首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The sorting of sediment mixtures at the lee slope of deltas (at the angle of repose) is studied with experiments in a narrow, deep flume with subaqueous Gilbert-type deltas using varied flow conditions and different sediment mixtures. Sediment deposition and sorting on the lee slope of the delta is the result of (i) grains falling from suspension that is initiated at the top of the delta, (ii) kinematic sieving on the lee slope, (iii) grainflows, in which protruding large grains are dragged downslope by subsequent grainflows. The result is a fining upward vertical sorting in the delta. Systematic variations in the trend depend on the delta height, the migration celerity of the delta front and the flow conditions above the delta top. The dependence on delta height and migration celerity is explained by the sorting processes in the grainflows, and the dependence on flow conditions above the delta top is explained by suspension of fine sediment and settling on the lee side and toe of the delta. Large differences in sorting trends were found between various sediment mixtures. The relevance of these results with respect to sorting in dunes and bars in rivers and laboratory flumes is discussed and the elements for a future vertical sorting model are suggested.  相似文献   

2.
Large symmetric and asymmetric dunes occur in the Fraser River, Canada. Symmetric dunes have stoss and lee sides of similar length, stoss and lee slope angles <8°, and rounded crests. Asymmetric dunes have superimposed small dunes on stoss sides, sharp crests, stoss sides longer than lee sides, stoss side slopes <3° and straight lee side slopes up to 19°. There is no evidence for lee side flow separation, although intermittent separated flow is possible, especially over asymmetric dunes. Dune symmetry and crest rounding of symmetric dunes are associated with high sediment transport rates. High near-bed velocity and bed load transport near dune crests result in crest rounding. Long, low-angle lee sides are produced by deposition of suspended sediment in dune troughs. Asymmetric dunes appear to be transitional features between large symmetric dunes and smaller dunes adjusted to lower flow velocity and sediment transport conditions. Small dunes on stoss sides reduce near-bed flow velocity and bed load transport, causing a sharper dune crest. Reduced deposition of suspended sediment in troughs results in a short, steep lee slope. Dunes in the Fraser River fall into upper plane bed or antidune stability fields on flume-based bedform phase diagrams. These diagrams are probably not applicable to large dunes in deep natural flows and care must be taken in modelling procedures that use phase diagram relations to predict bed configuration in such flows.  相似文献   

3.
Preliminary results are reported from an experimental study of the interaction between turbulence, sediment transport and bedform dynamics over the transition from dunes to upper stage plane beds. Over the transition, typical dunes changed to humpback dunes (mean velocity 0–8 ms-1, depth 01 m, mean grain size 0.3 mm) to nominally plane beds with low relief bed waves up to a few mm high. All bedforms had a mean length of 0.7–0.8 m. Hot film anemometry and flow visualization clearly show that horizontal and vertical turbulent motions in dune troughs decrease progressively through the transition while horizontal turbulence intensities increase near the bed on dune backs through to a plane bed. Average bedload and suspended load concentrations increase progressively over the transition, and the near-bed transport rate immediately downstream of flow reattachment increases markedly relative to that near dune crests. This relative increase in sediment transport near reattachment appears to be due to suppression of upward directed turbulence by increased sediment concentration, such that velocity close to the bed can increase more quickly downstream of reattachment. Low-relief bedwaves on upper-stage plane beds are ubiquitous and give rise to laterally extensive, mm-thick planar laminae; however, within such laminae are laminae of more limited lateral extent and thickness, related to the turbulent bursting process over the downstream depositional surface of the bedwaves.  相似文献   

4.
River bifurcations strongly control the distribution of water and sediment over a river system. A good understanding of this distribution process is crucial for river management. In this paper, an extensive data set from three large bifurcations in the Dutch Rhine is presented, containing data on bed‐load transport, suspended bed sediment transport, dune development and hydrodynamics. The data show complex variations in sediment transport during discharge waves. The objective of this paper is to examine and explain these measured variations in sediment transport. It is found that bend sorting upstream of the bifurcations leads to supply limitation, particularly in the downstream branch that originates in the outer bend of the main channel. Tidal water level variations lead to cyclical variations in the sediment distribution over the downstream branches. Lags in dune development cause complex hysteresis patterns in flow parameters and sediment transport. All bifurcations show evidence of sediment waves, which probably are intrinsic bifurcation phenomena. The complex transport processes at the three bifurcations cause distinct discontinuities in the downstream fining trend of the river. Differences among the studied river bifurcations are mainly due to differences in sediment mobility (Shields value). Because the variations in sediment transport are complex and poorly correlated with the flow discharge, prediction of the sediment distribution with existing relationships for one‐dimensional models is problematic.  相似文献   

5.
The dynamics of large isolated sand dunes moving across a gravel lag layer were studied in a supply‐limited reach of the River Rhine, Germany. Bed sediments, dune geometry, bedform migration rates and the internal structure of dunes are considered in this paper. Hydrodynamic and sediment transport data are considered in a companion paper. The pebbles and cobbles (D50 of 10 mm) of the flat lag layer are rarely entrained. Dunes consist of well‐sorted medium to coarse sand (D50 of 0·9 mm). Small pebbles move over the dunes by ‘overpassing’, but there is a degree of size and shape selectivity. Populations of ripples in sand (D50 < 0·6 mm), and small and large dunes are separated by distinct breaks in the bedform length data in the regions of 0·7–1 m and 5–10 m. Ripples and small dunes may have sinuous crestlines but primarily exhibit two‐dimensional planforms. In contrast, large dunes are primarily three‐dimensional barchanoid forms. Ripples on the backs of small dunes rarely develop to maximum steepness. Small dunes may achieve an equilibrium geometry, either on the gravel bed or as secondary dunes within the boundary layer on the stoss side of large dunes. Secondary dunes frequently develop a humpback profile as they migrate across the upper stoss slope of large dunes, diminishing in height but increasing in length as they traverse the crestal region. However, secondary dunes more than 5 m in length are rare. The dearth of equilibrium ripples and long secondary dunes is probably related to the limited excursion length available for bedform development on the parent bedforms. Large dunes with lengths between 20 m and 100 m do not approach an equilibrium geometry. A depth limitation rather than a sediment supply limitation is the primary control on dune height; dunes rarely exceed 1 m high in water depths of ≈4 m. Dune celerity increases as a function of the mean flow velocity squared, but this general relationship obscures more subtle morphodynamics. During rising river stage, dunes tend to grow in height owing to crestal accumulation, which slows downstream progression and steepens the dune form. During steady or falling stage, an extended crestal platform develops in association with a rapid downstream migration of the lee side and a reduction in dune height. These diminishing dunes actually increase in unit volume by a process of increased leeside accumulation fed by secondary dunes moving past a stalled stoss toe. A six‐stage model of dune growth and diminution is proposed to explain variations in observed morphology. The model demonstrates how the development of an internal boundary layer and the interaction of the water surface with the crests of these bedload‐dominated dunes can result in dunes characterized by gentle lee sides with weak flow separation. This finding is significant, as other studies of dunes in large rivers have attributed this morphological response to a predominance of suspended load transport.  相似文献   

6.
A 2D depth-averaged model for hydrodynamic sediment transport and river morphological adjustment was established. The sediment transport submodel takes into account the influence of non-uniform sediment with bed surface armoring and considers the impact of secondary flow in the direction of bed-load transport and transverse slope of the river bed. The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution. Comparison of the results obtained by the extended model with experimental and field data, and numerical predictions validate that the proposed model can simulate grain sorting in river bends and duplicate the characteristics of meandering river and its development. The results illustrate that by using its control factors, the improved numerical model can be applied to simulate channel evolution under different scenarios and improve understanding of patterning processes.  相似文献   

7.
Largescale ripples in the meandering lower Wabash River of Illinois and Indiana, U.S.A., include scroll bars and three dunelike bed forms (dunes, sand waves, and transverse bars). Scroll bars are lobate crested, asymmetrical in stream-wise vertical profile, usually solitary, and oriented approximately normal to local channel strike. They form by passive flow expansion downchannel from locally emergent topographic highs, face and lie near inner banks of meander bends, enjoy a high preservation potential as leveelike ridges of ridge-and-swale topography, and migrate only during relatively low stream discharges, when water depth over bar crests is less than 0·5 m. Dunes correspond to dunes of the flow-regime classification and rarely are solitary or superimposed. Sand waves may be symmetrical or asymmetrical, are always superimposed by dunes, occur in depths greater than 4 m and in bed material coarser than 1 mm mean size, and develop at bankfull and flood flows. Transverse bars migrate in depths less than 5 m in straight reaches and near inner banks of bends, display crestal dunes, and correspond to the bars of Costello (1974) and to the sand waves of Boothroyd (1969). Hydrodynamic regimes of scroll bars and transverse bars differ from that of dunes. The omnipresence of dunes upon stoss-sides of sand waves confirms the existence of an equilibrium superimposition of dunelike largescale ripples. Depth-velocity-size diagrams appear to be a valid representation of empirical stability fields of dunelike largescale ripples in deep unsteady nonuniform aqueous flows. Stability fields of dunes and sand waves overlap greatly. Velocity profiles demonstrate an absence of leeside flow separation over dunes and an appearance (rare) over transverse bars only when the ratio of trough depth to crest depth exceeds two. Dune stratification displays (1) largescale trough cross-strata, (2) thinning of sets as bed-material size increases, and (3) an orientation within 20° of local channel strike. Transverse bars show avalanche sets up to 2 m thick, with reactivation surfaces. Scroll bars display thick avalanche sets separated by reactivation structures consisting of erratically oriented smallscale trough cross-strata. Avalanche sets of scroll bars and of transverse bars are oriented 50–150° from and within 50° of, respectively, local channel strike.  相似文献   

8.
Sediment ripples are caused by systematically-spaced transverse roller vortex systems in a moving fluid undergoing shear. With greater shear, these transverse rollers change over into longitudinal (helicoidal) vortices. This is the basic cause for the change from so-called ‘lower flow regime’ conditions to ‘upper flow regime’ conditions. All characteristics of these two regimes (sediment transport rate, bed form, sedimentary structures) are logically explained by attributing them to change in type of vortex system. For currents depositing sediments, there are three orders of magnitude of vortices, each order beginning with transverse rollers, passing through festoon to longitudinal rollers. A chaos zone (antidunes) ensues, followed by resumption of transverse rollers that are five to ten times as large as those in the previous order. Features of river sediments, marine sands, turbidites, desert sand dunes, sky, and stars are satisfactorily explained by this model.  相似文献   

9.
在弯道水槽中展开系列试验,研究水力冲刷过程中非粘性岸坡冲刷崩塌与河床冲淤交互作用过程及其影响因素,进一步分析塌岸淤床泥沙贡献率。试验成果表明,水流冲刷过程中岸坡破坏是水流淘刷岸坡坡脚、岸坡崩塌及崩塌体淤积坡脚并在河床上输移掺混的交互作用反复循环过程。塌岸淤床模式及掺混程度与近岸流速、主流贴岸程度、水位及河床边界条件等关系密切。近岸流速越大、水位越高,岸坡总冲刷坍塌量、河床总淤积量以及河床累计淤积率也越大,稳定后的岸坡越趋平缓;河床可动程度越大,岸坡总冲刷坍塌量及其在河床上的总淤积量也越大,但河床累计淤积率却越小;水位越高,在弯道段等横向输沙强度较大的地方,岸坡冲刷崩塌体与河床发生掺混的程度也越大。  相似文献   

10.
《Sedimentary Geology》2006,183(3-4):159-179
In the macrotidal Severn estuary, UK, the dynamics of intertidal fine-gravel dunes were investigated. These dunes are migrating across a bedrock platform. Systematic observations were made of hydraulic climate, geometry, migration rates and internal sedimentary structures of the dunes. During spring tides, the ebb flow is dominant, dunes grow in height and have ebb orientated geometry with bedrock floors in the troughs. During neap tides, a weak flood flow may dominate. Dunes then are flood orientated or symmetrical. Neap dune heights decrease and the eroded sediment is stored in the dune troughs where the bedrock becomes blanketed by muddy gravel. During spring tides, instantaneous bed shear stresses reach 8 N m 2, sufficient to disrupt a 9 mm-gravel armour layer. However, a sustained bed shear stress of 4 N m 2 is required to initiate dune migration at which time the critical depth-mean velocity is 1 m s 1. Ebb and flood inequalities in the bed shear stress explain the changes in dune asymmetry and internal structures. During flood tides, the crests of the dunes reverse such that very mobile sedimentary ‘caps’ overlie a more stable dune ‘core’. Because ebb tides dominate, internal structures of the caps often are characterised by ebb orientated steep open-work foresets developed by strong tidal currents and some lower angle crossbeds deposited as weaker currents degrade foresets. The foresets forming the caps may be grouped into cosets (tidal bundles) and are separated from mud-infused cores of crossbeds that lie below, by reactivation and erosion surfaces blanketed by discontinuous mud drapes. The cores often exhibit distinctive muddy toe sets that define the spacing of tidal cosets.  相似文献   

11.
低坡度基岩弯曲河流在地质构造控制区域广泛存在(床面坡度小于5‰),洪水对基岩弯曲河流的河床淤积与侵蚀具有较大影响,但以往研究对基岩弯曲河流的洪水动力结构认识不足。通过几何概化基岩弯曲河段,考虑Froude相似与边壁粗糙,建立基岩弯曲河道概化模型,分析洪水下的弯道水面线分布、时均流场与湍流结构特性。结果表明:在洪水流量下,弯顶上游出现最小水面横比降、凸岸水流分离、凹岸双环流发育、流速下潜且二次环流强度达到最大,在弯顶下游水面横比降达到最大并出现环流分裂;床面切应力分布于凸岸水流分离以及弯顶上游中心区域,横向动量输移集中于弯顶上游。试验结果为基岩弯曲河道中的床面侵蚀与沿程淤积提供了水动力方面的解释。  相似文献   

12.
Bedform climbing in theory and nature   总被引:7,自引:0,他引:7  
Where bedforms migrate during deposition, they move upward (climb) with respect to the generalized sediment surface. Sediment deposited on each lee slope and not eroded during the passage of a following trough is left behind as a cross-stratified bed. Because sediment is thus transferred from bedforms to underlying strata, bedforms must decrease in cross-sectional area or in number, or both, unless sediment lost from bedforms during deposition is replaced with sediment transported from outside the depositional area. Where sediment is transported solely by downcurrent migration of two-dimensional bedforms, the mean thickness of cross-stratified beds is equal to the decrease in bedform cross-sectional area divided by the migration distance over which that size decrease occurs; where bedforms migrate more than one spacing while depositing cross-strata, bed thickness is only a fraction of bedform height. Equations that describe this depositional process explain the downcurrent decrease in size of tidal sand waves in St Andrew Bay, Florida, and the downwind decrease in size of transverse aeolian dunes on the Oregon coast. Using the same concepts, dunes that deposited the Navajo, De Chelly, and Entrada Sandstones are calculated to have had mean heights between several tens and several hundreds of metres.  相似文献   

13.
ABSTRACT There are very few field measurements of nearshore bedforms and grain‐size distribution on low‐energy microtidal beaches that experience low‐amplitude, long‐period waves. Field observations are needed to determine grain‐size distribution over nearshore bedforms, which may be important for understanding the mechanisms responsible for ripple development and migration. Additional nearshore field observations of ripple geometry are needed to test predictive models of ripple geometry. Ripple height, length and sediment composition were measured in the nearshore of several low‐energy beaches with concurrent measurements of incident waves. The distribution of sediment sizes over individual ripples was investigated, and the performance of several models of ripple geometry prediction was tested both spatially and temporally. Sediment samples were collected from the crest and trough of 164 ripples. The sand‐sized sediment was separated from the small amount (generally <3%) of coarser material (>2 mm) that was present. Within the sand‐sized fraction, the ripple crests were found to be significantly coarser, better sorted and more positively skewed than the troughs. Overall, the troughs were finer than the crests but contained a greater proportion of the small fraction of sediment larger than 2 mm. The field model of Nielsen (1981 ) and the model of Wiberg & Harris (1994 ) were found to be the most accurate models for predicting the wavelength of parallel ripples in the nearshore of the low‐energy microtidal environments surveyed. The Wiberg & Harris (1994 ) model was also the most accurate model for predicting ripple height. Temporal changes in ripple wavelength appear to be dependent on the morphological history of the bed.  相似文献   

14.
Coarse-gravel bedforms which resulted from Pleistocene glacial outburst floods are identified as subaqueous dunes. Comparison of the morphology of these ‘fossil’ structures with modern dunes shows that the form of two-dimensional (2-D) transverse dunes and 3-D cuspate and lunate dunes developed in coarse gravels is comparable with sand-dune morphology within lesser-scale geophysical flows. The similarity of the steepest gravel dunes with equilibrium dunes in sand indicates that grain size is not a major factor in constraining primary duneform. Internal structure indicates that flow over 2-D dunes was relatively uniform but over 3-D bedforms flow was locally variable. Flow separation and complex streaming of flow occurred over the steepest 3-D dunes. Cross-beds are thin and few approach the angle of repose; consequently most dunes did not migrate primarily by avalanching but by stoss-entrained gravel transported over the crests rolling-down and depositing on the lee slopes. Lee-side sediments are often finer than the stoss-slope sediments, which indicates the lee formed when flood power was waning. Some dunes were slightly planed-down during falling stage because lee-side cross-beds tend to be steeper than the angle of the preserved lee slope. However, silt-rich caps indicate that any height reduction was contemporary with the final deposition of foresets. Post-flood modification has been negligible although the modern topography is subdued by loess deposits within the dune troughs.  相似文献   

15.
An empirical model of aeolian dune lee-face airflow   总被引:12,自引:0,他引:12  
Airflow data, gathered over dunes ranging from 60-m tall complex-crescentic dunes to 2-m tall simplecrescentic dunes, were used to develop an empirical model of dune lee-face airflow for straight-crested dunes. The nature of lee-face flow varies and was found to be controlled by the interaction of at least three factors (dune shape, the incidence angle between the primary wind direction and the dune brinkline and atmospheric thermal stability). Three types of lee-face flow (separated, attached and deflected along slope, or attached and undeflected) were found to occur. Separated flows, characterized by a zone of low-speed (0–3O% of crestal speed) back-eddy flow, typically occur leeward of steep-sided dunes in transverse flow conditions. Unstable atmospheric thermal stability also favours flow separation. Attached flows, characterized by higher flow speeds (up to 84% of crestal speed) that are a cosine function of the incidence angle, typically occur leeward of dunes that have a lower average lee slope and are subject to oblique flow conditions. Depending on the slope of the lee face, attached flow may be either deflected along slope (lee slopes greater than about 20°), or have the same direction as the primary flow (lee slopes less than about 20°). Neutral atmospheric thermal stability also favours flow attachment. As each of the three types of lee-face flow is defined by a range of wind speeds and directions, the nature of lee-face flow is intimately tied to the type of aeolian depositional process (i.e. wind ripple or superimposed dune migration, grainflow, or grainfall) that occurs on the lee slope and the resulting pattern of dune deposits. Therefore, the model presented in this paper can be used to enhance the interpretation of palaeowind regime and dune type from aeolian cross-strata.  相似文献   

16.
Rippled flanks of longitudinal dunes and the slip faces of various dune types can be distinguished granulometrically by comparing the top to bottom trend of changes of sorting in the sand population of each individual slope. Flank sands, which are prone to sorting processes through migration of ripples alongslope, are always better sorted upslope whereas slipface sands, which are controlled by avalanche and grainfall of sands, become better sorted downslope. Considering the absolute values of the bottom samples, the sands of the slip faces are both better sorted and the size distribution more symmetrical than those of the rippled flanks. Applying this approach in investigating ancient sediments could improve palaeogeographical interpretations.  相似文献   

17.
18.
A distinct suite of sand bedforms has been observed to occur in laboratory flows with limited sand supply. As sand supply to the bed progressively increases one observes sand ribbons, discrete barchans and, eventually, channel spanning dunes; but there are relatively few observations of this sequence from natural river channels. Furthermore, there are few observations of transitions from limited sand supply to abundant supply in the field. Bedforms developed under limited, but increasing, sand supply downstream of the abrupt gravel–sand transition in the Fraser River, British Columbia, are examined using multi‐beam swath‐bathymetry obtained at high flow. This is an ideal location to study supply‐limited bedforms because, due to a break in river slope, sand transitions from washload upstream of the gravel–sand transition to bed material load downstream. Immediately downstream, barchanoid and isolated dunes are observed. Most of the bedform field has gaps in the troughs, consistent with sand moving over a flat immobile or weakly mobile gravel bed. Linear, alongstream bedform fields (trains of transverse dunes formed on locally thick, linear deposits of sand) exhibit characteristics of sand ribbons with superimposed bedforms. Further downstream, channel spanning dunes develop where the bed is composed entirely of sand. Depth scaling of the dunes does not emerge in this data set. Only where the channel has accumulated abundant sand on the bed do the dunes exhibit scaling congruent with previous data compilations. The observations suggest that sediment supply plays an important, but often overlooked, role in bedform scaling in rivers.  相似文献   

19.
The geometry and kinematics of river dunes were studied in a reach of the Calamus River, Nebraska. During day-long surveys, dune height, length, steepness, migration rate, creation and destruction were measured concurrently with bedload transport rate, flow depth, flow velocity and bed shear stress. Within a survey, individual dune heights, lengths and migration rates were highly variable, associated with their three-dimensional geometry and changes in their shape through time. Notwithstanding this variability, there were discernible changes in mean dune height, length and migration rate in response to changing discharge over several days. Changes in mean dune height and length lagged only slightly behind changes in discharge. Therefore, during periods of both steady and unsteady flow, mean dune lengths were quite close to equilibrium values predicted by theoretical models. Mean dune steepnesses were also similar to predicted equilibrium values, except during high, falling flows when the steepness was above that predicted. Variations in mean dune height and length with discharge are similar to those predicted by theory under conditions of low mean dune excursion and discharge variation with a short high water period and long low water period. However, the calculated rates of change of height of individual dunes vary considerably from those measured. Rates of dune creation and destruction were unrelated to discharge variations, contrary to previous results. Instead, creations and destructions were apparently the result of local variations in bed shear stress and sediment transport rate. Observed changes in dune height during unsteady flows agree with theory fairly well at low bed shear stresses, but not at higher bed shear stresses when suspended sediment transport is significant.  相似文献   

20.
The dynamics of a river bend: a study in flow and sedimentary processes   总被引:4,自引:0,他引:4  
Comprehensive field measurements of flow and sedimentary processes have been made with the aid of stable scaffolding bridges spaced along the length of a bend of the River South Esk, Scotland. At river stages between about two-thirds full and bankfull, channel width, mean depth and mean flow velocity at a cross-section vary little in the streamwise direction. Flow resistance reaches a maximum at these stages, and the bed topography is stable and in equilibrium with flow and bedload transport. Stable flow geometry is thus related in some way to energy conservation, and to maximization of flow resistance. Detailed observations over a large range of river stages of mean velocity distributions, secondary circulation, water surface configuration, bed shear stress and resistance to flow, bed configurations and bed load transport rates agree with much (but not all) of the comparable published experimental studies and selected theoretical work. Generalized physical models of flow and sediment transport in natural curved channels (Engelund, 1974; Bridge, 1977) are demonstrated to be sound in basis and can simulate the bend studied very well. Although there is a pressing need for further development of these models, the results lend confidence to their use in simulating ancient river sedimentation. Sediment deposited on point bars is the result mainly of bedload transport over a range of near-bankfull stages. The areal distribution of grain-size characteristics and bed configurations at these stages give rise, with lateral deposition, to vertical facies sequences that vary substantially in the streamwise direction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号