首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Body-wave analysis — shear-wave splitting and P travel time residuals — detect anisotropic structure of the upper mantle beneath the Swedish part of Fennoscandia. Geographic variations of both the splitting measurements and the P-residual spheres map regions of different fabrics of the mantle lithosphere. The fabric of individual mantle domains is internally consistent, usually with sudden changes at their boundaries. Distinct backazimuth dependence of SKS splitting excludes single-layer anisotropy models with horizontal symmetry axes for the whole region. Based upon joint inversion of body-wave anisotropic parameters, we instead propose 3D self-consistent anisotropic models of well-defined mantle lithosphere domains with differently oriented fabrics approximated by hexagonal aggregates with plunging symmetry axes. The domain-like structure of the Precambrian mantle lithosphere, most probably retaining fossil fabric since the domains' origin, supports the idea of the existence of an early form of plate tectonics during the formation of continental cratons already in the Archean. Similarly to different geochemical and geological constraints, the 3D anisotropy modelling and mapping of fabrics of the lithosphere domains contribute to tracking plate tectonics regimes back in time.  相似文献   

2.
A passive teleseismic experiment (TOR), traversing the northern part of the Trans-European Suture Zone (TESZ) in Germany, Denmark and Sweden, recorded data for tomography of the upper mantle with a lateral resolution of few tens of kilometers as well as for a detailed study of seismic anisotropy. A joint inversion of teleseismic P-residual spheres and shear-wave splitting parameters allows us to retrieve the 3D orientation of dipping anisotropic structures in different domains of the sub-crustal lithosphere. We distinguish three major domains of different large-scale fabric divided by first-order sutures cutting the whole lithosphere thickness. The Baltic Shield north of the Sorgenfrei–Tornquist Zone (STZ) is characterised by lithosphere thickness around 175 km and the anisotropy is modelled by olivine aggregate of hexagonal symmetry with the high-velocity (ac) foliation plane striking NW–SE and dipping to NE. Southward of the STZ, beneath the Norwegian–Danish Basin, the lithosphere thins abruptly to about 75 km. In this domain, between the STZ and the so-called Caledonian Deformation Front (CDF), the anisotropic structures strike NE–SW and the high-velocity (ac) foliation dips to NW. To the south of the CDF, beneath northern Germany, we observe a heterogeneous lithosphere with variable thickness and anisotropic structures with high velocity dipping predominantly to SW. Most of the anisotropy observed at TOR stations can be explained by a preferred olivine orientation frozen in the sub-crustal lithosphere. Beneath northern Germany, a part of the shear-wave splitting is probably caused by a present-day flow in the asthenosphere.  相似文献   

3.
The frequently observed parallelism between rifts and the preexisting orogenic fabric of continents suggests that the inherited tectonic fabric of the lithosphere influences the rupture of continents. We propose that the existence of a pervasive fabric in the lithospheric mantle induces an anisotropic strength in the lithosphere, that guides the propagation of continental rifts. Subcrustal mantle mechanical anisotropy is supported by (i) the anisotropic strength of olivine, (ii) an ubiquitous tectonic fabric in exposed mantle rocks, and (iii) measurements of seismic and electrical anisotropy. During major episodes of continent assembly, a pervasive deformation of the lithosphere induces a lattice-preferred orientation of olivine in mantle rocks. Later on, this crystallographic fabric is ‘frozen-in’ and represents the main source of shear wave splitting. This olivine fabric may entail a mechanical anisotropy in the lithospheric mantle. During subsequent tectonic events, especially during rifting, mechanical anisotropy may control the tectonic behaviour of the lithosphere  相似文献   

4.
华北克拉通上地幔变形及其动力学意义   总被引:1,自引:0,他引:1       下载免费PDF全文
赵亮  郑天愉 《地质科学》2009,44(3):865-876
华北克拉通从稳定到破坏的演化过程对有关地球动力学的经典理论提出了挑战,研究其独特的演化历史是固体地球科学研究的一项重要内容。上地幔矿物晶体的各向异性记录了上地幔发生构造变形的信息,研究上地幔地震波各向异性能够揭示现今和构造历史时期所发生的构造运动。本文总结了近年来作者在华北克拉通地区所进行的高密度、覆盖广泛的地震波横波分裂观测研究结果。横波分裂的快轴方向与绝对板块运动方向的不一致,以及横波分裂参数快速的空间变化特征表明了华北克拉通的SKS横波分裂主要反映上地幔的变形。观测结果表明:鄂尔多斯块体保留了克拉通较弱的各向异性特征,其西端体现了元古代克拉通拼合的变形特征; 中新生代华北克拉通破坏事件以不同的机制主导了华北克拉通中部和东部的上地幔变形,在东部地区北西-南东向的拉张应力作用使得快轴方向平行于拉张方向,而在中部则因受到较厚岩石圈的阻挡使得地幔流动改变了方向,因此造成了北东和北北东向的岩石圈拉张。  相似文献   

5.
We propose a mechanical model of deformation of the entire lithosphere of the Bohemian Massif (BM), whose core is formed by an asymmetric block of the Teplá-Barrandian (TB) unit in between the Saxothuringian (ST) and Moldanubian (MD) units. For the modelling, we have re-processed P-wave travel times recorded during the last two decades at dense networks of seismic stations installed in the BM during several passive seismic experiments. We also use previous results of anisotropic studies based on splitting of teleseismic shear waves. This allows us to refine estimates of the lithosphere thickness and delimit deep margins of the individual mantle lithosphere domains. The domains are rigid enough to preserve pre-orogenic olivine fabrics differently oriented in each of the units. Shapes and dips of the mantle boundaries, representing major zones of weakness inherited from the Variscan amalgamation of independent microplates, indicate that north-westward subductions beneath the TB unit dominated tectonic development of the core of the BM. Two mantle lithosphere domains with different fabric orientations, separated by a WSW-ENE striking shear zone, underlie the TB crust. The NW domain is the TB mantle lithosphere, while the SE domain is the MD mantle lithosphere thrust under the TB crust. Lithosphere of the north-western TB domain, compressed between early Variscan subductions of the ST continental lithosphere from the northwest and the MD continental lithosphere from the southeast, was pushed south-westward by about 50 km. Though the crust of the south-westerly TB promontory is commonly attributed to the MD unit, apparently it preserves the TB mantle lithosphere. The shifted TB lithosphere provides compelling evidence in support of older views suggesting that the Zone Erbendorf-Vohenstrauss (ZEV) originally belonged to the tilted western rim of the TB unit. During the final phase of the assemblage of the BM, the rigid TB lithosphere was disrupted by the southward pushing ST lithosphere along the newly formed NW-SE striking Jáchymov Fault Zone (JFZ). This lithosphere-scale process most likely changed the tectonic regime, released subduction-related forces and started the gravity-dominated tectonics.  相似文献   

6.
Joint analysis of shear‐wave splitting parameters and directional dependence of teleseismic P residuals based on data from the seismic experiment TOR across the Trans‐European Suture Zone suggest that the Sorgenfrei–Tornquist Zone (STZ) in northern Denmark forms the south‐western margin of Baltica in the upper mantle. Different lithosphere thickness and different orientation of seismic anisotropy in the mantle lithosphere identify three domains separated by the STZ between Denmark and southern Sweden and the Thor Suture between northern Germany and Denmark. We suggest that the anisotropy reflects frozen‐in olivine fabrics, most probably created during early stages of the evolution of the European continent. The middle Danish block might represent a microplate caught in between Avalonia and Baltica before the Caledonian orogeny.  相似文献   

7.
The Coyote Lake basalt, located near the intersection of the Hayward and Calaveras faults in central California, contains spinel peridotite xenoliths from the mantle beneath the San Andreas fault system. Six upper mantle xenoliths were studied in detail by a combination of petrologic techniques. Temperature estimates, obtained from three two-pyroxene geothermometers and the Al-in-orthopyroxene geothermometer, indicate that the xenoliths equilibrated at 970–1100 °C. A thermal model was used to estimate the corresponding depth of equilibration for these xenoliths, resulting in depths between 38 and 43 km. The lattice preferred orientation of olivine measured in five of the xenolith samples show strong point distributions of olivine crystallographic axes suggesting that fabrics formed under high-temperature conditions. Calculated seismic anisotropy values indicate an average shear wave anisotropy of 6%, higher than the anisotropy calculated from xenoliths from other tectonic environments. Using this value, the anisotropic layer responsible for fault-parallel shear wave splitting in central California is less than 100 km thick. The strong fabric preserved in the xenoliths suggests that a mantle shear zone exists below the Calaveras fault to a depth of at least 40 km, and combining xenolith petrofabrics with shear wave splitting studies helps distinguish between different models for deformation at depth beneath the San Andrea fault system.  相似文献   

8.
为了研究南极普里兹湾岩石圈深部应力场及其动力学,采用S波分裂旋转相关法,对中国第31次南极科学考察成功回收的3个站位海底地震仪数据(5个远震记录)进行了反演,获得了普里兹湾洋陆过渡带岩石圈各向异性特征.结果表明,台站所在区域各向异性显著,在较小的范围内存在明显的空间差异,快S波偏振方向变化范围是N40°E ~ N60°E,快慢波时间延迟变化范围为0.2~1.3 s.洋盆的各向异性主要取决于海底扩张地幔流作用,大陆及附近的各向异性主要受上地幔顶部残留构造的影响,而中间过渡带各向异性层厚度较小集中在地壳内,它可能受海底扩张地幔流和残留构造共同作用.   相似文献   

9.
U-Pb isotopic thermochronometry of rutile, apatite and titanite from kimberlite-borne lower crustal granulite xenoliths has been used to constrain the thermal evolution of Archean cratonic and Proterozoic off-craton continental lithosphere beneath southern Africa. The relatively low closure temperature of the U-Pb rutile thermochronometer (~400-450 °C) allows its use as a particularly sensitive recorder of the establishment of "cratonic" lithospheric geotherms, as well as subsequent thermal perturbations to the lithosphere. Contrasting lower crustal thermal histories are revealed between intracratonic and craton margin regions. Discordant Proterozoic (1.8 to 1.0 Ga) rutile ages in Archean (2.9 to 2.7 Ga) granulites from within the craton are indicative of isotopic resetting by marginal orogenic thermal perturbations influencing the deep crust of the cratonic nucleus. In Proterozoic (1.1 to 1.0 Ga) granulite xenoliths from the craton-bounding orogenic belts, rutiles define discordia arrays with Neoproterozoic (0.8 to 0.6 Ga) upper intercepts and lower intercepts equivalent to Mesozoic exhumation upon kimberlite entrainment. In combination with coexisting titanite and apatite dates, these results are interpreted as a record of postorogenic cooling at an integrated rate of approximately 1 °C/Ma, and subsequent variable Pb loss in the apatite and rutile systems during a Mesozoic thermal perturbation to the deep lithosphere. Closure of the rutile thermochronometer signals temperatures of 𙠂 °C in the lower crust during attainment of cratonic lithospheric conductive geotherms, and such closure in the examined portions of the "off-craton" Proterozoic domains of southern Africa indicates that their lithospheric thermal profiles were essentially cratonic from the Neoproterozoic through to the Late Jurassic. These results suggest similar lithospheric thickness and potential for diamond stability beneath both Proterozoic and Archean domains of southern Africa. Subsequent partial resetting of U-Pb rutile and apatite systematics in the cratonic margin lower crust records a transient Mesozoic thermal modification of the lithosphere, and modeling of the diffusive Pb loss from lower crustal rutile constrains the temperature and duration of Mesozoic heating to 𙡦 °C for ₞ ka. This result indicates that the thermal perturbation is not simply a kimberlite-related magmatic phenomenon, but is rather a more protracted manifestation of lithospheric heating, likely related to mantle upwelling and rifting of Gondwana during the Late Jurassic to Cretaceous. The manifestation of this thermal pulse in the lower crust is spatially and temporally correlated with anomalously elevated and/or kinked Cretaceous mantle paleogeotherms, and evidence for metasomatic modification in cratonic mantle peridotite suites. It is argued that most of the geographic differences in lithospheric thermal structure inferred from mantle xenolith thermobarometry are likewise due to the heterogeneous propagation of this broad upper mantle thermal anomaly. The differential manifestation of heating between cratonic margin and cratonic interior indicates the importance of advective heat transport along pre-existing lithosphere-scale discontinuities. Within this model, kimberlite magmatism was a similarly complex, space- and time-dependent response to Late Mesozoic lithospheric thermal perturbation.  相似文献   

10.
The kimberlite fields scattered across the NE part of the Siberian Craton have been used to map the subcontinental lithospheric mantle (SCLM), as it existed during Devonian to Late Jurassic time, along a 1000-km traverse NE–SW across the Archean Magan and Anabar provinces and into the Proterozoic Olenek Province. 4100 garnets and 260 chromites from 65 kimberlites have been analysed by electron probe (major elements) and proton microprobe (trace elements). These data, and radiometric ages on the kimberlites, have been used to estimate the position of the local (paleo)geotherm and the thickness of the lithosphere, and to map the detailed distribution of specific rock types and mantle processes in space and time. A low geotherm, corresponding approximately to the 35 mW/m2 conductive model of Pollack and Chapman [Tectonophysics 38, 279–296, 1977], characterised the Devonian lithosphere beneath the Magan and Anabar crustal provinces. The Devonian geotherm beneath the northern part of the area was higher, rising to near a 40 mW/m2 conductive model. Areas intruded by Mesozoic kimberlites are generally characterised by this higher, but still ‘cratonic' geotherm. Lithosphere thickness at the time of kimberlite intrusion varied from ca. 190 to ca. 240 km beneath the Archean Magan and Anabar provinces, but was less (150–180 km) beneath the Proterozoic Olenek Province already in Devonian time. Thinner Devonian lithosphere (140 km) in parts of this area may be related to Riphean rifting. Near the northern end of the traverse, differences in geotherm, lithosphere thickness and composition between the Devonian Toluopka area and the nearby Mesozoic kimberlite fields suggest thinning of the lithosphere by ca. 50–60 km, related to Devonian rifting and Triassic magmatism. A major conclusion of this study is that the crustal terrane boundaries defined by geological mapping and geophysical data (extended from outcrops in the Anabar Shield) represent major lithospheric sutures, which continue through the upper mantle and juxtapose lithospheric domains that differ significantly in composition and rock-type distribution between 100 and 250 km depth. The presence of significant proportions of harzburgitic and depleted lherzolitic garnets beneath the Magan and Anabar provinces is concordant with their Archean surface geology. The lack of harzburgitic garnets, and the chemistry of the lherzolitic garnets, beneath most of the other fields are consistent with the Proterozoic surface rocks. Mantle sections for different terranes within the Archean portion of the craton show pronounced differences in bulk composition, rock-type distribution, metasomatic overprint and lithospheric thickness. These observations suggest that individual crustal terranes, of both Archean and Proterozoic age, had developed their own lithospheric roots, and that these differences were preserved during the Proterozoic assembly of the craton. Data from kimberlite fields near the main Archean–Proterozoic suture (the Billyakh Shear Zone) suggest that reworking and mixing of Archean and Proterozoic mantle was limited to a zone less than 100 km wide.  相似文献   

11.
青藏高原西部叶城-狮泉河地区岩石圈各向异性研究   总被引:4,自引:0,他引:4  
对青藏高原西部新疆叶城—西藏狮泉河地区宽频地震探测记录到的剪切波进行了各向异性分析,计算结果给出了该地区上地幔各向异性的特征:西昆仑地区各向异性大都沿北东方向分布,总体方向变化不大,各向异性整体走向与青藏高原和塔里木盆地北缘各向异性空间分布一致。由此得出:印度板块向北推进的构造运动是形成本区岩石圈剪切波各向异性的主要原因,青藏高原各地体的各向异性在较大的东西向范围内保持稳定,各地体岩石圈固有的各向异性方向为北东向;作为羌塘地体和拉萨地体的分界线,班公怒江断裂带是主要的地表分界位置,在深部,无论西部剖面还是中部剖面,印度板块岩石圈的各向异性在该断裂带上均没有变化。  相似文献   

12.
地震波各向异性日益成为不可忽视的地质地球物理现象。地球内部不同圈层(地壳、地幔和地核)都存在着地震波各向异性,并表现为不同的规模(小到单矿物和岩石,大到地体甚至上地幔)和强度。通过地震波各向异性可以间接获取岩石圈厚度、地球深部结构与构造变形、地球动力学和地幔对流等信息。主要从地震波各向异性的表现形式、原因及地质地球物理意义等方面对近年来大洋俯冲带、大陆裂谷、地幔转换带和大陆碰撞造山带(青藏高原)等构造环境中的研究成果进行了评述,讨论了各向异性[JP2]研究中需要重视的几个问题:①剪切波分辨率;②矿物组构研究;③其它各向异性成因机制。还强调了各向异性研究与流变学、高温高压岩石物理实验相结合的新方向。  相似文献   

13.
The thermal structure and thickness of continental roots   总被引:19,自引:0,他引:19  
C. Jaupart  J. C. Mareschal 《Lithos》1999,48(1-4):93-114
We compare heat flow data from the Precambrian shields in North America and in South Africa. We also review data available in other less well-sampled Shield regions. Variations in crustal heat production account for most of the variability of the heat flow. Because of this variability, it is difficult to define a single average crustal model representative of a whole tectonic province. The average heat flow values of different Archean provinces in Canada, South Africa, Australia and India differ by significant amounts. This is also true for Proterozoic provinces. For example, the heat flow is significantly higher in the Proterozoic Namaqua–Natal Belt of South Africa than in the Grenville Province of the Canadian Shield (61 vs. 41 mW m−2 on average). These observations indicate that it is not possible to define single value of the average heat flow for all provinces of the same crustal age. Large amplitude short wavelength variations of the heat flow suggest that most of the difference between Proterozoic and Archean heat flow is of crustal origin. In eastern Canada, there is no good correlation between the local values of heat flow and heat production. In the Archean, Proterozoic and Paleozoic provinces of eastern Canada, heat flow values through rocks with the same heat production are not significantly different. There is therefore no evidence for variations of the mantle heat flow beneath these different provinces. After removing the local crustal heat production from the surface heat flow, the mantle (Moho) heat flow was estimated to be between 10–15 mW m−2 in the Archean, Proterozoic and Paleozoic provinces of eastern Canada. Estimates of the mantle heat flow in the Kaapvaal craton of South Africa may be slightly higher (≈17 mW m−2). Large-scale variations of bulk crustal heat production are well-documented in Canada and imply significant differences of deep lithospheric thermal structure. In thick lithosphere, surficial heat flow measurements record a time average of heat production in the lithospheric mantle and are not in equilibrium with the instantaneous heat production. The low mantle heat flow and current estimates of heat production in the lithospheric mantle do not support a mechanical (conductive) lithosphere thinner than 200 km and thicker than 330 km. Temperature anomalies with surrounding oceanic mantle extend to the convective boundary layer below the conductive layer, and hence to depths greater than these estimates. Mechanical and thermal stability of the lithosphere require the mantle part of the lithosphere to be chemically buoyant and depleted in radiogenic elements. Both characteristics are achieved simultaneously by partial melting and melt extraction.  相似文献   

14.
青藏高原及其部分邻区地震各向异性和土地幔特征   总被引:28,自引:1,他引:28       下载免费PDF全文
通过研究在青藏高原及其部分邻区由三分量宽频地震资料获得的剪切波各向异性的特征,得出了上地幔构造的若干认识,在本区200km以上的上地幔范围内各向异性的方向性变化主要是上地幔物质运移方向的影响,各地体的岩石圈与地壳在相当长时间内是连贯的运移,各向异性的主要方向决定于上地幔承受的主应力剪切作用方向常常与地表的山系和构造方向不一致,最强的各向异性特征出现在高速体地体边缘,与深部热的地幔物质有关,在各地体边缘的走滑断裂附近各向异性与断裂带走向一致。  相似文献   

15.
Recent interpretations of upper continental mantle seismic anisotropy observations have often relied on fabric measurements and calculated anisotropies of upper mantle xenoliths. Seismic ray paths of P and S waves, which provide information on azimuthal compressional wave anisotropy and shear wave splitting, are tens to hundreds of kilometers, whereas, xenoliths are usually only a few centimeters in diameter. To place better constraints on field-based anisotropy observations and to evaluate anisotropy information provided by xenoliths, it is important to examine anisotropy in large ultramafic massifs which have originated in the upper mantle. One such massif is the Twin Sisters Range located in the western portion of the North Cascades of Washington State, USA. The Twin Sisters massif, a slab of unaltered dunite, is 16 km in length, 6 km in width and 3 km thick. Exposed along its south and west sides are mafic granulite facies rocks, which likely represent lower continental crustal fragments. The ultramafic rocks are porphyroclastic in texture, consisting of strained, flattened porphyroclasts of olivine and enstatite and strain-free olivine mosaics. Olivine fabrics are typical of those formed at high temperatures and low strain rates. Petrofabrics and calculated anisotropies of individual samples vary throughout the massif, however, overall anisotropy of the body is significant, with maximum P and S waves anisotropies of 5.4% and 3.9%, respectively. The maximum delay time for split shear waves traveling through a 100-km-thick slab is 0.8 s and two directions of shear wave singularity are observed. The directions of maximum shear wave splitting and shear wave singularities do not coincide with the directions of maximum and minimum compressional wave velocity. In general, individual hand samples show significantly higher anisotropy than the overall anisotropy of the massif. It is concluded that simple averages of xenolith anisotropies are unreliable for use in the interpretation of field anisotropy observations.  相似文献   

16.
We present model of the structure and development of the entire lithosphere beneath the western Eger Rift (ER). Its crustal architecture and paths of volcanic products are closely related to sutures/boundaries of uppermost mantle domains distinguished by different orientations of olivine fabric, derived from 3-D analysis of seismic anisotropy. Three different fabrics of the mantle lithosphere belong to the Saxothuringian (ST), Teplá-Barrandian (TB) and Moldanubian (MD) microplates assembled during the Variscan orogeny. Dipping fossil (pre-assembly) olivine orientations, consistent within each unit, do not support any voluminous mantle delamination. The variable rift structure and morphology depend on the character of the pre-rift suture between the northern ST unit and the TB/MD units in the southern rift flank. The proper rift with typical graben morphology has developed above the steep lithosphere-scale suture between the ST and TB units. This subduction-related boundary originated from the closure of the ST Ocean. Parts of the crust and mantle lithosphere were dragged there into asthenospheric depths and then rapidly uplifted. The suture is marked by abrupt change in the mantle fabric and sharp gradients in regional gravity field and in metamorphic grade. The secular TB-side-down normal movement is reflected in deep sedimentary basins, which developed since the Carboniferous to Cenozoic and in topography. The graben morphology of the ER terminates above the “triple junction” of the ST, TB and MD mantle lithospheres. The junction is characterized by offsets of surface boundaries of the tectonic units from their mantle counterparts indicating a detachment of the rigid upper crust from the mantle lithosphere. The southwest continuation of the rift features in Bavaria is expressed in occurrences of Cenozoic sediments and volcanics above an inclined broad transition zone between the ST and MD lithospheres. Schematic scenario of evolution of the region consists mainly of a subduction of the ST lithosphere to depths around 140 km, exhumation of HP-HT rocks and the post-tectonic granitoid plutonism.  相似文献   

17.
岩石圈地幔结构及其对中国大型盆地的演化意义   总被引:5,自引:1,他引:4  
Pn波是通过莫霍面下方的上地幔顶部的地震波.由于Pn波的速度随温度和物质成分而变化, 以及Pn波各向异性可以反映地幔形变的历史.因此Pn波的速度以及各向异性成为探索岩石圈结构的重要工具.中国岩石圈地幔的Pn速度的特征是很高速的异常区和很低速的异常区呈镶嵌状出现, 反映了地质结构的不均匀性.西部大型盆地(塔里木、准噶尔、吐哈、柴达木和四川盆地) 具有较高的Pn速度和较弱的各向异性, 反映出这些盆地的岩石圈是冷的和坚硬的, 其变形较小.大面积的华北地区, 在太古代的基底下具有明显的Pn波低速度.研究结果表明与这些地区裂谷、岩石圈减薄和地幔上涌区相一致.Pn波各向异性与在最新(和目前正在进行) 的大规模变形期间, 岩石圈地幔沿NNE向右旋简单剪切相一致.华北的金矿藏以及华北和松辽盆地的石油储藏的位置明显地与该区的低Pn波速度区相吻合, 表明该区金属成矿和油储的形成与中、新生代以来在岩石圈地幔中的热活动, 以及壳幔之间的相互作用过程密切相关.   相似文献   

18.
Shear-wave splitting measurements from local and teleseismic earthquakes are used to investigate the seismic anisotropy in the upper mantle beneath the Rwenzori region of the East African Rift system. At most stations, shear-wave splitting parameters obtained from individual earthquakes exhibit only minor variations with backazimuth. We therefore employ a joint inversion of SKS waveforms to derive hypothetical one-layer parameters. The corresponding fast polarizations are generally rift parallel and the average delay time is about 1 s. Shear phases from local events within the crust are characterized by an average delay time of 0.04 s. Delay times from local mantle earthquakes are in the range of 0.2 s. This observation suggests that the dominant source region for seismic anisotropy beneath the rift is located within the mantle. We use finite-frequency waveform modeling to test different models of anisotropy within the lithosphere/asthenosphere system of the rift. The results show that the rift-parallel fast polarizations are consistent with horizontal transverse isotropy (HTI anisotropy) caused by rift-parallel magmatic intrusions or lenses located within the lithospheric mantle—as it would be expected during the early stages of continental rifting. Furthermore, the short-scale spatial variations in the fast polarizations observed in the southern part of the study area can be explained by effects due to sedimentary basins of low isotropic velocity in combination with a shift in the orientation of anisotropic fabrics in the upper mantle. A uniform anisotropic layer in relation to large-scale asthenospheric mantle flow is less consistent with the observed splitting parameters.  相似文献   

19.
The Archean lithospheric mantle beneath the Kaapvaal–Zimbabwe craton of Southern Africa shows ±1% variations in seismic P-wave velocity at depths within the diamond stability field (150–250 km) that correlate regionally with differences in the composition of diamonds and their syngenetic inclusions. Seismically slower mantle trends from the mantle below Swaziland to that below southeastern Botswana, roughly following the surface outcrop pattern of the Bushveld-Molopo Farms Complex. Seismically slower mantle also is evident under the southwestern side of the Zimbabwe craton below crust metamorphosed around 2 Ga. Individual eclogitic sulfide inclusions in diamonds from the Kimberley area kimberlites, Koffiefontein, Orapa, and Jwaneng have Re–Os isotopic ages that range from circa 2.9 Ga to the Proterozoic and show little correspondence with these lithospheric variations. However, silicate inclusions in diamonds and their host diamond compositions for the above kimberlites, Finsch, Jagersfontein, Roberts Victor, Premier, Venetia, and Letlhakane do show some regional relationship to the seismic velocity of the lithosphere. Mantle lithosphere with slower P-wave velocity correlates with a greater proportion of eclogitic versus peridotitic silicate inclusions in diamond, a greater incidence of younger Sm–Nd ages of silicate inclusions, a greater proportion of diamonds with lighter C isotopic composition, and a lower percentage of low-N diamonds whereas the converse is true for diamonds from higher velocity mantle. The oldest formation ages of diamonds indicate that the mantle keels which became continental nuclei were created by middle Archean (3.2–3.3 Ga) mantle depletion events with high degrees of melting and early harzburgite formation. The predominance of sulfide inclusions that are eclogitic in the 2.9 Ga age population links late Archean (2.9 Ga) subduction-accretion events involving an oceanic lithosphere component to craton stabilization. These events resulted in a widely distributed younger Archean generation of eclogitic diamonds in the lithospheric mantle. Subsequent Proterozoic tectonic and magmatic events altered the composition of the continental lithosphere and added new lherzolitic and eclogitic diamonds to the already extensive Archean diamond suite.  相似文献   

20.
Latifi  K.  Sadidkhouy  A.  Ghassemi  M. R. 《Geotectonics》2019,53(3):433-447
Geotectonics - We present a new technique for shear wave splitting analysis in anisotropic mantle by combining the splitting analysis of Ps phases in receiver functions and SKS splitting analysis....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号