首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Lake sedimentary records that allow documentation of the distinct climatic and environmental shifts during the early part of the Last Termination are scarce for northern Europe. This multi‐proxy study of the sediments of Atteköpsmosse, southwest Sweden, therefore fills an important gap and provides detailed information regarding past hydroclimatic conditions and local environmental responses to climatic shifts. Lake infilling started c. 15.5 cal. ka BP, but low aquatic productivity, cold summer lake water temperatures, unstable catchments, and scarce herb and shrub vegetation prevailed until c. 14.7–14.5 cal. ka BP. Inflow of warmer air masses and higher July air temperatures favoured a rise in aquatic productivity and lake water summer temperatures, and the establishment of a diverse herb, shrub and dwarf shrub vegetation, which also included tree birch c. 14.5 cal. ka BP. Freshening of the moisture source region c. 13.7–13.6 cal. ka BP does not seem to have had a large impact on the ancient lake and its catchment, as lake aquatic productivity increased further and lake water summer temperatures and minimum mean July air temperatures remained around 12–14 °C. In contrast, further freshening of the moisture source region c. 13 cal. ka BP triggered a decrease in lake productivity, drier conditions and lower lake water summer temperatures. Macroscopic finds of tree Betula and Pinus sylvestris at 13–12.8 cal. ka BP demonstrate the presence of these trees in the lake's catchment. The transition into the Holocene (11.6–11.5 cal. ka BP) is marked by a change in chironomid assemblages and by a rise in lake water summer temperatures and aquatic productivity. These changes were followed by the re‐establishment of a diverse aquatic and terrestrial vegetation, including tree birch and Pinus sylvestris at 11.4 cal. ka BP.  相似文献   

2.
The postglacial tree line and climate history in the Swedish Scandes have been inferred from megafossil tree remains. Investigated species are mountain birch (Betula pubescens ssp. czerepanovii), Scots pine (Pinus sylvestris) and grey alder (Alnus incana). Betula and Pinus first appeared on early deglaciated nunataks during the Lateglacial. Their tree lines peaked between 9600 and 9000 cal. a BP, almost 600 m higher than present‐day elevations. This implies (adjusted for land uplift) that early Holocene summer temperatures may have been 2.3°C above modern ones. Elevational tree line retreat characterized the Holocene tree line evolution. For short periods, excursions from this trend have occurred. Between c. 12 000 and 10 000 cal. a BP, a pine‐dominated subalpine belt prevailed. A first major episode of descent occurred c. 8200 cal. a BP, possibly forced by cooling and an associated shift to a deeper and more persistent snow pack. Thereafter, the subalpine birch forest belt gradually evolved at the expense of the prior pine‐dominated tree line ecotone. A second episode of pine descent took place c. 4800 cal. a BP. Historical tree line positions are viewed in relation to early 21st century equivalents, and indicate that tree line elevations attained during the past century and in association with modern climate warming are highly unusual, but not unique, phenomena from the perspective of the past 4800 years. Prior to that, the pine tree line (and summer temperatures) was consistently higher than present, as it was also during the Roman and Medieval periods, c. 1900 and 1000 cal. a BP, respectively.  相似文献   

3.
Owing to proximity of the North Atlantic Stream and the shelf, the Andøya biota are assumed to have responded rapidly to climatic changes taking place after the Weichselian glaciation. Palynological, macrofossil, loss‐on‐ignition, tephra and 14C data from three sites at the northern part of the island of Andøya were studied. The period 12 300–11 950 cal. yr BP was characterized by polar desert vegetation, and 11 950–11 050 cal. yr BP by a moisture‐demanding predominantly low‐arctic Oxyria vegetation. During the period 11 050–10 650 cal. yr BP, there was a climatic amelioration towards a sub‐arctic climate and heaths dominated by Empetrum. After 10 650 cal. yr BP the Oxyria vegetation disappeared. As early as about 10 800 cal. yr BP the bryozoan Cristatella mucedo indicated a climate sufficient for Betula woodland. However, tree birch did not establish until 10 420–10 250 cal. yr BP, indicating a time‐lag for the formation of Betula ecotypes adapted to the oceanic climate of Andøya. From about 10 150 to 9400 cal. yr BP the summers were dry and warm. There was a change towards moister, though comparatively warm, climatic conditions about 9400 cal. yr BP. The present data are compared with evidence from marine sediments and the deglaciation history in the region. It is suggested that during most of the period 11 500–10 250 cal. yr BP a similar situation as in present southern Greenland existed, with birch woodland in the inner fjords near the ice sheet and low‐arctic heath vegetation along the outer coast.  相似文献   

4.
The Last Termination (19 000–11 000 a BP) with its rapid and distinct climate shifts provides a perfect laboratory to study the nature and regional impact of climate variability. The sedimentary succession from the ancient lake at Hässeldala Port in southern Sweden with its distinct Lateglacial/early Holocene stratigraphy (>14.1–9.5 cal. ka BP) is one of the few chronologically well‐constrained, multi‐proxy sites in Europe that capture a variety of local and regional climatic and environmental signals. Here we present Hässeldala's multi‐proxy records (lithology, geochemistry, pollen, diatoms, chironomids, biomarkers, hydrogen isotopes) in a refined age model and place the observed changes in lake status, catchment vegetation, summer temperatures and hydroclimate in a wider regional context. Reconstructed mean July temperatures increased between c. 14.1 and c. 13.1 cal. ka BP and subsequently declined. This latter cooling coincided with drier hydroclimatic conditions that were probably associated with a freshening of the Nordic Seas and started a few hundred years before the onset of Greenland Stadial 1 (c. 12.9 cal. ka BP). Our proxies suggest a further shift towards colder and drier conditions as late as c. 12.7 cal. ka BP, which was followed by the establishment of a stadial climate regime (c. 12.5–11.8 cal. ka BP). The onset of warmer and wetter conditions preceded the Holocene warming over Greenland by c. 200 years. Hässeldala's proxies thus highlight the complexity of environmental and hydrological responses across abrupt climate transitions in northern Europe.  相似文献   

5.
The new pollen record from the upper 12.75 m of a sediment core obtained in Lake Ladoga documents regional vegetation and climate changes in northwestern Russia over the last 13.9 cal. ka. The Lateglacial chronostratigraphy is based on varve chronology, while the Holocene stratigraphy is based on AMS 14C and OSL dates, supported by comparison with regional pollen records. During the Lateglacial (c. 13.9–11.2 cal. ka BP), the Lake Ladoga region experienced several climatic fluctuations as reflected in vegetation changes. Shrub and grass communities dominated between c. 13.9 and 13.2 cal. ka BP. The increase in Picea pollen at c. 13.2 cal. ka BP probably reflects the appearance of spruce in the southern Ladoga region at the beginning of the Allerød interstadial. After c. 12.6 cal. ka BP, the Younger Dryas cooling caused a significant decrease in spruce and increase in Artemisia with other herbs, indicative of tundra‐ and steppe‐like vegetation. A sharp transition from tundra‐steppe habitats to sparse birch forests characterizes the onset of Holocene warming c. 11.2 cal. ka BP. Pine forests dominated in the region from c. 9.0 to 8.1 cal. ka BP. The most favourable climatic conditions for deciduous broad‐leaved taxa existed between c. 8.1 and 5.5 cal. ka BP. Alder experiences an abrupt increase in the local vegetation c. 7.8 cal. ka BP. The decrease in tree pollen taxa (especially Picea) and the increase in herbs (mainly Poaceae) probably reflect human activity during the last 2.2 cal. ka. Pine forests have dominated the region since that time. Secale and other Cerealia pollen as well as ruderal herbs are permanently recorded since c. 0.8 cal. ka BP.  相似文献   

6.
Bolshaya Imandra, the northern sub-basin of Lake Imandra, was investigated by a hydro-acoustic survey followed by sediment coring down to the acoustic basement. The sediment record was analysed by a combined physical, biogeochemical, sedimentological, granulometrical and micropalaeontological approach to reconstruct the regional climatic and environmental history. Chronological control was obtained by 14C dating, 137Cs, and Hg markers as well as pollen stratigraphy and revealed that the sediment succession offers the first continuous record spanning the Lateglacial and Holocene for this lake. Following the deglaciation prior to c. 13 200 cal. a BP, the lake's sub-basin initially was occupied by a glacifluvial river system, before a proglacial lake with glaciolacustrine sedimentation established. Rather mild climate, a sparse vegetation cover and successive retreat of the Scandinavian Ice Sheet (SIS) from the lake catchment characterized the Bølling/Allerød interstadial, lasting until 12 710 cal. a BP. During the subsequent Younger Dryas chronozone, until 11 550 cal. a BP, climate cooling led to a decrease in vegetation cover and a re-advance of the SIS. The SIS disappeared from the catchment at the Holocene transition, but small glaciers persisted in the mountains at the eastern lake shore. During the Early Holocene, until 8400 cal. a BP, sedimentation changed from glaciolacustrine to lacustrine and rising temperatures caused the spread of thermophilous vegetation. The Middle Holocene, until 3700 cal. a BP, comprises the regional Holocene Thermal Maximum (8000–4600 cal. a BP) with relatively stable temperatures, denser vegetation cover and absence of mountain glaciers. Reoccurrence of mountain glaciers during the Late Holocene, until 30 cal. a BP, presumably results from a slight cooling and increased humidity. Since c. 30 cal. a BP Lake Imandra has been strongly influenced by human impact, originating in industrial and mining activities. Our results are in overall agreement with vegetation and climate reconstructions in the Kola region.  相似文献   

7.
Holocene sedimentation patterns and environmental development in Aarhus Bay, Denmark, were reconstructed based on proxy analyses of two sediment cores (M1 and M5). Together, the two cores offer an opportunity to examine the history of the area during the past c. 10 000 years. The investigation consisted of acoustic mapping and multi-proxy analyses of the sediment cores including macrofossils, sediment physical properties, sediment accumulation rates, grain size, and X-ray fluorescence elemental counts. Radiocarbon dating of the two sediment successions revealed that they cover the periods c. 10 000–3700 cal. a BP (M1) and c. 4400 cal. a BP to the present (M5). The data from the M1 site indicate the presence of a near-shore lake environment between c. 10 000 and 9000 cal. a BP. The first intrusion of marine water into the area is dated to c. 9000 cal. a BP. In the following c. 1300 years, brackish-water conditions prevailed in the area characterized by a mixture of taxa from marine, limnic and terrestrial habitats, reflecting a shallow estuarine environment. Around 7700 cal. a BP full marine conditions were established, accompanied by a marked increase in sedimentation rates. The changes to full marine conditions and higher sedimentation rates are probably due to a significant sea-level rise leading to flooding of former land areas and intensified erosion. A subsequent distinct decrease in sedimentation rates around 6350 cal. a BP is presumably linked to a previously documented sea-level drop about this time. Continuous sedimentation ceased around 3700 cal. a BP in the central part of the bay, most probably due to a major sea-level lowering involving widespread erosion. In the eastern and deeper part of the bay, sedimentation continued until today. Fully marine conditions prevailed there for at least the last 4400 years.  相似文献   

8.
This paper investigates a detailed well‐dated Lateglacial floristic colonisation in the eastern Baltic area, ca. 14 000–9000 cal. a BP, using palynological, macrofossil, loss‐on‐ignition, and 14C data. During 14 000–13 400 cal. a BP, primarily treeless pioneer tundra vegetation existed. Tree birch (Betula sect. Albae) macro‐remains and a high tree pollen accumulation rate indicate the presence of forest‐tundra with birch and possibly pine (Pinus sylvestris L.) trees during 13 400–12 850 cal. a BP. Palaeobotanical data indicate that the colonisation and development of forested areas were very rapid, arising within a period of less than 50 years. Thus far, there are no indications of conifer macrofossils in Estonia to support the presence of coniferous forests in the Lateglacial period. Signs of Greenland Interstadial 1b cooling during 13 100 cal. a BP are distinguishable. Biostratigraphic evidence indicates that the vegetation was again mostly treeless tundra during the final colder episode of the Lateglacial period associated with Greenland Stadial 1, approximately 12 850–11 650 cal. a BP. This was followed by onset of the Holocene vegetation, with the expansion of boreal forests, in response to rapid climatic warming. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
We present a high‐resolution record of lacustrine sedimentation spanning ca. 30 000 to 9000 cal. a BP from Onepoto maar, northern North Island, New Zealand. The multi‐proxy record of environmental change is constrained by tephrochronology and accelerator mass spectrometric 14C ages and provides evidence for episodes of rapid environmental change during the Last Glacial Coldest Period (LGCP) and Last Glacial–Interglacial Transition (LGIT) from northern New Zealand. The multi‐proxy palaeoenvironmental record from Onepoto indicates that the LGCP was cold, dry and windy in the Auckland region, with vegetation dominated by herb and grass in a beech forest mosaic between ca. 28 500 and 18 000 cal. a BP. The LGCP was accompanied by more frequent fires and influx of clastic sediment indicating increased erosion during the LGCP, with a mid‐LGCP interstadial identified between ca. 25 000 and 23 000 cal. a BP. Rapid climate amelioration at ca. 18 000 cal. a BP was accompanied by increased terrestrial biomass exemplified by the expansion of lowland podocarp forest, especially Dacrydium cupressinum. Increasing biomass production is reversed briefly by LGIT perturbations which are apparent in many of the proxies that span ca. 14 000–10 500 cal. a BP, suggesting generally increased wetness and higher in situ aquatic plant productivity with reduced terrestrial organic matter and terrigenous detrital influx. Furthermore, conditions at that time were probably warmer and frosts rare based on the increasing importance of Ascarina. The subsequent early Holocene is characterised by podocarp conifer forest and moist mild conditions. Postglacial sea‐level rise breached the crater rim and deposited 36 m of estuarine mud after ca. 9000 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

10.
High resolution pollen, plant macrofossil, charcoal, mineral magnetic and sedimentary analyses, combined with AMS 14C measurements, were performed on multiple sediment sequences along a transect through the former crater lake Preluca iganului in northwestern Romania in order to reconstruct the climatic and environmental changes during the early part of the Last Termination. Lake sediments started to accumulate at 14,700 cal yr BP. Initially the upland vegetation consisted of an open forest with mainly Betula and Salix and few Pinus sp., but from 14,500 cal yr BP onwards, Pinus mugo, P. sylvestris and Populus and later on also Larix became established around the lake. Between 14,150 and 13,950 cal yr BP, Pinus cembra seems to have replaced P. mugo and P. sylvestris. At 13,950 cal yr BP the tree cover increased and Picea appeared for the first time, together with Pinus cembra, P. mugo and Larix. From 13,750 cal yr BP onwards, a Picea forest developed around the site. Based on the combined proxy data the following climatic development may be inferred: 14,700–14,500 cal yr BP, cooler and wet/humid; 14,500–14,400 cal yr BP: gradually warmer temperatures, wet/humid with dry summers; 14,400–14,320 cal yr BP: warm and dry; 14,320–14,150 cal yr BP: cooler and wet/humid; 14,150–14,100 cal yr BP: warm and dry; 14,100–13,850 cal yr BP: warmer and wet/humid; <13,850 cal yr BP: warm and dry. The tentative correlation of this development with the North Atlantic region assumes that the period >14,700 cal yr could correspond to GS-2a, the time span between 14,700 and 14,320 to GI-1e, the phase between 14,320 and 14,150 cal yr BP to GI-1d and the time frame between 14,150 and 13,600 cal yr BP to the lower part of GI-1c.  相似文献   

11.
High‐resolution pollen, macrofossil and charcoal data, combined with accelerator mass spectrometry 14C dating and multivariate analysis, were used to reconstruct Holocene vegetation and fire dynamics at Urio Quattrocchi, a small lake in the supra‐mediterranean belt in the Nebrodi Mountains of Sicily (Italy). The data suggest that after 10 000 cal a BP increasing moisture availability supported closed forests with deciduous (Quercus cerris, Fagus sylvatica and Fraxinus spp.) and evergreen (Quercus ilex) species. Species‐rich closed forest persisted until 6850 cal a BP, when Neolithic activities caused a forest decline and affected plant diversity. Secondary forest with abundant Ilex aquifolium recovered between 6650 and 6000 cal a BP, indicating moist conditions. From 5000 cal a BP, agriculture and pastoralism led to the currently fragmented landscape with sparse deciduous forests (Quercus cerris). The study suggests that evergreen broadleaved species were more important at elevations above 1000 m a.s.l. before ca. 5000 cal a BP than subsequently, which might reflect less human impact or warmer‐than‐today climatic conditions between 10 000 and 5000 cal a BP. Despite land use since Neolithic times, deciduous supra‐mediterranean forests were never completely displaced from the Nebrodi Mountains, because of favourable moist conditions that persisted throughout the Holocene. Reconstructed vegetation dynamics document the absence of any pronounced mid‐ or late‐Holocene ‘aridification’ trend at the site, an issue which is controversially debated in Italy and the Mediterranean region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Palaeoclimatic records derived from a variety of independent proxies provide evidence of post‐glacial changes of temperature and soil moisture in northern Fennoscandia. We use pollen percentage, pollen influx, stomatal and chironomid records from Toskaljavri, a high‐altitude lake in northern Finland, to assess how treelines and alpine vegetation there have responded to these climate changes. The evidence suggests that the cool, moist climate of the early Holocene supported birch forest in the area 9600 cal. yr BP onwards and that a rise of temperature triggered the immigration of pine at 8300 cal. yr BP. At 6100–4000 cal. yr BP altitudinal treeline in the area was formed by pine, in contrast to the modern situation where mountain birch reaches a higher elevation. Alpine vegetation also demonstrates clear changes. Plant communities typical of dry, oligotrophic heaths of northern Fennoscandia expanded during the dry climatic period at 7000–4000 cal. yr BP and decreased in response to cooler and moister conditions after 4000 cal. yr BP. Alpine plant communities favouring moist sites show an inverse pattern, expanding after a change towards moister climate after 4000 cal. yr BP. In a redundancy analysis (RDA), a statistically significant proportion of the variability in the total chironomid assemblages was captured by changes in the pollen types reflecting alpine vegetation typical of moist sites. Although chironomid community changes appeared to follow the major patterns in the alpine vegetation succession, the present study does not support a direct link between the changing treeline position and chironomid stratigraphy. Rather, the data indicate that the terrestrial and aquatic environments have each responded directly to the same ultimate cause, namely changing Holocene climate. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
Three pollen and charcoal records from three lakes lying at 3400 m elevation in southern Peru provided a record of landscape change spanning the last ca.18 000 cal. a BP. The tree line lay close to the site between ca. 16 000 and 12 000 cal. a BP, with Polylepis woodlands growing near the lakes. Progressively drying conditions led to increased fire after 12 000 cal. a BP, coinciding with a decline in Polylepis cover and Andean forest relicts as puna grasslands expanded. A strong decrease in the rate of sediment deposition between ca. 12 000 and ca. 4400 cal. a BP was interpreted to indicate the presence of sedimentary hiatuses. With the return of wet conditions after 4400 cal. a BP, forests did not reassemble around the lakes. Instead, fire‐maintained grasslands dominated the landscape. Humans probably induced the intensified fire activity during the late Holocene and thereby deflected local successions. The modern fragmented landscape, with Polylepsis woodlands existing in fire‐resistant pockets above the general limit of the Andean tree line, resulted from the intensification of human land use practices during the last 4400 cal. a BP. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Travertine deposits are unique archives for multidisciplinary studies of past climate changes, associated vegetation development and the evolution of human societies. Despite their high potential in palaeoecological and palaeoclimate reconstructions, investigations of travertines are rather scarce in central Europe and particularly in Slovakia. Therefore, this study focused on a travertine deposit situated on the border between the Pannonian Basin and the Western Carpathians in a small valley in Santovka village (SW Slovakia), which is unique due to the presence of archaeological artefacts with known radiocarbon ages in the palaeoecological profile. Using a multidisciplinary approach combining macrofossil, pollen, mollusc, lithological and geochemical analyses, this study investigated climate–human–vegetation interactions. The Holocene onset was marked by the early arrival of oak trees; however, forest‐steppe with a high representation of pine predominated until 9880 cal. a BP, followed by an expansion of temperate trees. The local ecosystem changed around 8600 cal. a BP when the valley was probably dammed by a travertine accumulation, probably resulting in the existence of a small travertine lake. This was associated with wetter climatic conditions, which were also documented in other sites in the Western Carpathians at that time. Surrounding temperate forest possibly retained a certain degree of openness, or local steppe habitat may have persisted on adjacent loess terraces until the neolithization of the area. Archaeological evidence represented by a ceramic shard dated to 7339 cal. a BP suggests the first appearance of humans at the site, yet pollen analysis records a significant change in vegetation first at 6650 cal. a BP. The local ecosystem records an abrupt change linked with human settlement earlier, at c. 7000 cal. a BP. Deforestation activities of the Neolithics resulted in the formation of an open calcareous fen occupied by numerous light‐demanding mollusc species. The present study provides new important data about the spread of temperate trees at the onset of the Holocene, about further vegetation changes caused by activities of the first Neolithic farmers and about climate changes in the region of southwestern Slovakia.  相似文献   

15.
The last 16 000 cal. a of vegetation, fire and limnological history are described from the steppe‐forest ecotone in the northernmost Nothofagus forest region east of the Andes (Mallín Vaca Lauquen, Neuquén Province, Argentina, latitude 36° 51.336′ S, longitude 71° 02.538′ W). Between 16 000 and 14 800 cal. a BP, scrub steppe with substantial open ground expanded in formerly glaciated valleys, whereas NothofagusPrumnopitys andina woodland covered mountain slopes. The site was a relatively deep and unproductive small lake at this time. After 14 800 cal. a BP, both steppe and woodland vegetation became denser, indicating increased moisture and temperatures, although not to present levels. The lake was still relatively deep and dystrophic, but became more alkaline by 10 000 cal. a BP. Between 8900 and 5500 cal. a BP, conditions were markedly drier than before; a Cyperaceae marsh developed and disturbance taxa increased. After 5500 cal. a BP, moisture increased but varied greatly, as evidenced by fluctuating water levels and high fire activity from 5500 to 4400 cal. a BP and from 2300 to 1000 cal. a BP. Human activity, in terms of forest clearance and livestock grazing, is documented in the uppermost levels. The evidence of high environmental variability in the middle and late Holocene is consistent with the onset or strengthening of the El Niño–Southern Oscillation, but differences in the timing of fire activity among sites on the west and east sides of the Andes suggest that fuel conditions were important in determining the local occurrence of fire. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Vegetation dynamics during the Younger Dryas-Holocene transition in the extreme northern taiga zone of the Usa basin, northeastern European Russia, were reconstructed using plant macrofossil and pollen evidence from a sediment core from Lake Llet-Ti. The pollen stratigraphy during the Younger Dryas (about 12 500-11 500 cal. yr BP) is characterized by pollen types indicative of treeless arctic vegetation, whereas the macrofossil evidence shows the occurrence of scattered spruce and birch trees around the lake. The Younger Dryas-early Holocene transition is characterized by a rapid increase in vegetation density, including an increase in the birch population, followed by the expansion of the spruce population at about 10 000 cal. yr BP. Dense spruce-birch forest dominated until 5000 cal. yr BP. Our results contribute to the debate about the Lateglacial environments in northern Russia, and illustrate the importance of plant macrofossil records in Lateglacial vegetation reconstructions.  相似文献   

17.
We present a well‐dated, high‐resolution and continuous sediment record spanning the last c. 24 000 years from lake Bolshoye Shchuchye located in the Polar Ural Mountains, Arctic Russia. This is the first continuous sediment succession reaching back into the Last Glacial Maximum (LGM) ever retrieved from this region. We reconstruct the glacial and climate history in the area since the LGM based on sedimentological and geochemical analysis of a 24‐m‐long sediment core. A robust chronology was established using a combination of AMS 14C‐dating, the position of the Vedde Ash and varve counting. The varved part of the sediment core spans across the LGM from 24 to 18.7 cal. ka BP. We conclude that the lake basin remained ice‐free throughout the LGM, but that mountain glaciers were present in the lake catchment. A decrease in both glacial varve preservation and sedimentation rate suggests that these glaciers started to retreat c. 18.7 cal. ka BP and had disappeared from the catchment by 14.35 cal. ka BP. There are no indications of glacier regrowth during the Younger Dryas. We infer a distinct climatic amelioration following the onset of the Holocene and an Early to Middle Holocene thermal optimum between 10–5 cal. ka BP. Our results provide a long‐awaited continuous and high‐resolution record of past climate that supplements the existing, more fragmentary data from moraines and exposed strata along river banks and coastal cliffs around the Russian Arctic.  相似文献   

18.
From the synthesis of the malacological data collected from 12 sites in the large flood‐plain of the Seine basin, three main environmental stages have been reconstructed. During the first half of the Holocene, forest environments are prevalent (Seine 1). As early as c. 6.5 cal. ka BP, the first evidence of woodland clearance is observed (Seine 2) and, from c. 3.4 cal. ka BP, the lowlands were largely cleared of trees and are dominated by grassland (Seine 3). This three‐stage development of environmental conditions is consistent with the environmental developments reconstructed from molluscan successions in England, Germany, Luxembourg, Switzerland, Poland, the Czech Republic and Slovakia. Our results highlight anthropogenic disturbance as the key factor in the openness of the Holocene landscape and pinpoint the period between c. 3.6 and c. 2.8 cal. ka BP as a transitional phase of this large‐scale environmental change.  相似文献   

19.
The history of the low-elevation forest and forest-steppe ecotone on the east side of the Andes is revealed in pollen and charcoal records obtained from mid-latitude lakes. Prior to 15,000 cal yr BP, the vegetation was characterized by steppe vegetation with isolated stands of Nothofagus. The climate was generally dry, and the sparse vegetation apparently lacked sufficient fuels to burn extensively. After 15,000 cal yr BP, a mixture of Nothofagus forest and shrubland/steppe developed. Fire activity increased between 13,250 and 11,400 cal yr BP, contemporaneous with a regionally defined cold dry period (Huelmo/Mascardi Cold Reversal). The early-Holocene period was characterized by an open Nothofagus forest/shrubland mosaic, and fire frequency was high in dry sites and low in wet sites; the data suggest a sharp decrease in moisture eastward from the Andes. A shift to a surface-fire regime occurred at 7500 cal yr BP at the wet site and at 4400 cal yr BP at the dry site, preceding the expansion of Austrocedrus by 1000-1500 yr. The spread of Austrocedrus is explained by a shift towards a cooler and wetter climate in the middle and late Holocene. The change to a surface-fire regime is consistent with increased interannual climate variability and the onset or strengthening of ENSO. The present-day mixed forest dominated by Nothofagus and Austrocedrus was established in the last few millennia.  相似文献   

20.
Pollen analysis of a 3.2-m deep sedimentary profile cored from the Dabaka Swamp, Nagaon District, Lower Brahmaputra flood plain, Assam has revealed persistent fluvial activity during 14,120–12,700 cal years BP which may be attributed to the paucity of pollen and spores with encounterance of fluvial marker taxa like Ludwigia octavalvis and Botryococcus. Later, fluvial activity was succeeded by the tropical tree savanna under cool and dry climate between 12,700 and 11,600 cal years BP corresponding to that of global Younger Dryas. Between 11,600 and 8310 cal years BP, relatively less cool and dry climate prevailed with inception of tropical mixed deciduous taxa like Shorea robusta and Lagerstroemia parviflora. This phase is further followed by a fluvial activity between 8310 and 7100 cal years BP as evidenced by trace values of pollen and spores. Fluvial activity was further succeeded by enrichment of tropical mixed deciduous forest under warm and humid climatic regime between 7100 and 1550 cal years BP which is well-matched with the peak period of the Holocene climatic optimum. However, during 1550–768 cal years BP, final settlement of tropical mixed deciduous forest occurred under increased warm and humid climate followed by deterioration in tropical mixed deciduous forest under warm and relatively dry climatic regime since 768 cal years BP onwards due to acceleration in human settlement as evidenced by Cerealia. Increase in Melastoma, Ziziphus and Areca catechu imply forest clearance at this phase. The occurrence of degraded pollen-spore along with adequate fungal elements especially, Xylaria, Nigrospora and Microthyriaceous fruiting body is suggestive of aerobic microbial digenesis of rich organic debris during sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号