首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A reconstruction is made of the relief which is probably developed through peneplanation and a contemporary deep kaolinisation during late Cretaceous time before the laterite formation and the relief at the time of the laterite formation in Eocene in the region of the present Guiana shield and its foreland. A characteristic plain with very shallow valleys and a thick Al-laterite on its surface was formed during Eocene time. The Al-laterite is used as a characteristic and reference horizon for the post Eocene tectonic which is characterized by a main bulge of the Guiana shield in Surinam, a weaker lift in Guyana and a submergence below sea level in the north.  相似文献   

2.
Comminution in the glaciers that debouch into Guys Bight Basin, followed by selective sorting in the fluvial system, has had little effect on the bulk composition, or on the mineralogy, of the basin sands and muds. Most striking are the feldspar contents, and the feldspar-quartz ratios in sands and muds, both of which remain similar to those of average bedrock. The feldspar contents of sands and muds range from 48 to 52% feldspar whereas average bedrock contains 51·7% feldspar. Feldspar-quartz ratios average 1·58:1 in bedrock and 1·54:1, 1·66:1 and 1·69:1 in the medium to coarse sands, fine sands and muds, respectively, indicating minimal feldspar enrichment in the fine-grained sediments. In the absence of appreciable chemical weathering, extreme abrasion followed by hydraulic sorting has not produced mature sediments such as quartz arenites and clay-mineral-rich muds. There is, however, some chemical differentiation. Preferential accumulation of mafic minerals in fine sands and muds is reflected in bulk compositions by higher abundances of MgO, FeO and TiO2, and in the mineralogy by enrichment of biotite in the fine grades. Bulk compositional studies focused solely on muds and mudstones will result in an overestimate of the mafic contribution from source rocks. This work shows that bulk compositional studies of sediments and sedimentary rocks should include all available granulometric grades.  相似文献   

3.
Major-element composition, mineral composition and grain-size distribution have been studied for Quaternary aeolian sediments from the Taklimakan Desert, north-western China, together with the variation of chemical and mineralogical compositions of different grain-size fractions. Aeolian sediments from the Taklimakan Desert have higher ratios of feldspar/quartz and calcite/quartz, finer grain size, poorer roundness of quartz and feldspar grains and lower abundances of frosted quartz, than found in aeolian sediments from other deserts such as the Saudi Arabian Desert. In spite of these immature mineralogical and sedimentological features, the aeolian sediments from the Taklimakan Desert show low regional variations in major-element and mineral compositions and are homogenized. These observations confirm that two processes, glacial activity within surrounding mountains and aeolian activity at the Tarim Basin, are important in the homogenization of the Taklimakan Desert sands. Taklimakan Desert sediments are constantly and effectively supplied from basement rocks in the surrounding mountains by glacial erosion. The supplied sediments are further homogenized by aeolian activity in the desert and are partly blown away, serving as the source of Chinese aeolian loess. Compositional differences are observed between loess (mainly 10–40 μm particles) and the <45 μm fraction of the Taklimakan Desert sediments, as well as between loess and whole rock of the Taklimakan Desert sediments. These observations provide constraints for precise modelling of loess formation, and for assessment of the chemical composition of the upper continental crust based on the chemical composition of aeolian loess.  相似文献   

4.
In addition to mineral analyses, REE and trace element geochemical characteristics of fine- and coarse-grained sands in the Ordos deserts and other sediments in surrounding areas are investigated.Commonly the samples consist of quartz, feldspar and muscovite and less clinochlore, dolomite and ankerite. In few samples muscovite is absent.REE and trace compositions are spatially uniform for the same grain-size sands, suggesting that they could have the same sources or/and were well homogenized. However, fine- and coarse-grained sands in the Ordos deserts show different REE and trace element compositions. Fine-grained sands show higher contents of REE and trace elements than those of coarse-grained sands. They differ in Eu anomalies and (La/Yb)N ratios although both fractions are characterized by the steep LREE and smooth HREE patterns. The fine- and coarse-grained sands are also distinct in some characteristic element ratios (e.g., Th/Co, La/Sc, Th/Sc and Y/Ni).REE and trace element patterns of the two different grain-size fractions are closely associated with geological properties of individual sources rather than the mineralogical differentiation induced by wind sorting. The coarse-grained sands mainly resulted from sandstone weathering in the Ordos deserts and movements of coarse particles by wind. REE and trace element patterns of fine-grained sands in the Ordos deserts differ from those of sandstones in the Ordos deserts, the alluvial sands in the surrounding mountains and the coarse fluvial sands in the Yellow River. They resemble the fine fluvial sands in the Yellow River. In addition, arid areas of Northwest China such as the Tarim Basin and the Alxa Plateau should not be ruled out as the source of the fine-grained sands in the Ordos deserts because these arid areas reserve plenty of fine-grained sediments and also located in the upwind directions of the Ordos deserts.  相似文献   

5.
Sediments from Kalpakkam, southeast coast of India were geochemically analyzed to document the provenance, tectonic setting, and role of chemical weathering. The sediments are dominated by quartz (Si), and the higher concentration of Si suggests the presence of quartz (±feldspar) dominated terrigenous sands. The study demonstrates that the sediments are derived from the granitic to gneissic or from a sedimentary source. Beach sediments are deposited in a passive continental margin setting and seabed sediments are deposited in active continental margin. In the A–CN–K diagram, most of the samples fall in the lower part, i.e., below the plagioclase feldspar joint which indicates a low degree of alteration. Only S6 falls just above the plagioclase feldspar joint, close to the AK boundary suggesting a slightly advanced weathering of sediment and source. Beach and seabed sediments lie close to CNK and FM region suggesting the presence of ferromagnesian minerals (likely to be pyroxene) except S6 which falls in the inner triangle of the minerals feldspar, garnet, and biotite in A-CNK-FM diagram. Both CIA and CIW values depict the unweathered nature of the sediments under humid to semi-humid climatic conditions.  相似文献   

6.
The shallow marine Precambrian Pakhal sandstones (Middle Proterozoic, about 1400 Ma) of the Godavari valley are composed of first-cycle terrigenous grains derived from the crystalline Basement Complex. The sandstones include a large number of rounded and well rounded grains of quartz and feldspar. The rounded grains, without exception, occur in intimate association with angular grains. The sandstones are also characterised by several other types of textural inversions.Relative effectiveness of several processes with regard to the development of roundness of the Pakhal sands has been considered. Simple sedimentary differentiation fails to explain the high degree of roundness of the first-cycle sands. Solutions rich in organic matter cannot be considered effective in rounding Proterozoic sands. Chemical action is inconsistent with the presence of fresh grains of feldspar. Beach processes also fail to explain the presence of large numbers of feldspar grains. The roundness of these sands is best explained by eolian processes, that can effectively round grains of quartz as well as feldspar.The textural inversions of the Pakhal sandstones can be attributed neither to mixing of sands derived from multiple sources nor to mixing of materials coming from different environments. They possibly resulted from mixing of sands with contrasting mechanisms of transport, viz., eolian and aqueous, in a common area of sedimentation.Eolian transport and abrasion processes probably played a more significant role during the time of Pakhal sedimentation than at present, because of the absence of protective vegetation in Proterozoic time.  相似文献   

7.
Najman  Bickle  & Chapman 《地学学报》2000,12(1):28-34
Nd- and Sr-isotopic compositions of Palaeogene foreland basin sediments are used to provide insights into early Himalayan evolution, particularly the timing of exposure of high 87Sr/86Sr units, erosion of which may have caused the late Tertiary increase in oceanic Sr-isotopic ratios. During the late Palaeocene–early Eocene, erosion was from mixed sources including suture zone rocks. Exhumation of the High Himalaya was occurring by the time of deposition of alluvial sediments after mid-Oligocene times and this source has dominated Himalayan sediments from at least this time until the present day. The transition is interpreted to reflect exhumation of 'basement rocks' of the Indian plate, when the High Himalaya became a sufficient topographic barrier to separate suture zone rocks from the foreland basin. The marked rise in seawater 87Sr/86Sr from 40 Ma is consistent with the erosion of a Himalayan source with a high 87Sr/86Sr ratio.  相似文献   

8.
Bleaching characteristics of Late Glacial and Holocene eolian sands from The Netherlands confirm the suitability for TL dating of these sediments. A solar simulator has been used for both quartz and potassium feldspar separates. A number of bleaching times and dose rate determinations have been used to establish the best plateau for the ED determination and a suitable dose rate respectively, in order to date a Late Glacial cover sand sample.  相似文献   

9.
Studies of multichannel seismic reflection profiles, calibrated with borehole data, have been carried out in the Tunisian shelf surrounding the islands of Lampione and Lampedusa, in order to define the Mesozoic-Cenozoic stratigraphie and structural evolution of this sector of the Pelagian foreland. The stratigraphy and subsidence history show a subsiding Upper Jurassic carbonate platform buried, by syn- and post-rift neritic to deep marine siliciclastics, marls and limestones of Neocomian-early Eocene age. Thick Middle-Upper Eocene shallow-water carbonates (Halk el Menzel Fm.), lie unconformably over the deep-water sediments and exhibit progradational geometries.
Messinian evaporites are confined to the deepest parts of the Neogene basins and Plio-Quaternary sediments are widespread over the area. Several unconformities affect the stratigraphic column and have been interpreted as related to compressive events during Late Cretaceous-early Tertiary times. These compressive events produced uplift, folding and reverse faulting, trending about NW-SE and partly reactivating Lower Cretaceous extensional structures. The uppermost regional unconformity indicates widespread emergence and erosion during Oligocene and Miocene tintes and was probably related to a younger compressional phase. A strong Upper Miocene-Quaternary extension event also affected the area, characterized by WNW-ESE trending normal faults, parallel to faults flanking the main grabens of the Sicily Strait rift zone. Since the Messinian, the structural evolution of the area has been controlled by rift-related processes which triggered crustal extension in the Pelagian foreland.  相似文献   

10.
The Paleogene succession of the Himalayan foreland basin is immensely important as it preserves evidence of India-Asia collision and related records of the Himalayan orogenesis. In this paper, the depositional regime of the Paleogene succession of the Himalayan foreland basin and variations in composition of the hinterland at different stages of the basin developments are presented. The Paleogene succession of the western Himalayan foreland basin developed in two stages, i.e. syn-collisional stage and post-collisional stage. At the onset, chert breccia containing fragments derived from the hanging walls of faults and reworked bauxite developed as a result of erosion of the forebulge. The overlying early Eocene succession possibly deposited in a coastal system, where carbonates represent barriers and shales represent lagoons. Up-section, the middle Eocene marl beds likely deposited on a tidal flat. The late Eocene/Oligocene basal Murree beds, containing tidal bundles, indicate that a mixed or semi-diurnal tidal system deposited the sediments and the sedimentation took place in a tide-dominated estuary. In the higher-up, the succession likely deposited in a river-dominated estuary or in meandering rivers. In the beginning of the basin evolution, the sediments were derived from the Precambrian basement or from the metasediments/volcanic rocks possessing terrains of the south. The early and middle Eocene (54.7–41.3 Ma) succession of the embryonic foreland possibly developed from the sediments derived from the Trans-Himalayan schists and phyllites and Indus ophiolite of the north during syn-collisional stage. The detrital minerals especially the lithic fragments and the heavy minerals suggest the provenance for the late Eocene/Oligocene sequences to be from the recycled orogenic belt of the Higher Himalaya, Tethyan Himalaya and the Indus-suture zone from the north during post-collisional stage. This is also supported by the paleocurrent measurements those suggest main flows directed towards southeast, south and east with minor variations. This implies that the river system stabilized later than 41 Ma and the Higher Himalaya attained sufficient height around this time. The chemical composition of the sandstones and mudstones occurring in the early foreland basin sequences are intermediate between the active and passive continental margins and/or same as the passive continental margins. The sedimentary succession of this basin has sustained a temperature of about 200 °C and undergone a burial depth of about 6 km.  相似文献   

11.
This paper is a summary of the present knowledge of the Tertiary stratigraphy of Western Australia. Also included is new information on the Cainozoic of the Carnarvon Basin, a result of petroleum exploration in the area.

Tertiary rocks formed during more than one cycle of deposition in three basins (Eucla, Perth, and Carnarvon), and also as thin units deposited in a single transgression along the south coast. The Tertiary stratigraphy of the Bonaparte Gulf Basin is not well known.

Drilling in the Eucla Basin has encountered up to 400 m of Tertiary in the south central part, with uniform thinning towards the margins. The section begins with a middle‐upper Eocene carbonate unit which represents the dominant event in the Tertiary sedimentation in this basin. More carbonates were deposited in the late Oligocene‐early Miocene and middle Miocene.

Along the south coast, the so‐called Bremer Basin, the Plantagenet Group (up to 100 m) of siltstone, sandstone, spongolite, and minor limestone, was deposited during the late Eocene.

The Perth Basin contains up to 700 m of Tertiary sediment, formed during at least two phases of sedimentation. The upper Paleocene‐lower Eocene Kings Park Formation consists of marine shale, sandstone, and minor limestone, with a thickness of up to 450 m. The Stark Bay Formation (200 m) includes limestone, dolomite, and chert formed during the early and middle Miocene. Events after deposition of the Stark Bay Formation are not well known.

The northern Carnarvon Basin and Northwest Shelf contain by far the most voluminous Tertiary sediment known from Western Australia: 3500 m is known from BOCAL's Scott Reef No. 1. A more usual maximum thickness is 2500 m. Most sediments were laid down in four episodes, separated by unconformities: late Paleocene‐early Eocene; middle‐late Eocene; late Oligocene‐middle Miocene; and late Miocene to Recent.

The Paleocene‐early Eocene cycle consists of about 100–200 m (up to 450 m in the north) of carbonate, shale, and marl of the Cardabia Group containing rich faunas of planktonic foraminifera.

The middle‐late Eocene sediments include diverse rock types. Marine and nonmarine sandstone formed in the Merlinleigh Trough. At the same time, the Giralia Calcarenite (fauna dominated by the large foraminifer Discocyclina) and unnamed, deeper water shale, marl, and carbonate (with rich planktonic foraminiferal faunas) formed in the ocean outside the embayment. Thickness is usually of the order of 100–200 m.

The main cycle of sedimentation is the late Oligocene‐middle Miocene, during which time the Cape Range Group of carbonates formed. This contains dominantly large foraminiferal faunas, of a wide variety of shallow‐water microfacies, but recent oil exploration farther offshore has recovered outer continental shelf facies with abundant planktonic foraminifera. A minor disconformity representing N7 and perhaps parts of N6 and N8 is now thought to be widespread within the Cape Range Group. The last part of this cycle resulted in sedimentation mainly of coarse calcareous marine sandstone (unnamed), and, in the Cape Range area, of the sandstone and calcareous conglomerate of the Pilgramunna Formation. Maximum thickness encountered in WAPET wells is 900 m.

After an unconformity representing almost all the late Miocene, sedimentation began again, forming an upper Miocene‐Recent carbonate unit which includes some excellent planktonic faunas. Thickness is up to 1100 m.

Thin marine sediments of the White Mountain Formation outcrop in the Bonaparte Gulf Basin. They contain some foraminifera and a Miocene age has been suggested.  相似文献   

12.
A. G. PLINT 《Sedimentology》1983,30(5):625-653
The Bracklesham Formation is of Middle Eocene age and occurs throughout the Hampshire Basin of southern England. The basin is elongated east-west and filled with Lower Tertiary sediments. Its southern margin is marked by either large, northward-facing monoclines, or faults, both of which underwent differential movement, with uplift of the southern side throughout the Middle Eocene. The Bracklesham Formation, which is up to 240 m thick, shows pronounced lateral facies changes with dominantly marine sediments in the east passing to alluvial sediments in the west. Four principal sedimentary environments: marine, lagoonal, estuarine and alluvial are distinguished. Marine sediments comprise six facies including offshore silty clays and glauconitic silty sands, beach and aeolian dune sands, and flint conglomerates formed on pebble beaches. Offshore sediments predominate in the eastern part of the basin, as far west as Alum Bay, where they are replaced by nearshore sediments. Lagoonal sediments comprise four facies and formed in back-barrier lagoons, coastal marshes and, on occasions, were deposited over much of the basin during periods of low salinity and restricted tidal motion. Five estuarine facies represent tidal channels, channel mouth-bars and abandoned channels. These sediments suggest that much of the Bracklesham Formation was deposited under micro- to meso-tidal conditions. Alluvial sediments dominate the formation to the west of Alum Bay. They comprise coarse to fine sands deposited on the point-bars of meandering rivers, interbedded with thick sequences of laminated interchannel mudstones, deposited in marshes, swamps and lakes. Extensive layers of ball clay were periodically deposited in a lake occupying much of the alluvial basin. In alluvial areas, fault movement exposed Mesozoic rocks along the southern margin of the basin, the erosion of which generated fault-scarp alluvial fan gravels. Locally, pisolitic limestone formed in pools fed by springs emerging at the faulted Chalk-Tertiary contact. In marine areas, flint pebbles were eroded from coastal exposures of chalk and accumulated on pebble beaches and in estuaries. From other evidence it is suggested that older Tertiary sediments were also reworked. The Bracklesham Formation is strongly cyclic and was deposited during five marine transgressions, the effects of which can be recognized throughout the basin in both marine and alluvial areas. Each of the five transgressive cycles is a few tens of metres thick and contains little evidence of intervening major regression. The cycles are thought to represent small-scale eustatic sea-level rises (‘paracycles’) superimposed upon a major transgressive ‘cycle’ that began at the base of the Bracklesham Formation, following a major regression, and was terminated, at the top of the Barton Formation by another major regression. This major cycle can be recognized world-wide and may reflect a period of rapid northward extension of the mid-Atlantic ridge.  相似文献   

13.
The chemical and mineralogical composition of the Sidi Aïch Formation sandstones in central and southwestern Tunisia has been investigated in order to infer the provenance and tectonic setting, as well as to appraise the influence of weathering. The sixteen studied samples are mainly composed of quartz, feldspar, kaolinite and/or illite. Sidi Aïch sandstones are mainly arkosic, potassic feldspar-rich and immature. Much of the feldspar was transformed to kaolinite. Concerning the relation between sandstone detrital composition and their depositional setting, the Sidi Aïch Formation sandstone in the major studied localities, probably accumulated in relatively proximal small basins within the continental interior. However, for the Khanguet El Ouara study site, sandstones may have been deposited in a foreland basin which received recycled sediments from an adjacent orogenic belt.The source area may have included quartzose sedimentary rocks. The dominance of quartz and enrichment in immobile elements suggest that the depositional basins were associated with a passive margin. The petrography and geochemistry reflect a stable continental margin and sediments were derived from granitic and pegmatitic sources located in the southern parts of the Gafsa basin. High values for the chemical index of alteration (CIA) indicate that recycling processes might have been important. Particularly high CIA values in the Garet Hadid locality indicate more intense chemical alteration, either due to weathering processes or tectonic control.  相似文献   

14.
Past geomorphological models assume that erosion of sediments from old mountain belts occurred at a relatively constant rate, based on comparatively uniform isostatic adjustment caused by unloading. Late Miocene strata of the south‐eastern United States provide an example of pulsed tectonism resulting in a surge in siliciclastic sediment production and transport. Regional tectonism (uplift of the southern Appalachian Mountains) and climatic conditions during the Late Miocene resulted in the long‐distance (up to 1000 km) fluvial transport of coarse siliciclastic sediments onto a stable carbonate platform in southern Florida. The sediments are unusual in that they are significantly coarser than marine‐transported sands in southern Florida, with discoidal quartz and quartzite clasts up to 40 mm in diameter locally present, and have relatively high potassium feldspar contents (up to 16% in some sample fractions), whereas feldspar is rare in modern Florida beach sands. It is suggested that previously documented rejuvenation of the southern Appalachian Mountains during the Middle to Late Miocene time, coupled with the Messenian sea‐level low, generated the increased rate of sediment production and necessary hydraulic gradient to allow rapid transport of coarse sediments. Tectonic influence on the river pathway in Florida, as well as in the southern Appalachian Mountains, may have maintained the river on the narrow carbonate platform. The Florida Platform during the Late Miocene must also have had a sufficiently wet climate to cause episodic transport of the coarse sediments. Siliciclastic sediment transport on the Florida Platform during the Late Miocene greatly differed from Pleistocene to modern conditions, which are dominated by the transport of fine‐grained sands by longshore marine processes.  相似文献   

15.
Hydrothermal experiments with primary detrital components of feldspathic sands (orthoclase, albite, quartz, and calcite) were conducted to simulate possible diagenetic changes in geosynclinal sedimentary accumulations and the geothermal reservoir of the Imperial Valley area, California. Phyllosilicate and zeolite mineralization was produced at 200°C and 1 Kb Ph2o and at 300°C and 1 and 3 Kb Ph2o. Scanning electron microscope examination of the detrital grains shows the development of authigenic minerals and solution features. Phyllosilicate development occurred as dense surface coatings on orthoclase crystals in concentrated brines and as scattered grain clusters in dilute brines. Cation concentration is considered to be a controlling factor in phyllosilicate formation and growth. During formation the phyllosilicate crystals appear to utilize the surficial feldspar lattice structure as a preferred growth site. Electron diffraction studies indicate the crystals are a 1 Md mica similar to illite. Initial phyllosilicate formation occurs principally on orthoclase in systems containing this mineral, but is disseminated on other mineral surfaces in systems without orthoclase. This experimental development of authigenetic illite via the destruction of potassium feldspar may offer a potential mechanism to help explain the resulting mineralogy of diagenetic processes occurring in natural sediments such as in feldspathic sands and argillaceous sediments.  相似文献   

16.
Ages of Cenozoic sedimentary basins yield information that can be used to infer detailed spatial and temporal evolution in the Alpine foreland. The Tertiary deposits of the NW Iberian Peninsula comprise the remains of a broken foreland basin (the West Duero Basin). This work constrains the timing of tectonic fragmentation and the evolution of the western termination of the Alpine Pyrenean–Cantabrian Orogen (NW Iberian Peninsula). The discovery of Issiodoromys cf. minor 1 and Pseudocricetodon in the lower formation of the Tertiary depression of Sarria (the Toral Formation) constrains its age to the late Early Oligocene (MP23–MP25), similar to its age in the El Bierzo depression (MP24–MP25). Sedimentation initiated in the NE of the study area at Oviedo during the Middle Eocene (Bartonian–Early Priabonian MP16–MP17) and migrated towards the west and south during the Early Oligocene. The Toral Formation was deposited in a foreland basin that connected the present day outcrops of the El Bierzo, Sarria and As Pontes Tertiary depressions. The basin was segmented during the westward migration of structural deformation associated with the Orogen, and the subsequent uplift of the Galaico–Leoneses Mountains. The present‐day height above reference level of the base of the Toral Formation has been used to quantify Alpine segmentation that took place after Early Oligocene times. Minimum tectonic uplift assessed is 960 m in the Cantabrian Mountains and 1050 m in the Galaico–Leoneses Mountains. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
The marine geology of Port Phillip is described in detail, based on data from seismic profiling, vibrocoring and grab sampling. Three major unconsolidated facies can be distinguished: sands and muddy sands peripheral to the present coastline, muds covering the major central region, and channel fills of muds and sands. The first two facies units result from an increase in wave sorting towards the coast, reworking of Tertiary and Quaternary sandstone outcrops around the coast, and a dominant mud supply from river sources into the central area. The distribution and thicknesses of the unconsolidated facies have been augmented by a shallow‐seismic program that reveals the thicknesses of the modern sediments overlying an older surface comprised of consolidated clays and sandy clays of Pleistocene or older age. In central Port Phillip, muds and sands up to 27 m‐thick have infilled Pleistocene channels cut into underlying consolidated units. Sediments immediately above the channel bases show characteristic seismic patterns of fluvial deposition. The presence of peat deposits together with gas phenomena in the water column suggest organic breakdown of channel‐fill deposits is releasing methane into the bay waters. Outside the channel areas, carbon‐14 dating indicates that the unconsolidated sediments largely post‐date the last glaciation sea‐level rise (<6500 a BP), with an early Holocene period of rapid deposition, similar to other Australian estuaries. Stratigraphic and depositional considerations suggest that the undated channel‐fill sequences correlate with the formation of cemented quartz‐carbonate aeolianite and barrier sands on the Nepean Peninsula at the southern end of Port Phillip. Previous thermoluminescence dating of the aeolianites suggests that channel‐fill sequences B, C and D may have been deposited as fluvial and estuarine infills over the period between 57 and 8 ka. The eroded surface on the underlying consolidated sediments is probably the same 118 ka age as a disconformity within the Nepean aeolianites. Further estuarine and aeolianite facies extend below the disconformity to 60 m below sea‐level, and may extend the Quaternary depositional record to ca 810 ka. Pliocene and older Tertiary units progressively subcrop below the Quaternary northwards up the bay.  相似文献   

18.
The Tawil Sandstone (Lower Devonian) in Central Saudi Arabia overlies the Sharwara Member of the Tayyarat Formation (Silurian) and succeeded conformly by the Shaiba Member of the Jauf Formation. Petrographical data reveal that the Tawil Sandstone comprises 96% quartz, 3% feldspar, and 1% rock fragments and all samples are classified as quartz arenites. The presence of well sorted, altered to fresh feldspar, and discriminate function analysis suggests that the sediments have been subjected to substartial reworking resulting in a high level of maturity. Modal analysis data (Q–F–L) suggest a stable cratonic provenance for the sediments and accumulation in a passive margin basin is indicated (binary plot of SiO2 vs K2O/Na2O). Diagenetic features include dissolution of feldspar and rock fragments, compaction, reduction of the existing pore space through rearrangements, and rotation and fragmentation of grains resulting in dissolution of quartz grains and cementation.  相似文献   

19.
Grainsize, mineralogy and current-meter data from the Northern Rockall Trough are presented in order to characterise the sandy contourite that forms the sedimentary environment of the Darwin cold-water coral mounds, and to investigate the impact of this environment on the mound build-up. Large clusters of small cold-water coral mounds, 75 m across and 5 m high, have been found southwest of the Wyville Thomson Ridge, at 900–1,100 m water depth. Their present-day sedimentary environment consists of a subtly sorted sandy contourite, elongated NE–SW, roughly parallel to the contours. Critical erosional and depositional current speeds were calculated, and trends in both the quartz/feldspar and foraminifera fractions of the sands show a bi-directional fining from bedload/erosion-dominated sands in the NE to suspension/deposition-dominated sediments in the SW and towards the S (downslope). This is caused by a gradual reduction in governing current speed, linked to a reduction in slope gradient, and by the increasing distance from the current core in the downslope direction. No specific characteristics were found distinguishing the mound sediments from the surrounding sands: they fit in the overall spatial pattern. Some mound cores show hints of a fining-upward trend. Overall the mound build-up process is interpreted as a result of sediment baffling.  相似文献   

20.
《Quaternary Science Reviews》2007,26(22-24):2883-2896
In the El Minia district of northern Upper Egypt, the Pleistocene deposits of the Nile Valley include (?)Early Pleistocene conglomerates of the Armant Formation and (?)Middle Pleistocene sands of the Qena Formation. These sediments are exposed along both sides of the valley in terraces at different heights, unconformably overlying Eocene limestones. Field observations suggest that the conglomerate facies of the Armant Formation was deposited in proximal and mid-alluvial fans. The sands of the Qena Formation are differentiated into two facies: a cross-bedded sandstone, representative of alluvial fan—braided stream environments, and a facies of sand interbedded with mud that may have been deposited by a meandering river. The heavy minerals of the Armant Formation are markedly different from those of the Qena Formation, suggesting derivation from different sources. Surface textures of quartz grains from the Qena sands, observed by SEM, exhibit chemical features, attributed to a fluviatile origin. Sand from the Armant Formation is characterized by mechanical and chemical surface textural features that suggest original aeolian derivation followed by later fluvial sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号