首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Orogenic peridotites occur enclosed in Proterozoic gneissesat several localities in the Western Gneiss Region (WGR) ofwestern Norway; garnet peridotites typically occur as discretezones within larger bodies of garnet-free, chromite-bearingdunite and are commonly closely associated with pyroxenitesand eclogites. The dunites of the large Almklovdalen peridotitebody have extremely depleted compositions (Mg-number 92–93·6);the garnet peridotites have lower Mg-number (90·6–91·7)and higher whole-rock Ca and Al contents. Post-depletion metasomatismof both rock types is indicated by variable enrichment in thelight rare earth elements, Th, Ba and Sr. The dunites can bemodelled as residues after very high degrees (>60%) of meltextraction at high pressure (5–7 GPa), inconsistent withthe preservation of lower degrees of melting in the garnet peridotites.The garnet peridotites are, therefore, interpreted as zonesof melt percolation, which resulted in refertilization of thedunites by a silicate melt rich in Fe, Ca, Al and Na, but notTi. Previous Re–Os dating gives Archaean model ages forthe dunites, but mixed Archaean and Proterozoic ages for thegarnet peridotites, suggesting that refertilization occurredin Proterozoic time. At least some Proterozoic lithosphere mayrepresent reworked and transformed Archaean lithospheric mantle. KEY WORDS: Archaean mantle; Proterozoic mantle; Western Gneiss Region, Norway; mantle metasomatism; garnet peridotite  相似文献   

2.
岩石圈热结构和热状态的研究对于大陆裂解、变质作用及活化构造形成机制等大陆动力学问题的研究十分重要。通过地球化学、构造地质学和综合分析,以贵州省镇远地区金伯利岩-钾镁煌斑岩和黔东—湘西一带的晚元古代地层为例,研究了扬子地块东南缘早古生代岩石圈热结构与热状态。提出高放射性元素产热率的HHPRM型地幔源区,进一步讨论HHPRM型地幔源区形成与演化的大陆动力学机制。认为古富集地幔(HHPRM型地幔源区)是镇远一带的早古生代钾镁煌斑岩-金伯利岩的岩浆源区,镇远地区金伯利岩-钾镁煌斑岩岩浆源区深度(H)在208~244km,形成温度在1547~1403℃间,该温度和深度范围属软流层,具有形成金刚石矿床的地质条件。建议在贵州—湖南—广西三省交界区的金伯利岩和钾镁煌斑岩岩群中应进一步开展金刚石矿床研究与勘查工作。  相似文献   

3.
岚皋金云角闪辉石岩类捕虏体:地幔交代作用的证据   总被引:6,自引:2,他引:6  
产于陕西岚皋地区碱质基性-超基性潜火山杂岩中的金云角闪辉石岩类捕虏体,主要由透辉石、富钛韭闪石、金云母、磷灰石、榍石、及钛铁矿组成。捕虏体发育三联晶、碎裂边、肯克变形等固相线下变形变质结构,矿物学特征表明,透辉石、富钛韭闪石、金云母为地幔来源,是地幔交代作用的产物;与正常地幔尖晶石二辉橄榄岩相比,捕虏体富TiO2、Fe2O3、CaO、Na2O、K2O,贫MgO,其稀土元素具富集特征,尤其富集LREE;微量元素分配型式显示了富亲石不相容元素的特征。岩相学、矿物学及岩石化学特征表明:该类捕虏体为交代地幔捕虏体,它代表了北大巴山早古生代裂谷作用时期的异常地幔,是地幔交代作用的产物。交代营力可能源于地幔热缕的上升,交代过程推测为深处小范围的流体交代及随后硅酸岩熔体的“弥散”性交代  相似文献   

4.
Mantle xenoliths from Hainan and Qilin, South China have been studied to constrain the nature of the upper mantle and mantle processes beneath a continental margin. The extremely low Ti (160–245 ppm) contents in clinopyroxenes from some spinel lherzolites, indicative of high degrees of partial melting are inconsistent with the relatively high clinopyroxene modes (7.4–13%) in these samples. This inconsistency could be due to polybaric melting that started in the garnet stability field, then, after the breakdown of garnet to pyroxene and spinel, continued in the spinel stability field. Polybaric melting, due to adiabatic decompression of upwelling mantle, would leave a residual mantle in which the degree of depletion decreases with depth. The predicted stratified lithospheric mantle is evidenced by the negative correlation between the forsterite content in olivine and the equilibration temperature, proportional to the depth in the lithosphere from which the xenolith was derived. The lower part of the lithospheric mantle beneath South China consists predominantly of fertile and moderately depleted peridotites, which are either devoid of LREE enrichment, or show the trace element signature of incipient metasomatism, and plot within the Phanerozoic mantle domain. In contrast, the upper part of the mantle contains harzburgite and cpx-poor lherzolite, which are strongly affected by metasomatism of melt/fluid of highly variable composition. The anomalously high orthopyroxene mode (up to 47%) makes some of these refractory samples compositionally similar to the Proterozoic/Archean mantle. Their low equilibrium temperature (800–900 °C) points to the presence of old lithospheric relicts in the uppermost mantle beneath South China. Such lithosphere architecture may have resulted from partial replacement of Archean–Proterozoic lithosphere by asthenosphere that rose adiabatically subsequent to lithospheric thinning during the Cenozoic.  相似文献   

5.
Fe同位素在地幔地球化学研究中的应用及进展   总被引:4,自引:0,他引:4  
在总结不同地质储库中Fe同位素分布特征的基础上,对Fe同位素在地幔地球化学研究中的应用进行了较素在地幔包体全岩及单矿物中的分布特征,进一步确认了Fe同位素不均一性在地幔中的存在,探讨了导致这种不均一性的可能机理,指出了FE同位素在示踪地幔交代、部分熔融和氧逸度演化方面的潜力.  相似文献   

6.
With the aim to better understand the cause of the iron isotope heterogeneity of mantle-derived bulk peridotites, we compared the petrological, geochemical and iron isotope composition of four xenolith suites from different geodynamic settings; sub-arc mantle (Patagonia); subcontinental lithospheric mantle (Cameroon), oceanic mantle (Kerguelen) and cratonic mantle (South Africa). Although correlations were not easy to obtain and remain scattered because these rocks record successive geological events, those found between δ57Fe, Mg#, some major and trace element contents of rocks and minerals highlight the processes responsible for the Fe isotope heterogeneity. While partial melting processes only account for moderate Fe isotope variations in the mantle (<0.2 ‰, with bulk rock values yielding a range of δ57Fe ± 0.1 ‰ relative to IRMM-14), the main cause of Fe isotope heterogeneity is metasomatism (>0.9 ‰). The kinetic nature of rapid metasomatic exchanges between low viscosity melts/fluids and their wall-rocks peridotite in the mantle is the likely explanation for this large range. There are a variety of responses of Fe isotope signatures depending on the nature of the metasomatic processes, allowing for a more detailed study of metasomatism in the mantle with Fe isotopes. The current database on the iron isotope composition of peridotite xenoliths and mafic eruptive rocks highlights that most basalts have their main source deeper than the lithospheric mantle. Finally, it is concluded that due to a complex geological history, Fe isotope compositions of mantle xenoliths are too scattered to define a mean isotopic composition with enough accuracy to assess whether the bulk silicate Earth has a mean δ57Fe that is chondritic, or if it is ~0.1 ‰ above chondrites as initially proposed.  相似文献   

7.
Peridotite xenoliths from the Pello tuff cone in the Rift Valley of northern Tanzania, bear witness to upper mantle veining and metasomatism. Veins of katungite composition, with an asthenospheric signature, have imposed K, Fe, Ti, OH and REE metasomatism upon previously depleted peridotite. Chemical and mineralogical gradients are present in the peridotite wall rocks, and hydrous phases developed in the peridotite are generally lower in Ti and Fe, but higher in Mg and Cr, than those in the veins. The metasomatism has reduced the density of affected peridotite by up to 4.5%, supporting earlier geophysical models for low-density mantle beneath the Rift Valley. Age constraints for the metasomatically-induced density decrease permit correlation with Recent faulting in the Rift Valley, but not with the major upwarp of the Kenya Dome in the late Tertiary.  相似文献   

8.
By applying the 40Ar/39Ar-dating method, age estimates for phlogopites of mantle xenoliths with different parageneses from the Udachnaya and Mir kimberlite pipes (Yakutia, Russia) were obtained. The oldest ages determined are 2.6–2.3 Ga, which far transcends the Paleozoic age of kimberlite entrainment. The phlogopite formation of these ages reflects ancient metasomatic events following rearrangement processes in the mantle in the Archean-Early Proterozoic, particularly during and after accretion of the Pangea-0 super-continent. A multistep age spectrum of UV162/09 was obtained from several generations of phlogopite and indicates a later multistage metasomatic process taking place in the mantle under Udachnaya pipe. Several stages of mantle metasomatism of various ages and scales are detected within the Siberian platform.  相似文献   

9.
A suite of spinel peridotite xenoliths in Mesozoic basalts of the Tuoyun basin in the Tianshan area of northwest China has a high proportion of amphibole/mica-bearing lherzolites, with high Cpx/Opx ratios (mean 0.74). Many aspects of mineral chemistry in the Tuoyun peridotites are intermediate between those of refractory Archean cratonic mantle and fertile Phanerozoic mantle. These include Ni/Cr and the contents of transition metals and Y in olivine and orthopyroxene and the abundances of elements such as Na, Al, Ti, Y, Sr and LREE in clinopyroxene. The data suggest that the mantle in Tuoyun is moderately depleted in basaltic components relative to both the refractory Archean mantle and the fertile Phanerozoic mantle. The wide variations in the CaO/Al2O3 (0.9–3.5) of whole rocks and LREE/HREE (0.8–14.2) and Ti/Eu (971–5,765) of clinopyroxenes in the Tuoyun peridotites are interpreted as the metasomatism of hydrous carbonatitic and potassic melt or the cumulative effects of mantle metasomatism by different agents (carbonatite and small-volume silicate melts) through time. The Tuoyun mantle shows closer affinity to the type of mantle found beneath the Proterozoic Cathaysia block, and especially to that beneath the East Central Asia Orogenic Belt (ECAOB), than to the mantle beneath the Archean North China Craton. This implies that the Tianshan subcontinental lithospheric mantle may have been generated during the accretion of the ECAOB. The high proportion of fine-grained microstructures, high Cpx/Opx ratio, obvious Ca enrichment and lower overall depletion in the Tuoyun mantle relative to that in other parts of the ECAOB reflect stronger mechanical and chemical modification of the Tuoyun mantle, near the translithospheric Talas-Ferghana strike-slip fault, which played a major role in controlling the strength of the mantle lithosphere and has channeled the upwelling mantle.  相似文献   

10.
Metasomatism of the lithospheric mantle sometimes produces unusual assemblages containing native metals and alloys, which provide important insight into metasomatic processes in the mantle. In this study, we describe the metasomatic enrichment of a refractory harzburgite xenolith in Ni, Fe and, to a lesser extent, Cu, Co, As and Sb. The xenolith (XM1/422) derives from the Bultfontein kimberlite (Kimberley, South Africa) and hosts Ni mineralisation that includes native nickel (Ni84.5-98.0), heazlewoodite (Ni3S2) and Ni-rich silicates (e.g. up to 37.5 wt % NiO in olivine, and 22.4 wt % NiO in phlogopite). The presence of several mineral phases enriched in alkali and volatile species (e.g. phlogopite, phosphates, carbonates, chlorides, djerfisherite) indicates that the transition metal cations were likely introduced during metasomatism by alkali-rich C–O–H fluids or alkali-carbonate melts. It is postulated that sulphide breakdown and fluid reaction with refractory mantle rocks contributed to the fluid’s enrichment in Ni and other metallic cations. The Ni-rich assemblages of xenolith XM1/422 show local chemical disequilibrium, and modelling of the Ni diffusion profiles adjacent to olivine-native nickel and olivine-heazlewoodite grain boundaries, suggests a close temporal relationship between Ni-rich metasomatism and subsequent entrainment by the kimberlite magma. However, metal-rich metasomatism has also been observed in other lithospheric mantle domains, including orogenic peridotitic massifs and the suboceanic mantle; regions unaffected by kimberlite magmatsim. As micro-scale occurrences of metallic phases are easily overlooked, it is possible that metal-rich metasomatism is more widespread in the Earth’s mantle than previously recognised.  相似文献   

11.
橄榄石是地幔橄榄岩和辉石岩的主要组成矿物,但也经常以斑晶和捕虏晶的形式出现在玄武质岩石中。结合近年来在地幔橄榄岩的主要元素(如Mg和Fe)组成特征以及Li、Mg和Fe稳定同位素地球化学方面的研究成果,重点对橄榄石的地球化学特征与华北克拉通岩石圈地幔演化过程之间的联系进行了讨论,旨在加深对华北克拉通岩石圈地幔演化过程的理解。现有研究表明:地幔橄榄岩中橄榄石的矿物学特征、元素和同位素地球化学组成能够很好地指示岩石圈地幔的特征及其演化过程,因而具有重要的意义。对于克拉通地区的地幔橄榄岩来说,橄榄石的Mg#通常可以指示岩石圈地幔的属性,古老、难熔的地幔橄榄岩中的橄榄石一般具有较高的Mg#(〉92),而新生的岩石圈地幔橄榄岩中的橄榄石则具有较低的Mg#(〈91)。因此,地幔橄榄岩中橄榄石的Mg#在一定程度上具有年龄意义。橄榄岩中橄榄石的Li、Mg和Fe同位素组成也可以明确指示岩石圈地幔的属性及其所经历的演化过程,正常地幔的δ7Li、δ26Mg和δ57Fe组成相对均一,如果上述同位素组成偏离正常地幔值,则说明岩石圈地幔经历了熔体/流体的交代作用。华北克拉通地区地幔橄榄岩捕虏体中橄榄石的Li、Mg和Fe同位素组成研究表明:该区的岩石圈地幔经历了多个阶段、不同来源的熔体/流体的改造过程。  相似文献   

12.
Ultramafic xenoliths from a veined mantle wedge beneath the Kamchatka arc have non-chondritic, fractionated chondrite-normalized platinum-group element (PGE) patterns. Depleted (e.g., low bulk-rock Al2O3 and CaO contents) mantle harzburgites show clear enrichment in the Pd group relative to the Ir group PGEs and, in most samples, Pt relative to Rh and Pd. These PGE signatures most likely reflect multi-stage melting which selectively concentrates Pt in Pt–Fe alloys while strongly depleting the sub-arc mantle wedge in incompatible elements. Elevated gold concentrations and enrichment of strongly incompatible enrichment (e.g., Ba and Th) in some harzburgites suggest a late-stage metasomatism by slab-derived, saline hydrous fluids. Positive Pt, Pd, and Au anomalies coupled with Ir depletions in heavily metasomatized pyroxenite xenoliths probably reflect the relative mobility of the Pd and Ir groups (especially Os) during sub-arc metasomatism which is consistent with Os systematics in arc mantle nodules. Positive correlations between Pt, Pd, and Au and various incompatible elements (Hf, U, Ta, and Sr) also suggest that both slab-derived hydrous fluids and siliceous melts were involved in the sub-arc mantle metasomatism beneath the Kamchatka arc.  相似文献   

13.
Previous studies on iron isotope compositions of subduction zone magmas have revealed significant and complex variations that have great bearings on petrogenetic processes in the mantle wedge, e.g., partial melting, fluid metasomatism and redox state. However, interpretations for the fractionations are highly debatable and lack direct constraints from mantle wedge peridotites. This study presents iron isotope compositions for whole rocks and mineral separates in fresh forearc peridotites from the Yushigou ophiolite, North Qilian orogen in northern Tibet. Major and trace element compositions of whole rock and mineral indicate that the peridotites are highly depleted forearc peridotites overprinted by melt metasomatism, in contrast to the long‐holding opinion that the peridotites are derived from mid‐oceanic ridges. The minerals fall on a line with a slope of ~1 on the plot of δ56Fe vs. δ56Fe, indicating isotope equilibrium between minerals. δ56Fe fractionation between olivine and orthopyroxene is within the range of 0~0.05, while fractionation between olivine and spinel is about 0.05~0.10. The fractionation trend between olivine and spinel is opposite to previous theoretical and experimental constraints, which may be due to substantial Cr substitution into the spinel. This indicates that negative correlations between spinel Cr#, fO2 and spinel δ56Fe in previous studies are probably a reflection of gradual Cr enrichment in spinel during melt extraction, and spinel δ56Fe values are not a proxy for oxygen fugacity. Whole rock δ56Fe values are well correlated with mineral δ56Fe values, varying from overlapping with depleted mantle to slightly lower than depleted mantle. Therefore, variations in iron isotope compositions of subduction zone magmas are probably due to combined effect of source heterogeneity and partial melting fractionation.  相似文献   

14.
Some garnet peridotite nodules from The Thumb, a minette neck on the Colorado Plateau in the southwestern United States, contain zoned minerals. Zoning does not exceed 1.5 wt.% for any oxide, but some relative changes are large: in one garnet TiO2 and Cr2O3 ranges are 0.05–0.65 and 3.5–5.0 wt.%, respectively. In two porphyroclastic nodules, garnet rims are depleted in Mg and enriched in Fe, Ti, and Na compared to cores, and one garnet is irregularly zoned in Ti and Cr. Olivine crystals in these rocks are unzoned, and pyroxene zoning is slight, yet matrix olivine and pyroxene contain more Fe and Ti and less Mg and Cr than inclusions of these phases in garnet. In three coarse nodules, garnet rims are Ti-rich compared to cores, and Ca, Fe, Mg, and Cr zoning patterns are complex. Several nodules appear to have partially equilibrated near 1200° C and 35 kb, and under these conditions cation mobility in pyroxene was greater than in garnet. The zoning partly reflects Fe and Ti metasomatism in the mantle. Calculations indicate that Fe-Mg gradients in garnet could have persisted for only a short time in the mantle, perhaps thousands of years or less, so the metasomatism occurred shortly before eruption. The minette host, a likely source of the Fe and Ti, is rich in light rare earth elements: since the nodules are much poorer in these elements, little or no infiltrated minette was trapped in them. Diffusion is a possible mechanism for nodule metasomatism. Some fertile peridotite nodules from kimberlites may have been affected by similar events. Compositional differences between inclusions in garnet and matrix phases are intriguingly similar to some of the differences between most peridotite inclusions in diamonds and common lherzolite phases.  相似文献   

15.
Phlogopite-amphibole-pyroxenite xenoliths contained in the alkali basic-ultrabasic subvolcanic complex in Langao, Shaanxi Province, are composed of diopside, Ti-rich pargasite, phlogopite apatite, sphene and ilmenite, which have subsolidus metamorphism-deformation textures such as triple-points, cataclastic boundaries and kink-bands. Mineral chemical characteristics show that the diposide, Ti-rich paragasite and phlogopite are derived from the mantle and are the products of mantle metasomatism. Compared with normal mantle-derived spinel-lherzolites, the xenoliths are enriched in TiO2, Fe2O3, CaO, Na2O and K2O, with apparent depletion in MgO. Chondrite-normalized REE patterns and primordial-mantle normalized trace elements data show that they are enriched in REE (especially LREE) and incompatible trace elements. The petrographic, mineralogical and petrochemical characteristics indicate that the xenoliths are metasomatized mantle xenoliths, which offers the evidence for mantle metasomatism and represents the anomalous mantle beneath the Early Paleozoic rift in northern Daba Mountains. The agents of mantle metasomatism are probably derived from the rising of mantle hot plumes. The processes of metasomatism varied from limited-range fluid metasomatism in deep mantle (>90 km) to pervasive metasomatism of silicate melt. This project was financially supported by the National Natural Science Foundation of China (No. 49402035).  相似文献   

16.
Iron isotopes, together with mineral elemental compositions of spinel peridotite xenoliths and clinopyroxenites from Hannuoba and Hebi Cenozoic alkaline basalts, were analyzed to investigate iron isotopic features of the lithospheric mantle beneath the North China Craton. The results show that the Hannuoba spinel peridotite xenoliths have small but distinguishable Fe isotopic variations. Overall variations in δ57Fe are in a range of ?0.25 to 0.14‰ for olivine, ?0.17 to 0.17‰ for orthopyroxene, ?0.21 to 0.27‰ for clinopyroxene, and ?0.16 to 0.26‰ for spinel, respectively. Clinopyroxene has the heaviest iron isotopic ratio and olivine the lightest within individual sample. No clear linear relationships between the mineral pairs on “δ-δ” plot suggest that iron isotopes of mineral separates analyzed have been affected largely by some open system processes. The broadly negative correlations between mineral iron isotopes and metasomatic indexes such as spinel Cr#, (La/Yb)N ratios of clinopyroxenes suggest that iron isotopic variations in different minerals and peridotites were probably produced by mantle metasomatism. The Hebi phlogopite-bearing lherzolite, which is significantly modified by metasomatic events, appears to be much heavier isotopically than clinopyroxene-poor lherzolite. This study further confirms previous conclusions that the lithospheric mantle has distinguishable and heterogeneous iron isotopic variations at the xenoliths scale. Mantle metasomatism is the most likely cause for the iron isotope variations in mantle peridotites.  相似文献   

17.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

18.
邵济安  张聪  路凤香 《地学前缘》2013,20(3):170-179
内蒙古宁城地区发现的尖晶石二辉橄榄岩捕虏体,其寄主岩为早中生代堆晶成因的辉石岩。尖晶石二辉橄榄岩在矿物组成和Sr、Nd、Pb同位素特征等方面区别于寄主辉石岩,具有地幔岩特征。相对原始地幔岩,尖晶石二辉橄榄岩具有Fe高,Mg、Al低,富集K、Na、Ca、LREE和Rb、Sr、Ba、Th等不相容元素的特征,据此可以认为捕虏体来源于交代的富集地幔。对熔/流体交代反应形成的结构及其交代矿物金云母、韭闪石、白云石、方解石的进一步研究,揭示富K、Al、Ca、LREE和不相容元素的硅酸质和碳酸质熔/流体的交代作用致使地幔岩向不断饱满和富集的趋势演化,导致地幔岩Mg#值、Fo值的降低,Al和其他不相容元素的增高。单斜辉石环带原位微量元素测定也证实交代作用的存在。剪切结构的发育可能与软流圈底辟体上涌引发的塑性流变有关。联系华北古老岩石圈地幔多次的地质事件,笔者认为,早中生代地幔的特征与华北克拉通长期以来自身的深部演化有关。  相似文献   

19.
A suite of spinel lherzolite and wehrlite xenoliths from a Devonian kimberlite dyke near Kandalaksha, Kola Peninsula, Russia, has been studied to determine the nature of the lithospheric mantle beneath the northern Baltic Shield. Olivine modal estimates and Fo content in the spinel lherzolite xenoliths reveal that the lithosphere beneath the Archaean–Proterozoic crust has some similarities to Phanerozoic lithospheric mantle elsewhere. Modal metasomatism is indicated by the presence of Ti-rich and Ti-poor phlogopite, pargasite, apatite and picroilmenite in the xenoliths. Wehrlite xenoliths are considered to represent localised high-pressure cumulates from mafic–ultramafic melts trapped within the mantle as veins or lenses. Equilibration temperatures range from 775 to 969 °C for the spinel lherzolite xenoliths and from 817 to 904 °C for the wehrlites.

Laser ablation ICP-MS data for incompatible trace elements in primary clinopyroxenes and metasomatic amphiboles from the spinel lherzolites show moderate levels of LREE enrichment. Replacement clinopyroxenes in the wehrlites are less enriched in LREE but richer in TiO2. Fractional melt modelling for Y and Yb concentrations in clinopyroxenes from the spinel lherzolites indicates 7–8% partial melting of a primitive source. Such a volume of partial melt could be related to the 2.4–2.5 Ga intrusion of basaltic magmas (now metamorphosed to garnet granulites) in the lower crust of the northern Baltic Shield. The lithosphere beneath the Kola Peninsula has undergone several episodes of metasomatism. Both the spinel lherzolites and wehrlites were subjected to an incomplete carbonatitic metasomatic event, probably related to an early carbonatitic phase associated with the 360–380 Ma Devonian alkaline magmatism. This resulted in crystallisation of secondary clinopyroxene rims at the expense of primary orthopyroxenes, with development of secondary forsteritic olivine and apatite. Two separate metasomatic events resulted in the crystallisation of the Ti–Fe-rich amphibole, phlogopite and ilmenite in the wehrlites and the low Ti–Fe amphibole and phlogopite in the spinel lherzolites. Alternatively, a single metasomatic event with a chemically evolving melt may have produced the significant compositional differences seen in the amphibole and phlogopite between the spinel lherzolites and wehrlites. The calculated REE pattern of a melt in equilibrium with clinopyroxenes from a cpx-rich pocket is identical to that of the kimberlite host, indicating a close petrological relationship.  相似文献   


20.
地幔交代作用:研究进展、问题及对策   总被引:2,自引:0,他引:2  
有关地幔交代作用的研究始于70年代早期。近20年来研究工作的贡献是使人们对与地幔演化和不均一性有关的地幔交代作用特征和交代作用机制有了更多的了解,地幔交作用很复杂,它取决于交代作用发生的时间、构造环境、交代介质的种类以及与不同深度地幔内各种地质事件有关的流体的组成。进一步深入开发有关交代作用成因、机制及其与各种地质事件关系的研究,对于深入认识岩石圈地幔的演化和不均一特征具有十分重要的意义。对不同构  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号