首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Groundwater samples from boreholes and springs in the unconfined Chalk aquifer of Cambridgeshire were analysed for N2O and other N species on a monthly basis between March 1995 and February 1996. Land use in the study area is devoted to intensive arable farming supported by the application of N-based fertilisers. All groundwater samples were strongly oversaturated with N2O, with concentrations ranging from 13 to 320 times the saturation concentration with respect to air-equilibrated water.A very good positive correlation between N2O and NO3 concentrations was obtained (r2=0.80), but no relationship was established between N2O and NO2 or NH4 concentrations. Concentrations of N2O and NO3 increased continuously in the direction of groundwater flow, with molar net gain ratios of NO3 to N2O varying between 204 and 410. These ratios are within the range reported in previous studies of nitrification. Corresponding dissolved O2 levels in groundwater samples were moderately undersaturated, further indicating that the main source of N2O in Chalk groundwater in Cambridgeshire is probably nitrification. No consumption of N2O seems to take place within the unconfined aquifer with degassing to the atmosphere apparently being the sole mechanism for N2O removal from groundwater.An estimated N2O flux of around 0.05 kg N2O ha−1 a−1 from the sampled groundwater discharge points to the atmosphere was calculated for the study area. This figure is likely to be much higher, since it does not account for diffuse N2O emissions from groundwater seepage areas or any degassing from the unconfined aquifer through the unsaturated zone. Both these processes will contribute substantially to the total aerial flux, thus suggesting that groundwater may be a significant contributor to the global N2O budget.  相似文献   

2.
Anaerobic incubations of upland and wetland temperate forest soils from the same watershed were conducted under different moisture and temperature conditions. Rates of nitrous oxide (N2O) production by denitrification of nitrate () and the stable isotopic composition of the N2O (δ15N, δ18O) were measured. In all soils, N2O production increased with elevated temperature and soil moisture. At each temperature and moisture level, the rate of N2O production in the wetland soil was greater than in the upland soil. The 15N isotope effect (ε) (product − substrate) ranged from −20‰ to −29‰. These results are consistent with other published estimates of 15N fractionation from both single species culture experiments and soil incubation studies from different ecosystems.A series of incubations were conducted with 18O-enriched water (H2O) to determine if significant oxygen exchange (O-exchange) occurred between H2O and N2O precursors during denitrification. The exchange of H2O-O with nitrite () and/or nitric oxide (NO) oxygen has been documented in single organism culture studies but has not been demonstrated in soils prior to this study. The fraction of N2O-O derived from H2O-O was confined to a strikingly narrow range that differed between soil types. H2O-O incorporation into N2O produced from upland and wetland soils was 86% to 94% and 64% to 70%, respectively. Neither the temperature, soil moisture, nor the rate of N2O production influenced the magnitude of O-exchange. With the exception of one treatment, the net 18O isotope effect (εnet) (product-substrate) ranged from +37‰ to +43‰.Most previous studies that have reported 18O isotope effects for denitrification of to N2O have failed to account for the effect of oxygen exchange with H2O. When high amounts of O-exchange occur after fractionation during reductive O-loss, the 18O-enrichment is effectively lost or diminished and δ18O-N2O values will be largely dictated by δ18O-H2O values and subsequent fractionation. The process and extent of O-exchange, combined with the magnitude of oxygen isotope fractionation at each reduction step, appear to be the dominant controls on the observed oxygen isotope effect. In these experiments, significant oxygen isotope fractionation was observed to occur after the majority of water O-exchange. Due to the importance of O-exchange, the net oxygen isotope effect for N2O production in soils can only be determined using δ18O-H2O addition experiments with δ18O-H2O close to natural abundance.The results of this study support the continued use of δ15N-N2O analysis to fingerprint N2O produced from the denitrification of . The utilization of 18O/16O ratios of N2O to study N2O production pathways in soil environments is complicated by oxygen exchange with water, which is not usually quantified in field studies. The oxygen isotope fractionation observed in this study was confined to a narrow range, and there was a clear difference in water O-exchange between soil types regardless of temperature, soil moisture, and N2O production rate. This suggests that 18O/16O ratios of N2O may be useful in characterizing the actively denitrifying microbial community.  相似文献   

3.
Nitrous oxide supersaturation was measured in the Bothnian Bay, Bothnian Sea and four depth zones of the Baltic proper along with O2, NO?3, NO?2 and other parameters useful in interpreting the sources of the N2O. In the Baltic Sea supersaturation of N2O (123%) was found in the surface water of 0 to 0.5 m. The supersaturation resulted in a flux of N2O to the atmosphere of 2.8 × 10?2Tg N · yr?1 which was 5% of the estimated total nitrogen loss for the Baltic. For the entire photic zone (0 to 20 m) the N2O saturation was 135%. The source of the N2O is not clear, as the nitrification and denitrification were ruled out as sources. The N2O saturation was the lowest (118%) in the intermediate zone. Nitrification appears to be the likely N2O sorce in this region. At the halocline zone, an increasing oversaturation of N2O (200 to 300%) correlated with decreasing O2 concentrations and increasing NO?3 concentrations, indications of nitrification. Of the NH+4 that was oxidized to NO?3, 0.56% was produced as N2O. In the deep water zone, the supersaturation of N2O remained very high (150 to 200%). Sufficient O2, high NO?3 and the presence of nitrifying activity suggested nitrification as most likely source, however in deeper waters of this zone where oxygen was less than 2% saturation the N2O production could be due to denitrification. In anoxic waters the N2O concentrations rapidly decreased to zero suggesting N2O consumption by denitrification, further evidenced by a developing nitrate anomaly.  相似文献   

4.
Identifying the origin of nitrate is important for the control and management of groundwater quality in aquifer systems. In the southern Apennines (Italy), the Mount Vulture volcanic aquifer is a large and valuable resource of potable and mineral water supply. Unfortunately, signs of anthropogenic impact, especially nitrogen contamination, have recently become evident. In this study, and for the first time, stable isotope ratios (δ15N and δ18O) of NO3 ? were determined in groundwater to identify their origins and evaluate the presence of transformation processes. The Mount Vulture groundwaters are meteoric in origin, as demonstrated by measurements of δD and δ18O, and can be divided into two distinct areas based on their NO3 ? content. In the southeastern area, characterized by active agricultural land use, the high NO3 ? content and the δ15N–NO3 isotopic values are due to anthropogenic contamination (inorganic fertilizer). In groundwaters from the western area, the NO3 ? contents below 4 mg/L and the δ15N–NO3 values can be associated at organic soil N. Evidence for local denitrification may be assumed in a few groundwater samples of the western area showing relatively heavy δ15N values and low concentrations of nitrate. Finally, the low measured δ18O values indicate that nitrification occurred in both investigated areas.  相似文献   

5.
The stable isotope nitrogen-15 (15N) is a robust indicator of nitrogen (N) source, and the joint use of δ15N and δ18O–NO3 ? values can provide more useful information about nitrate source discrimination and N cycle process. The δ15N and δ18O–NO3 ? values, as well as major ion tracers, from Taihu Lake in east China were investigated to identify the primary nitrate sources and assess nitrate biogeochemical process in the present study. The results show that the nitrate concentration in West Taihu Lake (WTL) was generally higher than those in East Taihu Lake (ETL) and its upstream inflow rivers. The NO3 ?/Cl? value combined with mapping of δ15N–NO3 ? and NO3 ? concentration suggest that the mixing process should play a major effect in WTL, and denitrification was the dominant N transformation process in WTL. A linear relationship of close to ~1: 2 was observed between δ15N–NO3 ? and δ18O–NO3 ? values in WTL, confirming the occurrence of denitrification in WTL. The δ15N–NO3 ? data imply that sewage and manure were the principal nitrate sources in WTL and its feeder rivers, while the nitrate in ETL might derive from soil organic nitrogen and atmospheric deposition. The δ18O–NO3 ? data indicate most of nitrate from microbial nitrification of organic nitrogen matter possibly make a significant contribution to the lake.  相似文献   

6.
The respiratory reduction of nitrate (denitrification) is acknowledged as the most important process that converts biologically available nitrogen to gaseous dinitrogen (N2) in marine ecosystems. Recent findings, however, indicate that anaerobic ammonium oxidation by nitrite (anammox) may be an important pathway for N2 formation and N removal in coastal marine sediments and in anoxic water columns of the oceans. In the present study, we explored this novel mechanism during N mineralization by 15N amendments (single and coupled additions of 15NH4+, 14NO3 and 15NO3) to surface sediments with a wide range of characteristics and overall reactivity. Patterns of 29/30N2 production in the pore water during closed sediment incubations demonstrated anammox at all 7 of the investigated sites. Stoichiometric calculations revealed that 4% to 79% of total N2 production was due to this novel route. The relative importance of anammox for N2 release was inversely correlated with remineralized solute production, benthic O2 consumption, and surface sediment Chl a. The observed correlations indicate competition between reductants for pore water nitrite during early diagenesis and that additional factors (e.g. availability of Mn-oxides), superimposed on overall patterns of diagenetic activity, are important for determining absolute and relative rates of anammox in coastal marine sediments.  相似文献   

7.
The Silurian bedrock aquifer constitutes a major aquifer system for groundwater supply across the Ontario province in Canada. The application of natural and industrial fertilizers near urban centers has led to groundwater NO3-N concentrations that sometimes have exceeded the drinking water limit, posing a threat to the usage of groundwater for the human consumption. Therefore, there is a growing interest and concern about how nitrate is being leached, transported and potentially attenuated in bedrock aquifers. This study assesses the local distribution of groundwater NO3 in the up-gradient area of two historically impacted municipal wells, called Carter Wells, in the City of Guelph, Canada, in order to evaluate the potential nitrate attenuation mechanisms, using both groundwater geochemical and isotopic analysis (3H, δ15N-NO3, δ18O-NO3, δ18O-SO4, δ34S-SO4) and a detailed vertical hydrogeological and geochemical bedrock characterization. The results indicate that probably the main source of nitrate to the Carter Wells is the up-gradient Arkell Research Station (ARS), an agricultural research facility where manure has been historically applied. The overburden and bedrock groundwater with high NO3 concentrations at the ARS exhibits a manure-related δ15N and δ18O signature, isotopically similar to the high nitrate in the down-gradient groundwater from domestic wells and from the Carter Wells. The nitrate spatial distribution appears to be influenced and controlled by the geology, in which more permeable rock is found in the Guelph Formation which in turn is related to most of the high NO3 groundwater. The presence of an underlying low permeability Eramosa Formation favors the development of oxygen-depleted conditions, a key factor for the occurrence of denitrification. Groundwater with low NO3-N concentrations associated with more oxygen-limited conditions and coincident with high SO42− concentrations are related to more enriched δ15N and δ18O values in NO3 and to more depleted δ34S and δ18O values in SO42−, suggesting that denitrification coupled with pyrite oxidation is taking place. The presence of macro crystalized and disseminated pyrite especially in the Eramosa Formation, can support the occurrence of this attenuation process. Moreover, based on tritium analysis, some denitrification can occur in shallow bedrock and within relatively short residence times, associated with less permeable conditions in depth which facilitates oxygen consumption through sulfide oxidation. The role of denitrification mediated by organic carbon cannot be discarded at the study site. This study suggests that the geological configuration and particularly the presence of low permeability Eramosa Formation can play an important role on nitrate natural attenuation, which may serve as a decision factor on defining the bedrock water supply system for both domestic and municipal purposes.  相似文献   

8.
Dual isotopic analysis of nitrate (15N/14N and 18O/16O) is increasingly used to investigate the environmental impacts of human-induced elevated atmospheric nitrate deposition. In forested ecosystems, the nitrate found in surface water and groundwater can originate from two sources: (1) atmospheric deposition, and (2) nitrate produced from nitrification in forest soils (microbial nitrate). Application of the dual nitrate isotope technique for determining the relative importance of nitrate sources in forested catchments requires knowledge of the isotopic composition of microbial nitrate. We excluded precipitation inputs to three zero-tension lysimeters installed below the F-horizon (Oe) at the Turkey Lakes Watershed (TLW) in order to measure the isotopic composition of microbial nitrate produced in situ. To our knowledge, this is the first in situ study of the isotopic composition of microbial nitrate in forest soils. Over a 2-week period, nitrate produced by nitrification was periodically flushed to the lysimeters by watering the area with a nitrogen-free solution. Nitrate produced in the forest floor had δ18O values ranging from +3.1‰ to +10.1‰ with a mean of +5.2‰. These values were only slightly higher than from the expected value of +1.0‰ calculated for chemolithoautotrophic nitrification, which depends on the δ18O of available O2 and H2O. In addition to nitrate, we also collected soil gas to determine if soil respiration and O2 diffusion affected soil gas δ18O-O2, which is typically assumed to be identical to atmospheric O2 (+23.5‰) when calculating microbial nitrate δ18O values. No significant difference in δ18O-O2 from atmospheric O2 was found in forest soils to a depth of 55 cm, and therefore 18O-enrichment of soil gas O2 could not explain the modest enrichment of nitrate 18O. Evaporative 18O-enrichment of soil water available to nitrifiers in the forest floor is a plausible mechanism for slightly elevated nitrate δ18O values. However, the observed nitrate δ18O values could also be explained by a minor contribution of nitrate from heterotrophic nitrifiers. The δ15N of nitrate produced ranged from −10.4 to −7.3‰ and, as expected, was depleted in 15N relative to soil organic nitrogen. Microbial nitrate produced in the forest floor was also significantly depleted in 15N relative to microbial nitrate exported in groundwater and headwater streams at the TLW. We hypothesize that 15N-depleted forest floor nitrate is not detected in groundwaters largely because of: (1) the immobilization of forest floor nitrate in the mineral soil and (2) the mixing of the remaining forest floor nitrate with nitrate generated in the mineral soil, which is expected to have higher δ15N values. This study demonstrates that current methods of calculating a priori the δ18O of microbial nitrate provide a reasonable value for nitrate produced by nitrification at the TLW.  相似文献   

9.
Biologically available nitrogen (fixed N) is removed from the oceans by metabolic conversion of inorganic N forms (nitrate and ammonium) to N2 gas. Much of this removal occurs in marine sediments, where reaction rates are thought to be limited by diffusion. We measured the concentration and isotopic composition of major dissolved nitrogen species in anoxic sediments off the coast of California. At depths below the diffusive penetration of nitrate, we found evidence of a large nitrate pool transported into the sediments by motile microorganisms. A ∼20‰ enrichment in 15N and 18O of this biologically transported nitrate over bottom water values and elevated [N2] and δ15N-N2 at depth indicate that this nitrate is consumed by enzymatic redox reactions with the production of N2 as the end product. Elevated N2O concentrations in pore waters below the nitrate diffusion depth confirm that these reactions include the denitrification pathway. A data-constrained model shows that at least 31% of the total N2 production in anoxic sediments is linked to nitrate bio-transport. Under suboxic/anoxic regimes, this nitrate bio-transport augments diffusive transport, thus increasing benthic fixed nitrogen losses and the reducing burial efficiency of sedimentary organic matter.  相似文献   

10.
Ammonia (NH3) is the major intermediate phase in the pathway of nitrogen (N) transfer from the fixed N phases (e.g., in crustal material) to free N2 (e.g., in natural gas reservoirs and volcanic gases). Yet the N isotopic behavior during these N-cycling processes remains poorly known. In an attempt to contribute to the understanding of N cycling using N isotopes, we carried out laboratory experiments to investigate the N isotopic effect associated with thermal decomposition of ammonia (2NH3 → N2 + 3H2). Pure NH3 (with initial δ15NNH3 of ∼ −2‰, relative to air standard) was sealed into quartz tubes and thermally decomposed at 600, 700 or 800 °C from 2 hours to 500 days. With the progress of the reaction, the δ15N of the remaining NH3 and the accumulated N2 increased from −2 to +35‰ and from −20 to −2‰, respectively. The differences of the N-isotope fractionations at the three temperatures are not significant. Modeling using the Rayleigh distillation model yielded similar kinetic N-isotope fractionation factors (αN2-NH3) of 0.983 ± 0.002 for 600, 700 and 800 °C. Applied to geological settings, this significant isotope discrimination (∼17‰) associated with partial decomposition of NH3/NH4+ from crustal sources (δ15Naverage ∼ +6.3‰) can produce mantle-like (i.e. ∼ −5‰) or even lower δ15N values of N2. This may explain the large variation of δ15N (−20 to +30‰) of N2 in natural gas reservoirs. It can also possibly explain the extreme 15N-depletion of N2 in some volcanic gases. This possibility has to be carefully considered when using N isotopes to trace geological N cycling across subduction zones by analysis of volcanic N2.  相似文献   

11.
Constructed wetlands (CWs) are considered important sources of nitrous oxide (N2O). Various reports in the literature indicate that CWs have high N2O emission rates. The release of N2O from CWs treating wastewater emissions range from ?16.7 to 188 mg N2O m?2day?1. N2O in CWs is produced mainly by nitrification, denitrification, nitrifier denitrification, and nitrate-ammonification. Denitrification is considered the major source of N2O under most conditions. In recent years, two main methods of sampling N2O gas in CWs have been employed, including the headspace equilibration technique and the closed static chambers technique. N2O emission may be affected by various operating parameters and environmental conditions. One of the main environmental factors affecting the removal of nitrogen in CWs is dissolved oxygen, which affects nitrification and denitrification processes, thus greatly influencing N2O emission. CW gas dynamics is affected mainly by season and weather conditions, especially temperature and moisture. Aquatic plants, flow regime, oxidation–reduction potential, nitrate concentration, C/N ratio and other factors can affect N2O emission in CWs.  相似文献   

12.
A floodplain aquifer within an agricultural watershed near Madison, Wisconsin (USA), was studied to determine whether denitrification was occurring below the surface organic layer. Groundwater levels and concentrations of O2, Cl?, NO 3 ? , SO 4 2? , dissolved organic carbon (DOC), and major cations were monitored over a 1-year period along a 230-m transect between an agricultural field and a stream discharge point. Seventeen groundwater samples were analyzed for δ15NNO3 and δ18ONO3 composition. Samples in which NO 3 ? was too low for stable isotope analysis were analyzed for excess dissolved N2. Groundwater NO 3 ? concentrations declined between the agricultural field and the discharge point. Chloride and δ15NNO318ONO3 data indicated that the drop in NO 3 ? was caused primarily by dilution of shallow NO 3 ? -rich water with deeper, NO 3 ? -depleted groundwater. Two localized zones of denitrification were identified in the upland-wetland transition by their δ15NNO3 and δ18ONO3 signatures, and two in the stream hyporheic zone by the presence of excess dissolved N2. The combined stratigraphic, hydrologic, and geochemical data in these locations correspond to groundwater mixing zones where NO 3 ? is delivered to subsurface layers that support denitrification fueled by dissolved (e.g. DOC or dissolved Fe(II)) and/or solid-phase (e.g. particulate organic carbon, solid-associated Fe(II), or pyrite) electron donors.  相似文献   

13.
The extent of denitrification in a small agricultural area near a river in Yangpyeong, South Korea, was determined using multiple isotopes, groundwater age, and physicochemical data for groundwater. The shallow groundwater at one monitoring site had high concentrations of NO3-N (74–83 mg L?1). The δ15N-NO3 values for groundwater in the study area ranged between +9.1 and +24.6‰ in June 2014 and +12.2 to +21.6‰ in October 2014. High δ15N-NO3 values (+10.7 to +12.5‰) in both sampling periods indicated that the high concentrations of nitrate in the groundwater originated from application of organic fertilizers and manure. In the northern part of the study area, some groundwater samples showed elevated δ15N-NO3 and δ18O-NO3 values, which suggest that nitrate was removed from the groundwater via denitrification, with N isotope enrichment factors ranging between ?4.8 and ?7.9‰ and O isotope enrichment factors varying between ?3.8 and ?4.9‰. Similar δD and δ18O values of the surface water and groundwater in the south appear to indicate that groundwater in that area was affected by surface-water infiltration. The mean residence times (MRTs) of groundwater showed younger ages in the south (10–20 years) than in the north (20–30 years). Hence, it was concluded that denitrification processes under anaerobic conditions with longer groundwater MRT in the northern part of the study area removed considerable amounts of nitrate. This study demonstrates that multi-isotope data combined with physicochemical data and age-dating information can be effectively applied to characterize nitrate contaminant sources and attenuation processes.  相似文献   

14.
《Applied Geochemistry》2004,19(5):709-719
The potential for exploitation of urban aquifers is partly dependent on understanding the distribution and fate of urban N sources, such as sewage and fertilisers, that can limit the use of groundwater for public supplies. To investigate the application of the dual-isotope approach to understanding the N hydrochemistry of urban groundwater, this paper presents δ15N–NO3 and δ18O–NO3 data collected from two multi-level piezometers in the Sherwood sandstone aquifer beneath Nottingham in the English Midlands, UK. At one multi-level piezometer (Old Basford), depth sample measurements of δ15N–NO3 in the range +9.2 to +11.4 ‰ and δ18O–NO3 in the range +8.2 to +10.9‰, together with NO3 nitrate concentrations from 31.7 to 66.7 mg/l, are evidence for nitrification of sewage-derived inputs. In contrast, at the other multi-level piezometer (the Meadows), isotopically enriched samples (δ15N–NO3 in the range +24.3 to +42.2 ‰ and δ18O–NO3 in the range +20.5 to +29.4‰) are evidence for denitrification, although the compositional range of δ15N–NO3 does not identify the N source without corroborating data. For the Meadows location, a cross-plot of δ15N–NO3 versus δ18O–NO3 gave an enrichment of the 15N isotope relative to the 18O isotope by a factor of 1.9, within the range of 1.3–2.1 reported for denitrification in other studies. This study has shown that the dual-isotope approach provides improved understanding of N sources and fate in the urban environment but further work is required to identify nitrification pathways to provide more confidence in the application and interpretation of δ18O–NO3 measurements.  相似文献   

15.
The quality of water in the Upper Floridan aquifer near Valdosta, Georgia is affected locally by discharge of Withlacoochee River water through sinkholes in the river bed. Data on transient tracers and other dissolved substances, including Cl, 3H, tritiogenic helium-3 (3He), chlorofluorocarbons (CFC-11, CFC-12, CFC-113), organic C (DOC), O2 (DO), H2S, CH4, δ18O, δD, and 14C were investigated as tracers of Withlacoochee River water in the Upper Floridan aquifer. The concentrations of all tracers were affected by dilution and mixing. Dissolved Cl, δ18O, δD, CFC-12, and the quantity (3H+3He) are stable in water from the Upper Floridan aquifer, whereas DOC, DO, H2S, CH4, 14C, CFC-11, and CFC-113 are affected by microbial degradation and other geochemical processes occurring within the aquifer. Groundwater mixing fractions were determined by using dissolved Cl and δ18O data, recognizing 3 end-member water types in the groundwater mixtures: (1) Withlacoochee River water (δ18O=−2.5±0.3‰, Cl=12.2±2 mg/l), (2) regional infiltration water (δ18O=−4.2±0.1‰, Cl=2.3±0.1 mg/l), and (3) regional paleowater resident in the Upper Floridan aquifer (δ18O=−3.4±0.1‰, Cl=2.6±0.1 mg/l) (uncertainties are ±1σ). Error simulation procedures were used to define uncertainties in mixing fractions. Fractions of river water in groundwater range from 0 to 72% and average 10%. The influence of river-water discharge on the quality of water in the Upper Floridan aquifer was traced from the sinkhole area on the Withlacoochee River 25 km SE in the direction of regional groundwater flow. Infiltration of water is most significant to the N and NW of Valdosta, but becomes negligible to the S and SE in the direction of general thickening of post-Eocene confining beds overlying the Upper Floridan aquifer.  相似文献   

16.
Geological and geographical parameters including land use, stratigraphic structure, groundwater quality, and N- and O-isotopic compositions of nitrate in groundwater were investigated to elucidate the mechanism of groundwater pollution by NO3 ? in the agricultural area of Katori, Chiba, Japan. An aquitard distributed in the western part of the study area has produced two unconfined aquifers. The average concentrations of NO3 ? and dissolved oxygen (DO) were high in the aquifer above the aquitard (7.5 and 7.6 mg/L, respectively) and in the aquifer of the eastern part of the study area that was not influenced by the aquitard (11.9 and 7.8 mg/L, respectively); however, the levels in the aquifer under the aquitard were relatively low (2.2 and 3.7 mg/L, respectively). The δ15N and δ18O values of NO3 ? generally increased exponentially in the groundwater that flowed into the aquifer under the aquitard as the concentration of NO3 ? decreased, although this decrease in NO3 ? also occasionally occurred without isotopic changes. These results indicated that the aquitard prevented the penetration of NO3 ?, DO, and gaseous O2. Under the aquitard, denitrification and dilution with unpolluted water that entered from natural forested areas reduced the NO3 ? concentrations in the groundwater. The major sources of NO3 ? in groundwater in the study area were estimated to be NH4-chemical fertilizer, livestock waste, and manure.  相似文献   

17.
The well-studied Paleozoic Cooma metamorphic complex in southeastern Australia is characterized by a uniform siliciclastic protolith, of uniform age, with a continuous range of metamorphic grade from subgreenschist- to upper amphibolite-facies, and migmatite-grade in an annular pattern around the Cooma granodiorite. Those conditions are optimal for investigating variations of N concentrations and δ15N values during progressive metamorphism. Nitrogen concentrations decrease and δ15N increases with increasing metamorphic grade (sub-chlorite zone: 120 ppm N, δ15N = 2.3‰; chlorite zone: 110 ppm N, δ15N = 3.0‰; biotite and andalusite zone: 85 ppm N, δ15N = 3.8 ‰; sillimanite and migmatite zones: 40 ppm N, δ15N = 10.7‰). Covariation of K and N contents is consistent with N substituting for K as NH4+ in micas. Observed trends of increasing δ15N values with decreasing nitrogen concentrations can be explained by a continuous release of nitrogen depleted in 15N with progressive metamorphism, which causes an enrichment of 15N in the residual nitrogen of the rock. Equilibrium models for Rayleigh distillation and batch volatilisation for data of the greenschist and amphibolite facies metasedimentary rocks can be explained by N2-NH4+ exchange at temperatures of 300-600 °C, whereas observed large fractionations for the upper amphibolite-facies and melt products in the migmatite-grade samples may be interpreted as NH3-NH4+ exchanges at temperature of 650-730 °C. Lower values in the highest grade zones may also stem in part from input of 15N-depleted fluids from the granodiorite.The magnitude of isotope fractionation of nitrogen is about 1-2‰ during progressive metamorphism of metasedimentary rocks from sub-chlorite zone to biotite-andalusite zone, which is consistent with previous studies. Consequently, the large spread of δ15N values in Archean greenschist-facies metasedimentary rocks of −6‰ to 30‰ can be accounted for by variable mixtures of mantle plume-dominated volatiles with a δ15N of −5‰, and a 15N-enriched marine sedimentary kerogen component inherited from a CI chondrite veneer having δ15N of 30‰ to 42‰.  相似文献   

18.
Coastal ocean primary productivity is often limited by nitrogen (N) availability, which is determined by the balance between N sources (e.g., N-fixation, groundwater, river inputs, etc.) and sinks (e.g., denitrification, sediment burial, etc.). Historically, heterotrophic N-fixation in sediments was excluded as a significant source of N in estuarine budgets, based on low, indirectly measured rates (e.g., acetylene reduction assay) and because it was unnecessary to achieve mass balance. Many recent studies using net N2 flux measurements have shown that sediment N-fixation can equal or exceed N2 loss. In an effort to quantify N2 production and consumption simultaneously, we measured N-fixation and denitrification directly in sediment cores from a temperate estuary (Waquoit Bay, MA). N-fixation, dissimilatory nitrate reduction to ammonium, and denitrification occurred simultaneously, and the net N2 flux shifted from uptake (N-fixation) to efflux (denitrification) over the 120-h incubation. Evidence for N-fixation included net 28N2 and 30N2 uptake, 15NH4 + production from 30N2 additions, 15Norganic matter production, and nifH expression. N-fixation from 30N2 was up to eight times higher than potential denitrification. However, N-fixation calculated from 15NO3 ? was one half of the measured fixation from 30N2, indicating that 15NO3-isotope labeling calculations may underestimate N-fixation. These results highlight the dynamic nature of sediment N cycling and suggest that quantifying individual processes allows a greater understanding of what net N2 fluxes signify and how that balance varies over time.  相似文献   

19.
The objective of this study was to investigate natural abundance and the distribution of nitrogen isotopic compositions to assess denitrification in two ~30 m thick vadose zones beneath the different land uses in the wastewater-irrigated area located in southern Shijiazhuang, China. Sediment samples were collected from cores of boreholes drilled in the vegetable growth plot and the wastewater-irrigated farmland for analyses of nitrogen isotopes, physical and chemical properties, respectively. The profile of borehole A drilled in the vegetable growth plot only applied animal wastes had lower δ15N values of mean +7.5 ‰ in the upper vadose zone, but higher values of mean +10.9 ‰ in the lower vadose zone. δ15N values in each part varied little with depth, indicating no or little denitrification occurred in the deep vadose zone below the soil zone. The profile of borehole B drilled in the wastewater-irrigated farmland had low δ15N values of mean +5.7 ‰ below the soil zone and little variations of δ15N values with depth, indicating no or little denitrification occurred in the deep vadose zone below the soil zone. This was also verified by consistent variations of NO3 ? and SO4 2? contents with Cl? contents. Our results suggested most of leachable nitrate from the soil zone was hardly subjected to biological attenuation into groundwater.  相似文献   

20.
Measurements of15N/14N in dissolved molecular nitrogen (N2), nitrate (NO 3 ) and nitrous oxide (N2O) and18O/16O in N2O [expressed as δ15N and δ18O, relative to atmospheric N2 and oxygen (O2), respectively] have been made in water column at several locations in the Arabian Sea, a region with one of the thickest and most intense O2 minima observed in the open ocean. Microbially-mediated reduction of NO 3 to N2 (denitrification) in the oxygen minimum zone (OMZ) appears to greatly affect the natural isotopic abundances. The δ15N of NO 3 increases from 6‰ in deep waters (2500 m) to 15‰ within the core of the denitrifying layer (250–350 m); the δ15N of N2 concurrently decreases from 0.6‰ to 0.20‰ Values of the isotopic fractionation factor (ε) during denitrification estimated using simple advection-reaction and diffusion-reaction models are 22‰ and 25‰, respectively. A strong decrease in δ15N of NO 3 is observed from ∼ 200m (> 11‰) to 80m (∼ 6‰); this is attributed to the input of isotopically light nitrogen through nitrogen fixation. Isotopic analysis of N2O reveals extremely large enrichments of both15N and18O within the OMZ, presumably due to the preferential reduction of lighter N2O to N2. However, isotopically light N2O is observed to accumulate in high concentrations above the OMZ indicating that the N2O emitted to the atmosphere from this region cannot be very heavy. The isotope data from the intense upwelling zone off the southwest coast of India, where some of the highest concentrations of N2O ever found at the sea surface are observed, show moderate depletion of15N, but slight enrichment of18O relative to air. These results suggest that the ocean-atmosphere exchange cannot counter inputs of heavier isotopes (particularly18O) associated with the stratospheric back flux, as proposed by previous workers. This calls for additional sources and/or sinks of N2O in the atmosphere. Also, the N2O isotope data cannot be explained by production through either nitrification or denitrification, suggesting a possible coupling between the two processes as an important mechanism of N2O production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号