴子石韵律环带发育,其主量元素含量变化显示出一定的规律性,由核部向边缘,SiO2和CaO基本保持不变,FeO含量增加,Al2O3含量减少,钙铁榴石含量增加,钙铝榴石含量减少,反映在石榴子石形成早期,成岩环境为低氧逸度、酸性还原环境;形成过程中氧逸度增加,成矿溶液由酸性向弱碱性演化。黄铜矿、磁黄铁矿、辉钼矿等金属硫化物多呈他形充填于石榴子石颗粒之间,或在石榴子石的裂隙中形成细脉,或沿石榴子石生长环带面交代,表明石榴子石形成于矽卡岩早期、早于铜矿化,并为金属硫化物的沉淀富集提供了空间。  相似文献   

18.
Pan‐African high‐pressure granulites occur as boudins and layers in the Lurio Belt in north‐eastern Mozambique, eastern Africa. Mafic granulites contain the mineral assemblage garnet + clinopyroxene + plagioclase + quartz ± magnesiohastingsite. Garnet porphyroblasts are zoned with increasing almandine and spessartine contents and decreasing grossular and pyrope contents from core (Alm46Prp32Grs21Sps2) to rim (Alm52Prp26Grs19Sps3). This pattern is interpreted as a retrograde diffusion zoning with the preserved core chemistry representing the peak metamorphic composition. Mineral reaction textures occur in the form of monomineralic and composite plagioclase ± orthopyroxene ± amphibole ± biotite ± magnetite coronas around garnet porphyroblasts. Thermobarometry indicates peak metamorphic conditions of up to 1.57 ± 0.14 GPa and 949 ± 92 °C (stage I), corresponding to crustal depths of ~55 km. Zircon yielded an U–Pb age of 557 ± 16 Ma, inferred to date crystallization of zircon during peak or immediately post‐peak metamorphism. Formation of plagioclase + orthopyroxene‐bearing coronas surrounding garnet indicates a near‐isothermal decompression of the high‐pressure granulites to lower pressure granulite facies conditions (stage II). Development of plagioclase + amphibole‐coronas enclosing the same garnet porphyroblasts shows subsequent cooling into amphibolite facies conditions (stage III). Symplectitic textures of the corona assemblages indicate rapid decompression. The high‐pressure granulite facies metamorphism of the Lurio Belt, followed by near‐isothermal decompression and subsequent cooling, is in accordance with a long‐lived tectonic history accompanied by high magmatic activity in the Lurio Belt during the late Neoproterozoic–early Palaeozoic East‐African–Antarctic orogeny.  相似文献   

19.
江西永平铜矿矽卡岩矿物特征及其地质意义   总被引:4,自引:3,他引:1  
田明君  李永刚  万浩章  张宇  高婷婷 《岩石学报》2014,30(12):3741-3758
永平铜矿含矿岩石主要为绿帘石透辉石石榴石矽卡岩,这种岩石类型是与斑岩体有关的矽卡岩铜矿的典型赋矿岩石。通过对这一主要赋矿矽卡岩的研究,我们发现石榴石生长分为两个阶段:(1)早期石榴石:主要分布在石榴石颗粒核部,XAdr=1.0,主要以钙铁榴石为主,说明早期流体中可能含有较多的铁,是在较氧化条件下形成的;(2)晚期石榴石,沿石榴石裂隙重新成核或者在靠近流体通道的早期石榴石表面生长,出现震荡环带,XAdr=0.46~0.99,为钙铁-钙铝石榴石系列。石榴石发生变化的期间也形成新的矿物,如绿帘石、萤石、方解石和石英等。共存石榴石和绿帘石矿物中存在Fe3+-Al3+之间的替代,说明流体的氧逸度、组分浓度或aFe3+/aAl3+可能发生了变化。金属矿物也可能是在这一阶段形成的。永平铜矿矽卡岩从接触带到大理岩空间上有分带现象。从岩体到围岩的变化趋势为:石榴石含量减少,颜色存在红棕色-棕色-棕绿色-黄绿色-浅黄色的变化趋势;矿石品位降低,这与石榴石中Al2O3含量的变化较一致。我们认为这种变化是含矿热液对早期矽卡岩进行再交代改造的结果,表现为石榴石和绿帘石中Fe3+-Al3+含量的变化,并将Cu等金属沉淀下来。根据矽卡岩矿物的这些特征,在矿床勘探时,可依据棕色石榴石来追踪主矿体的位置。  相似文献   

20.
The Jurassic (approximately 145 Ma) Nambija oxidized gold skarns are hosted by the Triassic volcanosedimentary Piuntza unit in the sub-Andean zone of southeastern Ecuador. The skarns consist dominantly of granditic garnet (Ad20–98) with subordinate pyroxene (Di46–92Hd17–42Jo0–19) and epidote and are spatially associated with porphyritic quartz-diorite to granodiorite intrusions. Endoskarn is developed at the intrusion margins and grades inwards into a potassic alteration zone. Exoskarn has an outer K- and Na-enriched zone in the volcanosedimentary unit. Gold mineralization is associated with the weakly developed retrograde alteration of the exoskarn and occurs mainly in sulfide-poor vugs and milky quartz veins and veinlets in association with hematite. Fluid inclusion data for the main part of the prograde stage indicate the coexistence of high-temperature (500°C to >600°C), high-salinity (up to 65 wt.% eq. NaCl), and moderate- to low-salinity aqueous-carbonic fluids interpreted to have been trapped at pressures around 100–120 MPa, corresponding to about 4-km depth. Lower-temperature (510–300°C) and moderate- to low-salinity (23–2 wt.% eq. NaCl) aqueous fluids are recorded in garnet and epidote of the end of the prograde stage. The microthermometric data (Th from 513°C to 318°C and salinity from 1.0 to 23 wt.% eq. NaCl) and δ18O values between 6.2‰ and 11.5‰ for gold-bearing milky quartz from the retrograde stage suggest that the ore-forming fluid was dominantly magmatic. Pressures during the early retrograde stage were in the range of 50–100 MPa, in line with the evidence for CO2 effervescence and probable local boiling. The dominance of magmatic low-saline to moderately saline oxidizing fluids during the retrograde stage is consistent with the depth of the skarn system, which could have delayed the ingression of external fluids until relatively low temperatures were reached. The resulting low water-to-rock ratios explain the weak retrograde alteration and the compositional variability of chlorite, essentially controlled by host rock compositions. Gold was precipitated at this stage as a result of cooling and pH increase related to CO2 effervescence, which both result in destabilization of gold-bearing chloride complexes. Significant ingression of external fluids took place after gold deposition only, as recorded by δ18O values of 0.4‰ to 6.2‰ for fluids depositing quartz (below 350°C) in sulfide-rich barren veins. Low-temperature (<300°C) meteoric fluids (δ18Owater between −10.0‰ and −2.0‰) are responsible for the precipitation of late comb quartz and calcite in cavities and veins and indicate mixing with cooler fluids of higher salinities (about 100°C and 25 wt.% eq. NaCl). The latter are similar to low-temperature fluids (202–74.5°C) with δ18O values of −0.5‰ to 3.1‰ and salinities in the range of 21.1 to 17.3 wt.% eq. CaCl2, trapped in calcite of late veins and interpreted as basinal brines. Nambija represents a deep equivalent of the oxidized gold skarn class, the presence of CO2 in the fluids being partly a consequence of the relatively deep setting at about 4-km depth. As in other Au-bearing skarn deposits, not only the prograde stage but also the gold-precipitating retrograde stage is dominated by fluids of magmatic origin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号