首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
KUBO  K. 《Journal of Petrology》2002,43(3):423-448
Dunite formation processes in highly depleted peridotites arediscussed based upon a detailed study of the Iwanaidake peridotite,Hokkaido, Japan, which consists mainly of harzburgite with asmall amount of dunite. In the harzburgites, the Mg# [= 100x Mg/(Mg + Fe2+)] of olivine ranges from 91·5 to 92·5,and the Cr# [= 100 x Cr/(Cr + Al)] of spinel from 30 to 70;in the dunites, the Mg# of olivine ranges from 92·5 to94 and the Cr# of spinel from 60 to 85, respectively. The NiOwt % of olivine in harzburgites ranges from 0·38 to 0·44,and in dunites from 0·35 to 0·37. The Mg# andCr# are higher and NiO wt % is lower in the dunites than inthe harzburgites surrounding the dunites. The Mg# and Cr# exhibitnormal depletion trends expected from simple partial melting,whereas the NiO wt % shows an abnormal trend. On the basis ofmass balance calculations, dunites are considered to be derivedfrom the harzburgites by a process involving incongruent meltingof orthopyroxene (orthopyroxene olivine + Si-rich melt). Hydrousconditions were necessary to lower the solidus, and thus meltingof harzburgite was probably triggered by the introduction ofhydrous silicate melt. The dunite in this massif may have formedin the mantle wedge above a subduction zone. KEY WORDS: depleted peridotite; hydrous melt; incongruent melting; residual dunite; Iwanaidake peridotite  相似文献   

2.
Geochronological (K–Ar or 40Ar/39Ar), major and traceelement, Sr–Nd–Pb isotopic and mineral chemicaldata are presented for newly discovered Cenozoic volcanic rocksin the western Qiangtang and central Lhasa terranes of Tibet.Alkali basalts of 65–45 Ma occur in the western Qiangtangterrane and represent primitive mantle melts as indicated byhigh mg-numbers [100 x Mg/(Mg + Fe)] (54–65), Cr (204–839ppm) and Ni (94–218 ppm) contents, and relatively lowratios of 87Sr/86Sr (0·7046–0·7061), 206Pb/204Pb(18·21–18·89), 207Pb/204Pb (15·49–15·61)and 208Pb/204Pb (38·42–38·89), and highratios of 143Nd/144Nd (0·5124–0·5127). Incontrast, younger volcanic rocks in the western Qiangtang terrane(  相似文献   

3.
Numerous minette dykes intersect the Precambrian crystallinebasement of Schirmacher Oasis, East Antarctica. This study presentsnew Sr, Nd, Pb and O isotope data for 11 minette samples fromfour different dykes. The samples are characterized by relativelyhigh 87Sr/86Sr (0·7077–0·7134), 207Pb/204Pb(15·45–15·55) and 208Pb/204Pb (37·8–39·8),combined with low 143Nd/144Nd (  相似文献   

4.
Kistufell: Primitive Melt from the Iceland Mantle Plume   总被引:5,自引:2,他引:5  
This paper presents new geochemical data from Kistufell (64°48'N,17°13'W), a monogenetic table mountain situated directlyabove the inferred locus of the Iceland mantle plume. Kistufellis composed of the most primitive olivine tholeiitic glassesfound in central Iceland (MgO 10·56 wt %, olivine Fo89·7).The glasses are interpreted as near-primary, high-degree plumemelts derived from a heterogeneous mantle source. Mineral, glassand bulk-rock (glass + minerals) chemistry indicates a low averagemelting pressure (15 kbar), high initial crystallization pressuresand temperatures (10–15 kbar and 1270°C), and eruptiontemperatures (1240°C) that are among the highest observedin Iceland. The glasses have trace element signatures (Lan/Ybn<1, Ban/Zrn 0·55–0·58) indicative ofa trace element depleted source, and the Sr–Nd–Pbisotopic ratios (87Sr/86Sr 0·70304–0·70308,143Nd/144Nd 0·513058–0·513099, 206Pb/204Pb18·343–18·361) further suggest a long-termtrace element depletion relative to primordial mantle. HighHe isotopic ratios (15·3–16·8 R/Ra) combinedwith low 207Pb/204Pb (15·42–15·43) suggestthat the mantle source of the magma is different from that ofNorth Atlantic mid-ocean ridge basalt. Negative Pb anomalies,and positive Nb and Ta anomalies indicate that the source includesa recycled, subducted oceanic crustal or mantle component. PositiveSr anomalies (Srn/Ndn = 1·39–1·50) furthersuggest that this recycled source component involves lower oceaniccrustal gabbros. The  相似文献   

5.
Ultramafic (lherzolites, metasomatized peridotites, harzburgites,websterites and clinopyroxenites) and mafic igneous (basalts,dolerites, diorites and gabbros) rocks exposed at the sea-flooralong the West Iberia continental margin represent a rare opportunityto study the transition zone between continental and oceaniclithosphere. The igneous rocks are enriched in LREE, unlikeNorth Atlantic MORB. A correlation between their 143Nd/144Ndisotopic composition and Ce/Yb ratio suggests that they originatefrom mixing between partial melts of a depleted mantle sourcesimilar to DMM and of an enriched mantle source which may residewithin the continental lithosphere. Clinopyroxenes and amphibolesin the ultramafic rocks are LREE depleted and have flat HREEpatterns with concentrations higher than those of abyssal peridotites.Clinopyroxenes in the harzburgites are less LREE depleted buthave lower HREE concentrations. The clinopyroxenes in the GaliciaBank (GB) lherzolites have radiogenic Nd (143Nd/144Nd rangingfrom 0·512937 to 0·513402) and unradiogenic Sr(87Sr/86Sr ranging from 0·702100 to 0·702311)isotopic ratios similar to, or higher than, DMM (Depleted MORBMantle) whereas the clinopyroxenes in the Iberia Abyssal Plainwebsterites have low-Nd isotopic compositions (143Nd/144Nd rangingfrom 0·512283 to 0·512553) with high-Sr isotopicratios (87Sr/86Sr ranging from 0·704170 to 0·705919).Amphiboles in Galicia Bank lherzolites and diorites have Nd–Srisotopic compositions (143Nd/144Nd from 0·512804 to 0·512938and 87Sr/86Sr from 0·703243 to 0·703887) intermediatebetween those of the clinopyroxenes from the Galicia Bank andthe Iberia Abyssal Plain, but similar to the clinopyroxenesin the 5100 Hill harzburgite (143Nd/144Nd = 0·512865and 87Sr/86Sr = 0·703591) and to the igneous rocks (143Nd/144Ndranging from 0·512729 to 0·513121 and 87Sr/86Srranging from 0·702255 to 0·705109). The majorand trace element compositions of cpx in the Galicia Bank spinellherzolites provide evidence for large-scale refertilizationof the lithospheric upper mantle by MORB-like tholeiitic melts.The associated harzburgites did not undergo partial meltingduring the rifting stage, but, in earlier times, probably during,or even before, the Hercynian orogeny. Iberia Abyssal Plainwebsterites are interpreted as high-pressure cumulates formedin the mantle. Their high Sm/Nd ratios (from 0·43 to0·67) coupled with very low-Nd isotopic compositionsare best explained by a two-stage history: formation of thecumulates from the percolation of enriched melts long beforethe rifting, followed by low-degree partial melting of the pyroxenites,accounting for their LREE depletion. This last event probablyoccurs during the rifting episode, 122 Myr ago. The isotopicheterogeneities observed in the ultramafic rocks of the Iberiamargin were already present at the time of the rifting event.They reflect a long and complex history of depletion and enrichmentevents in an old part of the mantle, and provide strong argumentsfor a sub-continental origin of this part of the upper mantle. KEY WORDS: Iberia margin; mantle peridotites; igneous rocks; petrology; geochemistry  相似文献   

6.
Neogene plateau lavas in Patagonia, southern Argentina, eastof the volcanic gap between the Southern and Austral VolcanicZones at 46·5° and 49·5°S are linked withasthenospheric slab window processes associated with the collisionof a Chile Ridge segment with the Chile Trench at 12 Ma. Thestrong ocean-island basalt (OIB)-like geochemical signatures(La/Ta <20; Ba/La <20; 87Sr/86Sr = 0·7035–0·7046;143Nd/144Nd = 0·51290–0·51261; 206Pb/204Pb= 18·3–18·8; 207Pb/204Pb = 15·57–15·65;208Pb/204Pb = 38·4–38·7) of these Patagonianslab window lavas contrast with the mid-ocean ridge basalt (MORB)-like,depleted mantle signatures of slab window lavas elsewhere inthe Cordillera (e.g. Antarctic Peninsula; Baja California).The Patagonian lavas can be divided into a voluminous  相似文献   

7.
A bimodal volcanic sequence of 230 m thickness on Skiff Bank,a western salient of the northern Kerguelen Plateau, was drilledduring ODP Leg 183. The sequence comprises three main units:a mafic unit of trachybasalt flows sandwiched between two unitsof trachytic or rhyolitic flows and volcaniclastic rocks. Althoughinterpretation is complicated by moderate to strong alterationof the rocks, their original chemical character can be establishedusing the least mobile major and trace elements (Al, Th, highfield strength elements and rare earth elements). High concentrationsof alkalis and incompatible trace elements indicate that bothmafic and felsic rocks are alkalic. The felsic rocks may havebeen derived by partial melting of mafic rocks, followed byfractionation of feldspar, clinopyroxene, Fe–Ti oxidesand apatite. The mafic and felsic rocks have similar Nd andPb isotopic compositions; 206Pb/204Pb ratios are low (17·5–18·0)but, like the 143Nd/144Nd ratios (0·5125–0·5126),they are comparable with those of basalts from the central andsouthern Kerguelen Plateau (e.g. Sites 747, 749, 750). The Srisotopic system is perturbed by later alteration. There is nochemical or isotopic evidence for a continental crustal component.The bimodal alkalic character and the presence of quartz-phyricrhyolites is interpreted to indicate that the sequence formspart of a shield volcano built upon the volcanic plateau. Theage of 68 Ma, obtained on Site 1139 rocks by Duncan (A timeframe for construction of the Kerguelen Plateau and Broken Ridge,Journal of Petrology 43, 1109–1119, 2002), provides onlya minimum age for the underlying flood volcanic rocks. The highage indicates none the less that Skiff Bank is not the presentlocation of the Kerguelen plume. KEY WORDS: Ocean Drilling Program; Kerguelen Plateau; Skiff Bank  相似文献   

8.
Macquarie Island is an exposure above sea-level of part of thecrest of the Macquarie Ridge. The ridge marks the Australia–Pacificplate boundary south of New Zealand, where the plate boundaryhas evolved progressively since Eocene times from an oceanicspreading system into a system of long transform faults linkedby short spreading segments, and currently into a right-lateralstrike-slip plate boundary. The rocks of Macquarie Island wereformed during spreading at this plate boundary in Miocene times,and include intrusive rocks (mantle and cumulate peridotites,gabbros, sheeted dolerite dyke complexes), volcanic rocks (N-to E-MORB pillow lavas, picrites, breccias, hyaloclastites),and associated sediments. A set of Macquarie Island basalticglasses has been analysed by electron microprobe for major elements,S, Cl and F; by Fourier transform infrared spectroscopy forH2O; by laser ablation–inductively coupled plasma massspectrometry for trace elements; and by secondary ion mass spectrometryfor Sr, Nd and Pb isotopes. An outstanding compositional featureof the data set (47·4–51·1 wt % SiO2, 5·65–8·75wt % MgO) is the broad range of K2O (0·1–1·8wt %) and the strong positive covariation of K2O with otherincompatible minor and trace elements (e.g. TiO2 0·97–2·1%;Na2O 2·4–4·3%; P2O5 0·08–0·7%;H2O 0·25–1·5%; La 4·3–46·6ppm). The extent of enrichment in incompatible elements in glassescorrelates positively with isotopic ratios of Sr (87Sr/86Sr= 0·70255–0·70275) and Pb (206Pb/204Pb =18·951–19·493; 207Pb/204Pb = 15·528–15·589;208Pb/204Pb = 38·523–38·979), and negativelywith Nd (143Nd/144Nd = 0·51310–0·51304).Macquarie Island basaltic glasses are divided into two compositionalgroups according to their mg-number–K2O relationships.Near-primitive basaltic glasses (Group I) have the highest mg-number(63–69), and high Al2O3 and CaO contents at a given K2Ocontent, and carry microphenocrysts of primitive olivine (Fo86–89·5).Their bulk compositions are used to calculate primary melt compositionsin equilibrium with the most magnesian Macquarie Island olivines(Fo90·5). Fractionated, Group II, basaltic glasses aresaturated with olivine + plagioclase ± clinopyroxene,and have lower mg-number (57–67), and relatively low Al2O3and CaO contents. Group I glasses define a seriate variationwithin the compositional spectrum of MORB, and extend the compositionalrange from N-MORB compositions to enriched compositions thatrepresent a new primitive enriched MORB end-member. Comparedwith N-MORB, this new end-member is characterized by relativelylow contents of MgO, FeO, SiO2 and CaO, coupled with high contentsof Al2O3, TiO2, Na2O, P2O5, K2O and incompatible trace elements,and has the most radiogenic Sr and Pb regional isotope composition.These unusual melt compositions could have been generated bylow-degree partial melting of an enriched mantle peridotitesource, and were erupted without significant mixing with commonN-MORB magmas. The mantle in the Macquarie Island region musthave been enriched and heterogeneous on a very fine scale. Wesuggest that the mantle enrichment implicated in this studyis more likely to be a regional signature that is shared bythe Balleny Islands magmatism than directly related to the hypotheticalBalleny plume itself. KEY WORDS: mid-ocean ridge basalts; Macquarie Island; glass; petrology; geochemistry  相似文献   

9.
Ultramafic xenoliths in Eocene minettes of the Bearpaw Mountainsvolcanic field (Montana, USA), derived from the lower lithosphereof the Wyoming craton, can be divided based on textural criteriainto tectonite and cumulate groups. The tectonites consist ofstrongly depleted spinel lherzolites, harzburgites and dunites.Although their mineralogical compositions are generally similarto those of spinel peridotites in off-craton settings, somecontain pyroxenes and spinels that have unusually low Al2O3contents more akin to those found in cratonic spinel peridotites.Furthermore, the tectonite peridotites have whole-rock majorelement compositions that tend to be significantly more depletedthan non-cratonic mantle spinel peridotites (high MgO, low CaO,Al2O3 and TiO2) and resemble those of cratonic mantle. Thesecompositions could have been generated by up to 30% partialmelting of an undepleted mantle source. Petrographic evidencesuggests that the mantle beneath the Wyoming craton was re-enrichedin three ways: (1) by silicate melts that formed mica websteriteand clinopyroxenite veins; (2) by growth of phlogopite fromK-rich hydrous fluids; (3) by interaction with aqueous fluidsto form orthopyroxene porphyroblasts and orthopyroxenite veins.In contrast to their depleted major element compositions, thetectonite peridotites are mostly light rare earth element (LREE)-enrichedand show enrichment in fluid-mobile elements such as Cs, Rb,U and Pb on mantle-normalized diagrams. Lack of enrichment inhigh field strength elements (HFSE; e.g. Nb, Ta, Zr and Hf)suggests that the tectonite peridotites have been metasomatizedby a subduction-related fluid. Clinopyroxenes from the tectoniteperidotites have distinct U-shaped REE patterns with strongLREE enrichment. They have 143Nd/144Nd values that range from0·5121 (close to the host minette values) to 0·5107,similar to those of xenoliths from the nearby Highwood Mountains.Foliated mica websterites also have low 143Nd/144Nd values (0·5113)and extremely high 87Sr/86Sr ratios in their constituent phlogopite,indicating an ancient (probably mid-Proterozoic) enrichment.This enriched mantle lithosphere later contributed to the formationof the high-K Eocene host magmas. The cumulate group rangesfrom clinopyroxene-rich mica peridotites (including abundantmica wehrlites) to mica clinopyroxenites. Most contain >30%phlogopite. Their mineral compositions are similar to thoseof phenocrysts in the host minettes. Their whole-rock compositionsare generally poorer in MgO but richer in incompatible traceelements than those of the tectonite peridotites. Whole-rocktrace element patterns are enriched in large ion lithophileelements (LILE; Rb, Cs, U and Pb) and depleted in HFSE (Nb,Ta Zr and Hf) as in the host minettes, and their Sr–Ndisotopic compositions are also identical to those of the minettes.Their clinopyroxenes are LREE-enriched and formed in equilibriumwith a LREE-enriched melt closely resembling the minettes. Thecumulates therefore represent a much younger magmatic event,related to crystallization at mantle depths of minette magmasin Eocene times, that caused further metasomatic enrichmentof the lithosphere. KEY WORDS: ultramafic xenoliths; Montana; Wyoming craton; metasomatism; cumulates; minette  相似文献   

10.
In the Speik Complex (Eastern Alps, Austria), highly melt-depleted,metamorphosed harzburgites with abundant pods and layers ofchromitite are interlayered with a suite of metamorphosed orthopyroxenites,clinopyroxenites and gabbros. Coarse-grained orthopyroxenitesoccur as centimetre- to metre-wide veinlets and pods, but alsoas intrusive plugs several tens of metres wide. Intimately associatedmetaclinopyroxenite and metagabbro are present as bodies upto several metres thick at a distinct stratigraphic level withinthe complex. In the ultramafic rocks, relict magmatic olivine,orthopyroxene, clinopyroxene and spinel have been overprintedby a metamorphic assemblage of forsterite, diopside, tremolite,anthophyllite, chlorite, serpentine, talc and Cr–Fe-richspinel. Hornblende, epidote, zoisite and chlorite dominate themetamorphic paragenesis in metagabbros, in addition to rarerelicts of clinopyroxene and two phases of Ca-rich garnet. Thepolymetamorphic evolution of the Speik Complex includes rarelypreserved pre-Variscan (400 Ma) eclogite-facies conditions,Variscan (330 Ma) amphibolite-facies conditions (600–700°C,>5 kbar) and Eoalpine (100 Ma) greenschist- to amphibolite-faciesconditions reaching 550°C and 7–10 kbar. Orthopyroxenitesare characterized by high concentrations of SiO2, MgO and Cr,and by U-shaped chondrite-normalized rare earth element (REE)patterns similar to those of their harzburgite hosts. The REEpatterns of the clinopyroxenites are flat to slightly enrichedin light REE. Metagabbro compositions are variable, but generallycharacterized by low SiO2 and high mg-numbers (61–78).Their REE patterns all have GdN/YbN > 1; some samples havelarge positive Eu anomalies implying the original presence ofcumulus plagioclase. In the orthopyroxenites, clinopyroxenitesand some peridotites, Pt, Pd and Re are distinctly enrichedcompared with Os, Ir and Ru, whereas most harzburgites haveunfractionated to slightly fractionated platinum-group element(PGE) patterns with respect to average upper mantle. The Re–Osisotope compositions of the pyroxenites define an errorchronat 550 ± 17 Ma and a supra-chondritic 187Os/188Os of0·179 ± 0·003. An isochron age of 554 ±37 Ma with Nd(i) +0·7 is indicated by the Sm–Ndisotope compositions of whole-rock pyroxenite and gabbro samples,whereas the harzburgites plot on an errorchron of 745 ±45 Ma and Nd(i) +6. The pyroxenites and gabbros probably representa cogenetic suite of magmatic dykes intruded into uppermost,highly depleted, suboceanic mantle below the crust–mantletransition zone in an oceanic basin close to the northwesternmargin of Gondwana. KEY WORDS: pyroxenite; metagabbro; geochemistry; Re–Os isotopes; Sm–Nd isotopes  相似文献   

11.
Fe-rich dunite xenoliths within the Kimberley kimberlites compriseolivine neoblasts with minor elongated, parallel-oriented ilmenite,and rarely olivine porphyroclasts and spinel. Compared withtypical mantle peridotites, olivines in the Fe-rich duniteshave lower forsterite (Fo87–89) and NiO contents (1300–2800ppm), which precludes a restitic origin for the dunites. Chrome-richspinels are remnants of a metasomatic reaction that producedilmenite and phlogopite. Trace element compositions differ betweenporphyroclastic and neoblastic olivine, the latter having higherTi, V, Cr and Ni and lower Zn, Zr and Nb contents, documentingtheir different origins. The dunites have high 187Os/ 188Osratios (0·11–0·15) that result in youngmodel ages for most samples, whereas three samples show isotopicmixtures between Phanerozoic neoblasts and ancient porphyroclasticmaterial. Most Fe-rich dunite xenoliths are interpreted to berecrystallized cumulates related to fractional crystallizationof Jurassic Karoo flood basalt magmatism, whereas the porphyroclastsare interpreted to be remnants from a much earlier (probablyArchaean Ventersdorp) magmatic episode. The calculated parentalmagma for the most primitive olivine neoblasts in the Fe-richdunites is similar to low-Ti Karoo basalts. Modelling the crystalfractionation of the inferred parental magma with pMELTS yieldselement fractionation trends that mirror the element variationof primitive low-Ti Karoo basalts. KEY WORDS: dunite xenoliths; fractional crystallization; Karoo; large igneous province; pMELTS; Re–Os; trace elements  相似文献   

12.
Major and trace element and Sr–Nd–Pb isotopic variationsin mafic volcanic rocks hve been studied in a 220 km transectacross the Kamchatka arc from the Eastern Volcanic Front, overthe Central Kamchatka Depression to the Sredinny Ridge in theback-arc. Thirteen volcanoes and lava fields, from 110 to 400km above the subducted slab, were sampled. This allows us tocharacterize spatial variations and the relative amount andcomposition of the slab fluid involved in magma genesis. TypicalKamchatka arc basalts, normalized for fractionation to 6% MgO,display a strong increase in large ion lithophile, light rareearth and high field strength elements from the arc front tothe back-arc. Ba/Zr and Ce/Pb ratios, however, are nearly constantacross the arc, which suggests a similar fluid input for Baand Pb. La/Yb and Nb/Zr increase from the arc front to the back-arc.Rocks from the Central Kamchatka Depression range in 87Sr/86Srfrom 0·70334 to 0·70366, but have almost constantNd isotopic compositions (143Nd/144Nd 0·51307–0·51312).This correlates with the highest U/Th ratios in these rocks.Pb-isotopic ratios are mid-ocean ridge basalt (MORB)-like butdecrease slightly from the volcanic front to the back-arc. Theinitial mantle source ranged from N-MORB-like in the volcanicfront and Central Kamchatka Depression to more enriched in theback-arc. This enriched component is similar to an ocean-islandbasalt (OIB) source. Variations in (CaO)6·0–(Na2O)6·0show that degree of melting decreases from the arc front tothe Central Kamchatka Depression and remains constant from thereto the Sredinny Ridge. Calculated fluid compositions have asimilar trace element pattern across the arc, although minordifferences are implied. A model is presented that quantifiesthe various mantle components (variably depleted N-MORB-mantleand enriched OIB-mantle) and the fluid compositions added tothis mantle wedge. The amount of fluid added ranges from 0·7to 2·1%. The degree of melting changes from  相似文献   

13.
Peridotites associated with pyroxenites (with rare olivine andspinel) are exposed on the islands of San Jorge and Santa Isabelin the Solomon Islands. Orthopyroxenite occurs in large outcrops(100 m2) whereas websterite and clinopyroxenite occur as layersand veins/dykes in peridotites. The bulk compositions of thepyroxenites are characterized by high Mg2+/(Mg2+ + Fe2+) (0·78–0·91)and low Al2O3 (<2·7 wt %). Low rare earth elementabundances are coupled with large ion lithophile element enrichmentsand positive Sr and Pb anomalies (primitive mantle-normalized)relative to adjacent rare earths. Temperatures of equilibrationfor the pyroxenites are between 950 and 1050°C. These relativelylow temperatures, combined with the occurrence of primary fluidinclusions, suggest that the pyroxenites formed by interactionof peridotite protoliths with an aqueous fluid. Bulk-rock andmineral compositions of the orthopyroxenites are similar tothose of mantle-derived pyroxenites, whereas the websteriteshave closer chemical affinity with crustal arc cumulates. Nevertheless,field relationships plus petrological, textural and geochemicalevidence are consistent with formation of all pyroxenite typesin supra-subduction zone mantle, resulting from metasomatismof peridotite by subducted Pacific Plate-derived fluid. Sucha setting for pyroxenite has not previously been reported indetail. We propose that these processes produce mantle pyroxenitewith compositions similar to crustal pyroxenite. KEY WORDS: mantle metasomatism; pyroxenite; supra-subduction zone  相似文献   

14.
The Cretaceous lava sequence and associated mafic dyke swarmin central–western Madagascar (Mailaka and Bemaraha areas)range in composition from picrite basalts to cordierite–orthopyroxene-bearingrhyodacites (MgO from 14 to 0·6 wt %). Petrographic andchemical data indicate the presence of both tholeiitic and transitionalmagma series, with variable degree of rare earth element enrichment[(La/Nd)n = 1–1·4 for tholeiites vs (La/Nd)n =0·65–1 for transitional rocks]. Initial (at 88Ma) 87Sr/86Sr and  相似文献   

15.
This paper presents field, geochemical and isotopic (Sr, Nd,Pb) results on basalts from the Antipodes, Campbell and ChathamIslands, New Zealand. New 40Ar/39Ar age determinations alongwith previous K–Ar dates reveal three major episodes ofvolcanic activity on Chatham Island (85–82, 41–35,5 Ma). Chatham and Antipodes samples comprise basanite, alkaliand transitional basalts that have HIMU-like isotopic (206Pb/204Pb>20·3–20·8, 87Sr/86Sr <0·7033,143Nd/144Nd >0·5128) and trace element affinities(Ce/Pb 28–36, Nb/U 34–66, Ba/Nb 4–7). Thegeochemistry of transitional to Q-normative samples from CampbellIsland is explained by interaction with continental crust. Thevolcanism is part of a long-lived (100 Myr), low-volume, diffusealkaline magmatic province that includes deposits on the Northand South Islands of New Zealand as well as portions of WestAntarctica and SE Australia. All of these continental areaswere juxtaposed on the eastern margin of Gondwanaland at >83Ma. A ubiquitous feature of mafic alkaline rocks from this regionis their depletion in K and Pb relative to other highly incompatibleelements when normalized to primitive mantle values. The inversionof trace element data indicates enriched mantle sources thatcontain variable proportions of hydrous minerals. We proposethat the mantle sources represent continental lithosphere thathost amphibole/phlogopite-rich veins formed by plume- and/orsubduction-related metasomatism between 500 and 100 Ma. Thestrong HIMU signature (206Pb/204Pb >20·5) is consideredto be an in-grown feature generated by partial dehydration andloss of hydrophile elements (Pb, Rb, K) relative to more magmaphileelements (Th, U, Sr) during short-term storage at the base ofthe lithosphere. KEY WORDS: continental alkaline basalts; lithospheric mantle, mantle metasomatism; New Zealand; OIB, HIMU; Sr, Nd and Pb isotopes; West Antarctica  相似文献   

16.
BECKER  HARRY 《Journal of Petrology》1996,37(4):785-810
Gamet-bearing high-temperature peridotite massifs in lower Austriawere exhumed during Carboniferous plate convergence in the Bohemianmassif. The peridotite massifs contain garnet pyroxenite layers,most of which are high-pressure cumulates that crystallizedin the deep lithosphere during ascent and cooling of hot asthenosphericmelts. Many of the pyroxenites have negative Eu anomalies andhigh LREE abundances in pyroxenes and bulk rocks, 87Sr/86Sr(335 Ma) as high as 0.7089, and Nd (335 Ma) as low as –4.8(leached clinopyroxenes and garnets). These pyroxenites alsoshow strong depletions in Rb, K, Ta, P and Ti compared withthe REE Equilibrium melt compositions calculated from the cumulatecompositions have very high LREE abundances (Lan = 300–600)and show strong LREEfractionation [(La/Sm)n = 7–47)].Trace element abundances, the Ca–Al-rich composition ofthe cumulates and possible Ti saturation in the melts suggestthat these melts were of primitive carbonatitic–meliliticor lamprophyrt-like composition. Other garnet pyroxenites suchas Al-rich garnet-kyanite clinopyroxemtes with positive Eu anomaliesprobably represent metamorphosed crustal rocks which were subductedand accreted to the lithospheric mantle. The high 87Sr/86Sr,low Nd (335 Ma) and negative Eu anomalies of the high-pressurecumulates can be explained if their equilibrium melts containeda component derived from subducted upper-crustal rocks. Thehigh equilibration pressures of the host peridotites (3–3.5GPa) and the high equilibration temperatures of the pyroxenites(1100–1400C) indicate that these melts are likely tobe derived from the sub-lithospheric mantle. There, meltingmay have been triggered by small amounts of melt or fluids derivedfrom a subducting slab at greater depth. KEY WORDS: garnet pyroxenites; geochemistry; lower Austria; ultramafic massifs; subduction  相似文献   

17.
Upper-mantle xenoliths in volcanic pipes cutting the axis ofthe Sierra Nevada batholith contain predominantly spinel-bearingperidotites (with sporadic garnet) and garnet websterites. Inspite of the enormous thickness of the Sierran crust, the Sierranupper mantle has not attained the garnet peridotite stabilityfield. The peridotites have forsteritic (Fo88–92) olivines,Cr-diopsides, Cr-spinels, and magnesian orthopyroxenes (En88–92).Their texture and compositional characteristics of the coexistingphases indicate that these are fragments of the upper mantlethat had undergone various degrees of partial fusion. The Pconditions of reequilibration and mineralogical characteristicssuggest that the partial fusion was accompanied by diapiricuprise. The REE distribution patterns are nearly chondritic.Garnet websterite xenoliths also contain magnesian and Cr-richphases. Their bulk chemical compositions are like pyroxenitecumulates. The garnet websterites from Big Creek differ fromthose occurring at Pick and Shovel in having more Fe-rich phasesand occasional hydrous minerals. The Pick and Shovel garnetwebsterites are interpreted to be pyroxene-rich, garnet-freecumulates formed by fractional crystallization of melts generatedby partial melting of subcontinental lithosphere at depth 60km. The REE abundance of these xenoliths is consistent withthis mode of origin. Presence of jadeitic clinopyroxenes andF-rich phlogopites, and the LREE- and 87Sr/86Sr-enriched characterof the garnet websterites from Big Creek may suggest their originas metasomatized upper-mantle garnet peridotites. The latestP-T conditions of equilibration of all garnet-bearing samplesshow that they lie along a nearly adiabatic gradient in therange of 900–1000 C and 18–32 kbar. An isotopically heterogeneous, old (1 b.y.) subcontinental lithosphere,characterized by high 87Sr/86Sr (0.7044–0.7082), radiogenic206Pb/204Pb (18.86–20.04), 207Pb/204Pb (15.64–15.69)and 208Pb/204Pb (38.69–39.11), and moderate 143Nd/144Nd(0.51234–0.51260; ENd–0.35 to –5.8) is consideredto be the source of these rocks. There was a fluid influx froma subducted slab carrying Ba, K, Rb, U, Th, and radiogenic Pbinto the overlying ancient lithosphere.  相似文献   

18.
Petrogenetic models for the origin of lamproites are evaluatedusing new major element, trace element, and Sr, Nd, and Pb isotopedata for Holocene lamproites from the Gaussberg volcano in theEast Antarctic Shield. Gaussberg lamproites exhibit very unusualPb isotope compositions (206Pb/204Pb = 17·44–17·55and 207Pb/204Pb = 15·56–15·63), which incommon Pb isotope space plot above mantle evolution lines andto the left of the meteorite isochron. Combined with very unradiogenicNd, such compositions are shown to be inconsistent with an originby melting of sub-continental lithospheric mantle. Instead,a model is proposed in which late Archaean continent-derivedsediment is subducted as K-hollandite and other ultra-high-pressurephases and sequestered in the Transition Zone (or lower mantle)where it is effectively isolated for 2–3 Gyr. The high207Pb/204Pb ratio is thus inherited from ancient continent-derivedsediment, and the relatively low 206Pb/204Pb ratio is the resultof a single stage of U/Pb fractionation by subduction-relatedU loss during slab dehydration. Sr and Nd isotope ratios, andtrace element characteristics (e.g. Nb/Ta ratios) are consistentwith sediment subduction and dehydration-related fractionation.Similar models that use variable time of isolation of subductedsediment can be derived for all lamproites. Our interpretationof lamproite sources has important implications for ocean islandbasalt petrogenesis as well as the preservation of geochemicallyanomalous reservoirs in the mantle. KEY WORDS: lamproites; Pb isotopes; mantle Transition Zone; subducted sediment; anomalous mantle reservoirs  相似文献   

19.
The Takaka Terrane in the South Island of New Zealand containsa well-preserved Cambrian arc system (Devil River Volcanics)that displays a complete assemblage of interbedded low- to high-Karc rocks, back-arc rocks and boninites. Most volcanic rocksare mafic. A coherent dataset was obtained including major elements,trace elements and Sr–Nd–Pb isotope compositionsfrom clinopyroxene and amphibole separates. With time, 207Pb/204Pbin the arc rocks become more unradiogenic and 143Nd/144Nd moreradiogenic, and Th/Yb and La/Yb increase. La/Yb values rangefrom one in the boninites and back-arc rocks to 30 in the high-Karc rocks. Corresponding  相似文献   

20.
We present major and trace element and Sr–Nd–Pb–Hf–Osisotopic data for the 76–58 Ma Western Cape melilititeprovince, an age-progressive magmatic lineation in which primitiveolivine melilitite intrusives and alkali basalt lavas have beenemplaced on the southwestern margin of South Africa. The magmasrange from alkali basalts with strong HIMU isotopic and traceelement affinities on the continental shelf to melilitites withkimberlite-like incompatible element compositions and EM 1 isotopicaffinities on thick Proterozoic lithosphere (i.e. 87Sr/86Sri= 0·7029–0·7043,  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号