首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Menzies, J. & Ellwanger, D. 2010: Insights into subglacial processes inferred from the micromorphological analyses of complex diamicton stratigraphy near Illmensee‐Lichtenegg, Höchsten, Germany. Boreas, 10.1111/j.1502‐3885.2010.00194.x. ISSN 0300‐9483. Investigations of a 30‐m‐high section of Pleistocene sediments at Illmensee‐Lichtenegg, Höchsten in Baden‐Württemberg provide detailed information on subglacial conditions beneath the Rhine Glacier outlet of the Alpine ice sheet in southern Germany. The sediment exposure extends from an upper cemented sand and gravel (Deckenschotter) into diamictic units that extend down to weathered Molasse bedrock. The exposure reveals sediments symptomatic of active syndepositional stress/strain processes ongoing beneath the ice sheet. Macrosedimentology reveals diamicton subfacies units and a strong uni‐direction of ice motion based on clast fabric analyses. At the microscale level, thin‐section analyses provide a substantially clearer picture of the dynamics of subglacial sediment deformation and till emplacement. Evidence based on detailed micromorphological analyses reveals microstructural strain and depositional markers that indicate a subglacial environment of ongoing soft bed deformation in which the diamictons can be readily identified as subglacial tills. Within this subglacial environment, distinct changes in pore‐water pressure and sediment rheology can be detected. These changes reveal fluctuating conditions of progressive, non‐pervasive deformation associated with rapid changes in effective stress and shear strain leading to till emplacement. This site, through the application of micromorphology, increases our understanding of localized subglacial conditions and till formation.  相似文献   

2.
Sediment from the Attawapiskat area near James Bay, Northern Ontario was sampled for micromorphological analyses. The sediment is a glacial diamicton (till) of subglacial origin. The till contains entrained and scavenged sediments of proglacial and/or subglacial glaciofluvial/glaciolacustrine origin from a subglacial deforming layer that was emplaced due to both stress reduction and/or porewater dissipation. Evidence of porewater escape, clay translocation and other microstructures all point to emplacement under active subglacial bed deformation. The limited number of edge to edge (ee) grain crushing events, however, point to lower stress levels than might anticipated under a thin fast ice lobe of the James Bay during the Middle Pliocene. Microstructures of Pleistocene tills were quantitatively compared with the Attawapiskat till and the limited number of ee events at Attawapiskat further highlighted that grain to grain contact was curtailed possibly due to high till porosity, high porewater pressures and low strain rates or alternatively due to a high clay matrix component reducing grain crushing contact events. It is suggested that this Middle Pliocene till may be indicative of sediments emplaced under ice lobe surging conditions or fast ice stream subglacial environments. This proposal has significant implications for the glaciodynamics of this part of the Middle Pliocene James Bay lobe. This research highlights a crucial link between subglacial conditions, till microstructural analyses and glaciodynamics.  相似文献   

3.
This study of tills from the Eastern Alps, Austria, illustrates the insights obtained using microsedimentology on subglacial tills in the context of palaeogeographical reconstructions of glacier advances. Investigations of several sites with tills derived from both local glaciers and the ice‐sheet streaming of the Inn Glacier during the Last Glacial Maximum and its termination reveal a detailed picture of subglacial sedimentology that provides evidence of soft sediment subglacial deformation under polythermal conditions. All the tills exhibit microstructures that are proxy evidence of significant changes in till rheology. The tills originate from multiple sources, incorporating older tills and other deposits picked up by the subglacial deformation within a polythermal but dominantly warm temperate subglacial thermal regime. The analyses of till microstructures reveal a direct relationship between basal ice strain conditions and their development. A hypothesis is derived, from the various microstructures observed in these Austrian tills formed under soft sediment deforming basal ice conditions, that suggests that with basal thermal changes and fluctuations in clay content, pore‐water content and pressure, microstructures form in a non‐random manner. It is postulated that in clay‐deficient sediments, edge‐to‐edge events are most likely to occur first; and where clay content increases, grain stacks, rotation structures, deformation bands and, finally, shear zones are likely to evolve in an approximate sequential manner. After repeated transport, emplacement, reworking and, probably, further shearing and deformation events, an emplaced ‘till’, as observed in these Austrian tills, will form that carries most, if not all of these microstructures, in varying percentages. Finally, the impact of the Inn Glacier Ice Stream on these tills is not easily detected and/or differentiated, but indications of high pore water and probable dilatant events leading to reductions in the number of edge‐to‐edge events point to the impact of fast or thick ice upon these subglacial tills.  相似文献   

4.
This paper presents the first integrated macroscale and microscale examination of subglacial till associated with the last‐glacial (Fraser Glaciation) Cordilleran Ice Sheet (CIS). A new statistical approach to quantifying till micromorphology (multivariate hierarchical cluster analysis for compositional data) is also described and implemented. Till macrostructures, macrofabrics and microstructures support previous assertions that primary till in this region formed through a combination of lodgement and deformation processes in a temperate subglacial environment. Macroscale observations suggest that subglacial environments below the CIS were probably influenced by topography, whereby poor drainage of the substrate in topographically constricted areas, or on slopes adverse to the ice‐flow direction at glacial maximum, facilitated ductile deformation of the glacier bed. Microscale observations suggest that subglacial till below the CIS experienced both ductile and brittle deformation, including grain rotation and squeeze flow of sediment between grains under moist conditions, and microshearing, grain stacking and grain fracturing under well‐drained conditions. Macroscale observations suggest that ductile deformation events were probably followed by brittle deformation events as the substrate subsequently drained. The prevalence of ductile‐type microstructures in most till exposures investigated in this study suggests that ductile deformation signatures can be preserved at the microscale after brittle deformation events that result in larger‐scale fractures and shear structures. It is likely that microscale ductile deformation can also occur within distributed shear zones during lodgement processes. Cluster analysis of microstructure data and qualitative observations made from thin sections suggest that the relative frequency of countable microstructures in this till is influenced by topography in relation to ice‐flow direction (bed drainage conditions) as well as by the frequency and distribution of voids in the till matrix and skeletal grain shapes.  相似文献   

5.
By analysing a series of four successive thin‐sections from a ceramic clay that was subjected to uniaxial compression, we were able to monitor the development of microstructures in a fine‐grained sediment. The artificially induced microstructures, such as unidirectional clay reorientations and linear and circular grain arrangements, are identical to features that have been observed in thin‐sections of subglacially deformed tills, and therefore may be used as representative analogues. We argue that the structures, reflecting slip, planar shear displacements as well as rotational movements, can be explained by assuming a Coulomb‐plastic response to imposed shear. We conclude that sediments subjected to subglacial deformation behave as Coulomb materials, at least during the final stages of the deformation. The present study bridges the gap between field studies, experimental studies and theoretical modelling. The microscopic observations assist in visualising inferred subglacial processes and facilitate up‐ and downscaling between diverse methodological approaches. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

6.
Lusardi, B. A., Jennings, C. E. & Harris, K. L. 2011: Provenance of Des Moines lobe till records ice‐stream catchment evolution during Laurentide deglaciation. Boreas, 10.1111/j.1502‐3885.2011.00208.x. ISSN 0300‐9483. Mapping and analysis of deposits of the Des Moines lobe of the Laurentide Ice Sheet, active after the Last Glacial Maximum (LGM), reveal several texturally and lithologically distinct tills within what had been considered to be a homogeneous deposit. Although the differences between tills are subtle, minor distinctions are predictable and mappable, and till sheets within the area covered by the lobe can be correlated for hundreds of kilometres parallel to ice flow. Lateral till‐sheet contacts are abrupt or overlap in a narrow zone, coincident with a geomorphic discontinuity interpreted to be a shear margin. Till sheets 10 to 20 m thick show mixing in their lower 2 to 3 m. We suggest that: (i) lithologically distinct till sheets correspond to unique ice‐stream source areas; (ii) the sequence of tills deposited by the Des Moines lobe was the result of the evolution and varying dominance of nearby and competing ice streams and their tributaries; and (iii) in at least one instance, more than one ice stream simultaneously contributed to the lobe. Therefore the complex sequence of tills of subtly different provenances, and the unconformities between them record the evolution of an ice‐catchment area during Laurentide Ice Sheet drawdown. Till provenance data suggest that, after till is created in the ice‐stream source area, the subglacial conditions required for transporting till decline and incorporation of new material is limited.  相似文献   

7.
Preconsolidation stress recorded in subglacial sediments provides important information about subglacial effective stresses. It is commonly used to reconstruct past effective stresses from sediments left after ice retreat. In this article, we use properties of sub‐ice‐stream till samples to estimate effective stresses beneath a modern West Antarctic ice stream. Two previous estimates of sub‐ice‐stream effective stress were derived for the Upstream B (UpB) area of Ice Stream B from shear wave velocities (50 ± 40 kPa, Blankenship et al 1987) and borehole water level measurements (63 ± 24 kPa, Engelhardt & Kamb 1997). However, geotechnical tests performed on samples of the UpB till have shown that if subjected to effective stress of 50–63 kPa this till would have significantly lower porosity (?0.32–0.35) and higher strength (?‐22–28 kPa) than it apparently has in situ (?0.4 and ?2kPa). We derive new estimates of sub‐ice‐stream effective stress using: (1) Casagrande's construction applied to the results of six confined uniaxial tests, and (2) a combination of void‐ratio data for 51 till samples and 3 experimentally constrained equations describing compressibility of the UpB till under normal consolidation, overconsolidation and in the critical state. Casagrande's method yields an upper bound on effective stress of 25 kPa for four till samples and values of 13, and 4.4kPa for two other samples. The void‐ratio approach gives 11.7 ± 2.6 (normal consolidation), 18.3 ± 4.4 (overconsolidation) and 2.0 ± 0.8 kPa (critical state). These new, lower estimates of effective stress are consistent with the low till strength that has been independently measured and inferred from recent theoretical ice‐stream models. Our interpretation of data on till void ratio in terms of sub‐ice‐stream effective stress means that we can qualitatively evaluate the nature of the vertical distribution of this stress in the UpB till layer. We infer that in the sampled top 3 m of till the effective‐stress distribution is non‐hydrostatic, probably close to lithostatic. The results may be useful in future modeling of ice‐stream behavior and may aid efforts to delineate paleo‐ice streams based on their geologic record.  相似文献   

8.
9.
A Pleistocene drift sequence in hummocky terrain along part of the southern Avalon Peninsula of Newfoundland is interpreted to comprise complexly interrelated lodgement till, melt-out till, flow till, supraglacial and proglacial outwash, and supraglacial rhythmites. The gray and tan melt-out tills are stacked in imbricate fashion, giving rise to exceptionally thick stratigraphic sections. Contacts between melt-out tills are interpreted as remnants of shear planes because they are sharp, they dip in the up-ice direction, and they converge toward valley margins. Overlying flow tills interdigitate with supraglacial outwash. The drift sequence was deposited during a single episode of glaciation, rather than by repeated glacier advance, as previously proposed. It is the product of thrusting of englacial debris along ice-marginal shear planes, subsequent melting-out of englacial debris, and formation of supraglacial flow till and outwash. Preservation of this sequence probably is due to high content of englacial debris within the Wisconsinan ice. The sedimentary, glacitectonic, and morphologic features of this sequence are similar to those found at the margins of certain Arctic glaciers of subpolar thermal regime which have recently been the subject of Pleistocene glacial sedimentation models for west-central Canada and Great Britain. Recognition of these distinct elements indicates wisconsinan glacier lobes were of the cold Arctic type in southeastern Newfoundland. Alternative explanations for this sequence, such as deposition by glaciers of temperate thermal regime or by surging glaciers, are discounted. Because the features described here are complex and difficult to recognize, they may be more widespread in Pleistocene drift than has previously been interpreted.  相似文献   

10.
Tills from an exposure in Wildschönau Valley, northern Austria were examined using microsedimentological techniques. The tills exhibit a range of microstructures indicative of soft sediment deformation within temperate subglacial bed conditions. The tills can be subdivided at the macroscale into a lower grey and upper red till both of which exhibit some sedimentological variations; however, at the micro-level the tills appear essentially identical. The microstructures in the tills are illustrative of structures developed during deformation both during and following their emplacement. Of note are the microshears within these tills that are demonstrative of changes in applied stress. Both low (<25°) and high angle (>25°) microshears were mapped and their fabric data analyzed. The microshears show a change in stress levels ascending through successive till units. The changes in stress are demonstrative of spatially and temporally changing rheological conditions undergone by the subglacial tills during deformation, ongoing deposition/ emplacement and stress localization. These findings indicate that microstructures reveal local deformation conditions in tills and a more detailed micro-history of paleo-stress.  相似文献   

11.
In this paper, we examine whether till grain size affects the range and occurrence of micromorphological features associated with subglacial shear. Our till samples were collected from two glaciers in Iceland, and varied in texture from a coarse, sandy clast-rich till (Fjallsjökull) to a fine-grained silty-sandy till (Vestari-Hagafellsjökull). We found a wide range of deformational microstructures that included skelsepic plasmic fabric, intraclasts of pre-existing eroded bedrock (basalt) and weathered clay and ‘mini-shear zones’ between clasts. We classified our micromorphological data into three classes; rotational, intermediate and linear. In addition to these observations, we performed extensive microfabric analysis at different scales on all of our samples. We found that the coarse-grained till contained a greater number and variety of microstructures than the fine-grained till. In addition, the fine-grained till showed a distinct lack of rotational structures that we attribute to the lack of significantly sized clasts in the matrix. We argue that the varied texture of the coarse-grained till provides a greater degree of perturbation within the shearing layer and so more distinct microstructures form. In a more fine-grained till, shearing is more homogeneous since there are less perturbations in the matrix and this leads to a more singular kind of microstructure. Our observations suggest that subglacial shear occurs within a multi-layered patchwork of different grain sizes, competence and pore water pressures. It is these factors that are so crucial in determining the occurrence and type of microstructural evidence we see in subglacial tills.  相似文献   

12.
With the aid of three case studies we summarize sedimentological and structural evidence in Wisconsinan subglacial till and its substrate that can be used to infer the presence of former fast-moving ice. We compare sedimentological characteristics of till with its stone fabric, stone surface erosional features and orientations of fractures, faults and folds in till and substrate, in order to interpret the processes that formed the till. In the cases we studied, stones in tills that experienced ductile deformation (inferred to be associated with fast-moving ice) show variable alignment of latest surface striae. Moreover, striae are inconsistent with the orientations of lee ends and chattermarks on the same stones, and with the dip directions of shallow shear planes and (or) steeper tension fractures in the till matrix. These observations indicate that stones were rotating in a flowing till matrix prior to their final emplacement. Ductile shear of fine-textured, water-saturated till and Jeffrey-like rotation of stones are invoked where most of the following occur together: (i) delicate striae follow the curvature of stone surfaces; (ii) a-axis fabrics are multimodal to girdle-like; (iii) stone a axis eigenvectors, striae orientation and stone lee end alignments fall between the modes of stone fabrics; (iv) stone pavements are uneven with vertically oriented and inverted bullet-shaped stones; (v) soft sediment clasts and (or) fragile fossils are preserved.  相似文献   

13.
《Quaternary Science Reviews》2007,26(19-21):2354-2374
The glacial sediments of north Norfolk are a type site for subglacial deforming bed sediments. This investigation focussed on subglacial shear zone process at the field and thin section scale, in order to understand subglacial processes, as well as considering the implications for regional stratigraphies. The sandy and chalky tills from three sites (within 1 km) at Weybourne, Norfolk, showed evidence for subglacial deformation associated with simple shear, producing extension, compression and rotation. It was demonstrated how these processes interacted to cause chalk fragmentation and predictable fabric strengths (dependant on sorting and grain size). It is suggested that the ‘Marly Drift’ is a diachronous unit, and the resultant stratigraphy at Weybourne reflects one deformation till, resulting from a series of ice advances, but with a lithology derived from the local chalk bed rock (with some far travelled erratics), which have undergone different degrees of chalk fragmentation reflecting the nature and duration of the subglacial deformation.  相似文献   

14.
Structural, stratigraphic, and lithologic data from a section 69 m long of Catfish Creek drift (north shore of Lake Erie) tell a complex story of two competing glacial lobes. Stone surface features and orientations indicate that stones rotated in viscously deforming, fine-medium textured subglacial till prior to final emplacement. Fractures, shears, and attenuated sediment lenses in tills reveal that they experienced some brittle shear superposed on ductile shear during till dewatering and stiffening. The Huron-Georgian Bay lobe advanced first from the northwest, deforming interstadial sediments and depositing subglacial till. Next, southward confluent flow of the Huron, Georgian Bay, and Erie lobes carved subglacial troughs into sediments and deposited (then deformed) bouldery deformation till by squeeze flow. The northwest flowing Erie lobe then prevailed, depositing deformation till, subglacial aquatic sediments, and mudflows. Finally, a pavement-bearing, hybrid deformation-lodgement till covered the section. Till formation was mainly by subglacial viscous flow with minor lodgement superposed as water content decreased and some fines were probably winnowed. This implies that till deformation probably accounted for much of the glacier movement. Therefore, rapid ice flow could have occurred over the section, along the southern margin of the Laurentide Ice Sheet.  相似文献   

15.
Despite extensive study and debate regarding the significance of turbate (also known as ‘rotational’) microstructures in glacially deformed sediments, characteristics regarding the dimensions of these features remain unresolved. This study presents the first explicitly quantitative measurement and analysis of turbate microstructure dimensions, and their relation to till texture through thin section analysis. Samples were taken from coarse‐resolution horizontal and vertical transects of a macroscopically homogenous subglacial till, with subset areas of each thin section (30 mm2) analysed. The frequency and apparent a‐axes and b‐axes of both coreless and cored turbate structures (and their corestones) were measured, and simple univariate statistical methods used to establish the (in‐)variability of these dimensions through the till profile. Summarizing findings, (i) the dimensions of both cored and coreless turbate populations display log‐normal distributions when all measurements are analysed together, although not all individual sample populations possess these same distributions; (ii) turbate dimension populations are inconsistent within a sample block, precluding evaluation of turbate variability through a profile from single thin sections; (iii) analysis of turbate morphology and variability provisionally indicate that the three‐dimensional structure of turbates are likely to be cylindrical or flared, while weak relationships are also observed amongst till texture, turbate dimensions and frequency.  相似文献   

16.
A multi-proxy approach involving a study of sediment architecture, grain size, grain roundness and crushing index, petrographic and clay mineral composition, till fabric and till micromorphology was applied to infer processes of till formation and deformation under a Weichselian ice sheet at Kurzetnik, Poland. The succession consists of three superposed till units overlying outwash sediments deformed at the top. The textural characteristics of tills vary little throughout the till thickness, whereas structural appearance is diversified including massive and bedded regions. Indicators of intergranular bed deformation include overturned, attenuated folds, boudinage structures, a sediment-mixing zone, grain crushing, microstructural lineations, grain stacking and high fabric strength. Lodgement proxies are grooved intra-till surfaces, ploughing marks and consistently striated clast surfaces. Basal decoupling by pressurized meltwater is indicated by undisturbed sand stringers, sand-filled meltwater scours under pebbles and partly armoured till pellets. It is suggested that the till experienced multiple transitions between lodgement, deformation and basal decoupling. Cumulative strain was high, but the depth of (time-transgressive) deformation much lower (centimetre range) than the entire till thickness ( ca 2 m) at any point in time, consistent with the deforming bed mosaic model. Throughout most of ice overriding, porewater pressure was high, in the vicinity of glacier floatation pressure indicating that the substratum, consisting of 11 m thick sand, was unable to drain subglacial meltwater sufficiently.  相似文献   

17.
Structures and textures in till indicating subglacial deposition   总被引:1,自引:0,他引:1  
Five structural and textural features are discussed: (1) small lenses of sorted material, (2) smudges, (3) small-scale deformations of till matrix and smudges by clasts, (4) clasts consistently striated, and (5) clasts with stoss-and-lee sides. Analyses suggest that these features may be produced by subglacial processes acting in the ice-bed interface. Long axes of small sand lenses and smudges as well as the striation on the upper surface of scattered clasts in lodgement till have a strong preferred orientation in good agreement with the glacier flow direction as indicated by clast fabrics, bedrock striation, and surface fluting of ground moraine. When in traction against the till bed, clasts may plough up till banks. Clasts with stoss-and-lee sides development were also very distinctly oriented as their stoss sides faced significantly up-glacier.
It is concluded (1) that each of the five features discussed is useful as a criterion for subglacial deposition by lodgement, (2) that they indicate important differential movement along the ice-bed interface and therefore suggest a temperate regime in this part of the glacier during the till deposition, (3) that very few orientation measurements of one or more of these features signify the ice movement direction; i.e. a time-saving method to find the paleoflow direction of Pleistocene glaciers, and (4) that taken together with till preconsolidation, mechanical composition, and clast fabric, they may support each other and give good indications of the genesis of Pleistocene tills.  相似文献   

18.
At the Dänischer Wohld Peninsula coastal sections (North West Germany), subglacial deformation was found at three scales. At the smallest scale, features typical of deforming bed tills were found, i.e. small boudins, tectonic laminations and low fabric strength till. At an intermediate scale, large lenses of glaciolacustrine sediments were found within subglacially deformed till. At the largest scale, there were large (over 5 m high) subglacial folds. We suggest that these styles of sedimentation/deformation were associated with a series of readvances during overall glacial retreat: subglacial deformation occurred during each advance and glaciolacus trine sedimentation occurred during each retreat. This led to glaciolacustrine sediments and deforming bed tills being folded together during subsequent readvances. Where the rheology was relatively weak, the lacustrine sediments were totally incorporated into the diamicton and lost their previous identity. However, where the glaciolacustrine sediments were relatively strong, they survived. We suggest that this style of deformation is typical of the conditions just upglacier from the ice margin and is associated with a relatively thick deforming layer and a high input of subglacial sediment. We conclude that the evidence found at this site provides further indications that the southern margins of the Fenno-Scandinavian ice sheet were coupled with the glacier bed and underwent deforming bed conditions.  相似文献   

19.
Three Pleistocene tills can be distinguished in a coastal cliff section near Heiligenhafen, northern Germany, on the basis of structural and petrographic characteristics. The Lower and Middle Tills had previously been ascribed to the Saalian, and the Upper Till to the Late Weichselian. The former two tills are folded, and unconformably overlain by the Upper Till. In this paper, structural and sedimentological observations are used to investigate whether the Lower and Middle Tills belong to one glacial advance, or two separate (Saalian) advances, as was suggested in earlier studies based on fine gravel stratigraphy.From the contact with local rocks to the top of the MT there is a steady increase in allochtonous components (Scandinavian rocks) and decrease in parautochtonous (chalk and flint) and autochtonous components (local Eocene siltstone and meltwater sediments). This is paralleled by a trend towards increasing deformation (finite strain) from the bedrock to the top of the section. The most obvious aspect of this latter trend is the massive appearance of the MT which can be interpreted as the result of homogenization by repeated folding and attenuation of sediment lenses which have been incorporated into the till. This interpretation is supported by macroscopic and microscopic observations of structures in both tills.The structural analysis of the tills is based on the marked contrast in symmetry between sections parallel and perpendicular to the shear direction. Structures on all scales in the LT as well as in the MT indicate E–W (dextral) shearing, except in the western part of the section, where this is overprinted by W–E (sinistral) shearing.The sediment inclusions in the chalk-rich LT are mainly fragments of one or more strongly extended glaciofluvial delta bodies with a depositional direction towards WSW. Locally these delta sediments rest on Eocene siltstone and contain numerous angular fragments of this local bedrock. Boudins and lenses of sorted sediments are incorporated into the till and occur as “islands of low strain” in a high strain homogeneous matrix.It is concluded that the LT and MT do not belong to two stratigraphically separate Saalian advances. The section is alternatively interpreted as one subglacial shear zone (deformation till) with upward increasing strain and allochtonous component content. It probably formed during the Younger Saalian (Warthe) westward advance from the Baltic region. Folding of the two diamicts occurred due to lateral compression near the Late Saalian ice margin. The section was finally overridden by the Late Weichselian Young Baltic advance, eroding the folded LT and MT and depositing the UT.  相似文献   

20.
The foreland of Breidamerkurjökull, Iceland, is the only locality where tills known to have undergone subglacial deformation are exposed. Till on the foreland has a two-tiered structure, consisting of a dilatant upper horizon c 0.5 m thick and a compact lower till; these horizons correspond to the ductile deforming A horizon and the brittle-ductile B horizon observed below the glacier by G. S. Boulton and co-workers. The relationship between known strain history and a variety of macrofabric elements is examined for these two genetic facies of deformation till. The upper horizon exhibits variable a-axis fabrics and abundant evidence for clast re-alignment, reflecting ductile flow and rapid clast response to transient strains. In contrast, the lower horizon has consistently well organized a-axis fabrics with a narrow range of dip values, recording clast rotation into parallel with strain axes during brittle or brittle-ductile shear. The data indicate that till strain history imparts identifiable macrofabric signatures, providing important analogues to guide the interpretation of Pleistocene tills.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号