首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In the Champawat area, Kumaun Himalaya, greenschist facies regionally metamorphosed rocksviz chlorite-phyllite and schist have been subjected to thermal metamorphism due to emplacement of batholithic granite/granodiorite body. As a consequence, biotite, garnet, andalusite, fibrolite, sillimanite and perthite minerals have formed in the contact rocks. The conspicuous absence of cordierite and staurolite reported from such aureole rocks is due to higher FeO/MgO ratio of the bulk rock composition in the former while the absence of staurolite is due to low Al2O3/FeO+MgO ratio in the schists. AFM diagram demonstrates that in muscovite-bearing schist, the bulk composition of chlorite- and cordierite-bearing rocks are restricted to low FeO/MgO side and thus the restricted occurrence of former and the absence of latter in the contact rocks of the area. This is further evident from the common occurrence of almandine-rich garnet in the rocks.  相似文献   

2.
The stability of cordierite and garnet relative to their anhydrous breakdown products, i.e. hypersthene, sapphirine, olivine, spinel, sillimanite and quartz, has been studied experimentally in model pelitic compositions (system MgO-FeO-Al2O3-CaO-K2O-SiO2). Below 1000° C cordierite breaks down according to the divariant reaction cordierite garnet+sillimanite+quartz (1) for most values of the MgO/MgO + FeO ratio (X). At very high values of X (ca. X0.9) garnet in reaction (1) is replaced by hypersthene. The position and width of the divariant field (in terms of pressure and temperature) in which cordierite and garnet coexist, is a function of the MgO/MgO + FeO ratio. If this ratio is increased then the stability field of garnet is reduced and that of cordierite extended towards higher pressure. Compositions of coexisting cordierite and garnet in divariant equilibrium have been analysed by electron probe micro-analyser. These compositions are unique functions of pressure and temperature. Above ca. 1000° C the breakdown of cordierite involves the phases sapphirine and hercynite-rich spinel in Mg-rich and Fe-rich compositions respectively.  相似文献   

3.
Mineral assemblages in metapelites of the contact aureole of the Tono granodiorite mass, northeast Japan, change systematically during progressive metamorphism along an isobaric path at 2-3 kbar. The bulk rock compositions of metapelites are aluminous with A' values on an AFM projection larger than that of the chlorite join. The metapelites commonly contain paragonite in the low-grade zone. With increasing temperatures, andalusite is formed by the breakdown of paragonite. The importance of pyrophyllite as a source of Al2SiO5 polymorphs is limited in typical pelitic rocks.
The most common type of metapelite in the study area has FeO/(FeO + MgO) = 0.5–0.6, and develops assemblages involving chlorite, andalusite, biotite, cordierite, K-feldspar, sillimanite and almandine, with paragenetic changes similar to other andalusite-sillimanite type aureoles. Rocks with FeO/(FeO + MgO) > 0.8 progressively develop chloritoid-bearing assemblages from Bt-Chl-Cld, And-Bt-Cld, to And-Bt at temperatures between the breakdown of paragonite and the appearance of cordierite in the more common pelitic rocks in the aureole. The paragenetic relations are explained by a KFMASH univariant reaction of Chl + Cld = And + Bt located to the low-temperature side of the formation of cordierite by the terminal equilibrium of chlorite. A P-T model depicting the relative stability of chloritoid and staurolite at low- and medium-pressure conditions, respectively, is proposed, based on the derived location of the Chl + Cld = And + Bt reaction combined with the theoretical phase relations among biotite, chlorite, chloritoid, garnet and staurolite.  相似文献   

4.
Mineral textures in metapelitic granulites from the northern Prince Charles Mountains, coupled with thermodynamic modelling in the K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 (KFMASHTO) model system, point to pressure increasing with increasing temperature on the prograde metamorphic path, followed by retrograde cooling (i.e. an anticlockwise P–T path). Textural evidence for the increasing temperature part of the path is given by the breakdown of garnet and biotite to form orthopyroxene and cordierite in sillimanite‐absent rocks, and through the break‐down of biotite and sillimanite to form spinel, cordierite and garnet in more aluminous assemblages. This is equated to the advective addition of heat from the regional emplacement of granitic and charnockitic magmas dated at c. 980 Ma. A subsequent increase in pressure, inferred from the break‐down of spinel and quartz to sillimanite, cordierite and garnet in aluminous rocks, is attributed to crustal thickening related to upright folding dated at 940–910 Ma. The terrane attained peak metamorphic temperatures of c. 880 °C at pressures of c. 6.0–6.5 kbar during this event. Subsequent cooling is inferred from the localised breakdown of cordierite and garnet to form biotite and sillimanite that developed in the latter stages of the same event. The textural observations described are interpreted via the application of P–T and P–T–X pseudosections. The latter show that most rock compositions preserve only fragments of the overall P–T path; a result of different rock compositions undergoing mineral assemblage changes, or changes in mineral modal abundance, on different sections of the P–T path. The results also suggest that partial melting during granulite facies metamorphism, coupled with melt loss and dehydration, initiated a switch from pervasive ductile, to discrete ductile/brittle deformation, during retrograde cooling.  相似文献   

5.
Garnet-biotite (-cordierite) phase relations in high-grade gneisses of the south coast of Western Australia reflect at least two metamorphic episodes. Chemical uniformity of the interiors of garnet and cordierite grains suggest thorough equilibration during a major phase of metamorphism. Narrow Mg-depleted rims on garnet grain boundaries in contact with biotite or cordierite, and complementary Mg-enriched rims on contiguous cordierites are the result of subsequent retrograde re-equilibration. The absence of reaction zoning in biotites suggests more complete retrograde modification of this mineral.Comparison between granulite and amphibolite facies garnet-biotite pairs shows that Mn contents of both minerals are higher, and Ti contents of the biotites are lower, in the lower-grade rocks. These differences, although not entirely unrelated to grade, are more directly controlled by variations in host rock chemistry and modal amounts of garnet and biotite.Partitioning of Mg, Fe2+ and Mn between garnet and biotite is fairly uniform, with no clear differences between granulite and amphibolite facies pairs. Application of the Mg-Fe2+ distributions to the geothermometers devised by Perchuk, Thompson, and Goldman & Albee yields variable T estimates of 600–680°C, 580–780°C, and 475–715°C respectively, for the main metamorphism. These estimates are low compared with the T indicated for the granulite facies rocks by other evidence (i.e. > 750°C at 5 kb PT). The Mg-Fe2+ distributions between contiguous garnet-biotite rims suggest that retrograde re-equilibration occurred at least 20–140°C below the T of the main metamorphism.  相似文献   

6.
在对胶北荆山群麻粒岩相富铝岩石中石榴石、黑云母的成分环带进行深入研究基础上,选取不同粒径、与不同矿物相邻的石榴石、黑云母各微区点成分,利用石榴石-黑云母温度计分别进行了温度估算。确定在黑云母含量较高的岩石(V_(Grt)/V_(Bt)≤1)中,利用大颗粒石榴石(d≥1500μm)晶体核部(或靠近长英质矿物一侧的晶体幔部)成分与基质中远离石榴石等镁铁矿物处于长英质矿物之间的黑云母核部成分配合。通过石榴石-黑云母温度计可以获得相当可信的变质峰期温度。但是对于黑云母含量极低的岩石(V_(Grt)/V_(Bt)≥6),由于黑云母的成分普遍遭到了强烈改造。使得温度估算结果异常偏低,因此不适合采用石榴石-黑云母温度计估算峰期温度。同一岩石中,采用不同的相邻石榴石-黑云母矿物对晶体边缘成分获得的温度值差异较大,反映它们在峰期后发生Fe-Mg交换反应并达到封闭温度平衡状态的程度不同,因此利用石榴石-黑云母温度计难以获得准确的封闭温度。通过热力学计算,建立了一个新的石榴石-黑云母温度计公式。确定胶北荆山群所经历的变质峰期温度为720~770℃,峰期后最低相对封闭温度为480~500℃。  相似文献   

7.
Garnet-bearing mineral assemblages are commonly observed in pelitic schists regionally metamorphosed to upper greenschist and amphibolite facies conditions. Modelling of thermodynamic data for minerals in the system Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O, however, predicts that garnet should be observed only in rocks of a narrow range of very high Fe/Mg bulk compositions. Traditionally, the nearly ubiquitous presence of garnet in medium- to high-grade pelitic schists is attributed qualitatively to the stabilizing effect of MnO, based on the observed strong partitioning of MnO into garnet relative to other minerals. In order to quantify the dependence of garnet stability on whole-rock MnO content, we have calculated mineral stabilities for pelitic rocks in the system MnO–Na2O–K2O–FeO–MgO–Al2O3–SiO2–H2O for a moderate range of MnO contents from a set of non-linear equations that specify mass balance and chemical equilibrium among minerals and fluid. The model pelitic system includes quartz, muscovite. albite, pyrophyllite, chlorite, chloritoid, biotite, garnet, staurolite, cordierite, andalusite, kyanite. sillimanite, K-feldspar and H2O fluid. In the MnO-free system, garnet is restricted to high Fe/Mg bulk compositions, and commonly observed mineral assemblages such as garnet–chlorite and garnet–kyanite are not predicted at any pressure and temperature. In bulk compositions with XMn= Mn/(Fe + Mg + Mn) > 0.01, however, the predicted garnet-bearing mineral assemblages are the same as the sequence of prograde mineral assemblages typically observed in regional metamorphic terranes. Temperatures predicted for the first appearance of garnet in model pelitic schist are also strongly dependent on whole-rock MnO content. The small MnO contents of normal pelitic schists (XMn= 0.01–0.04) are both sufficient and necessary to account for the observed stability of garnet.  相似文献   

8.
The investigated area around Sarvapuram represents a part of the Karimnagar granulite terrane of the Eastern Dharwar Craton, India. Garnet–bearing gneiss is hosted as enclaves, pods within granite gneiss and charnockite. It is largely made up of garnet, orthopyroxene, cordierite, biotite, plagioclase, K–feldspar, sillimanite and quartz. The peak metamorphic stage is represented by the equilibrium mineral assemblage i.e. garnet, orthopyroxene, cordierite, biotite, plagioclase, sillimanite and quartz. Breakdown of the garnet as well as preservation of the orthopyroxene–cordierite symplectite, formation of cordierite with the consumption of the garnet + sillimanite + quartz represents the decompressional event. The thermobarometric calculations suggest a retrograde P–T path with a substantial decompression of c. 3.0 kbar. The water activity(XH2 O) conditions obtained with the win TWQ program for core and symplectite compositions from garnet–bearing gneiss are 0.07–0.14 and 0.11–0.16 respectively. The quantitative estimation of oxygen fugacity in garnet–bearing gneiss reveal log f O2 values ranging from-11.38 to-14.05. This high oxidation state could be one of the reasons that account for the absence of graphite in these rocks.  相似文献   

9.
Anatectic migmatites in medium- to low-pressure granulite facies metasediments exposed in the Larsemann Hills, East Antarctica, contain leucosomes with abundant quartz and plagioclase and minor interstitial K-feldspar, and assemblages of garnet–cordierite–spinel–ilmenite–sillimanite. Qualitative modelling in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–O2, in conjunction with various PT calculations indicate that the high-grade retrograde evolution of the terrane was dominated by decompression from peak conditions of c. 7 kbar at c. 800 °C to 4–5 kbar at c. 750 °C. Extensive partial melting during decompression involved the replacement of biotite by the assemblage cordierite–garnet–spinel within the leucosomes. These leucosomes represent the site of partial melt generation, the cordierite–garnet–spinel–ilmenite assemblage representing the solid products and excess reactants from the melting reaction. The extraction and accumulation of this decompression-generated melt led to the formation of syntectonic pegmatites and extensive granitic plutons. Leucosome development and terrane decompression proceeded during crustal transpression, synchronous with upper crustal extension, during a progressive Early Palaeozoic collisional event. Subsequent retrograde evolution was characterized by cooling, as indicated by the growth of biotite replacing spinel and garnet, thin mantles of cordierite replacing spinel and quartz within metapelites, and garnet replacing orthopyroxene and hornblende within metabasites. P–T calculations on late mylonites indicate lower grade conditions of formation of c. 3.5 kbar at c. 650 °C, consistent with the development of late cooling textures.  相似文献   

10.
The staurolite–biotite–garnet–cordierite–andalusite–plagioclase–muscovite–quartz metapelitic mineral assemblage has been frequently interpreted in the literature as a result of superimposition of various metamorphic events, for example, in polymetamorphic sequences. The assemblage was identified in schists from the Ancasti metamorphic complex (Sierras Pampeanas of Argentina) where previous authors have favoured the polymetamorphic genetic interpretation. A pseudosection in the MnNCKFMASH system for the analysed XRF bulk composition predicts the stability of the sub‐assemblage staurolite–biotite–garnet–plagioclase–muscovite–quartz, and the compositional isopleths also agree with measured mineral compositions. Nevertheless, the XRF pseudosection does not predict any field with staurolite, andalusite and cordierite being stable together. As a result of more detailed modelling making use of the effective bulk composition concept, our interpretation is that the staurolite–biotite–garnet–plagioclase–muscovite–quartz sub‐assemblage was present at peak metamorphic conditions, 590 °C and 5.2 kbar, but that andalusite and cordierite grew later along a continuous P–T path. These minerals are not in mutual contact and are observed in separate microstructural domains with different proportions of staurolite. These domains are explained as a result of local reaction equilibrium subsystems developed during decompression and influenced by the previous peak crystal size and local modal distribution of staurolite porphyroblasts that have remained metastable. Thus, andalusite and cordierite grew synchronously, although in separate microdomains, and represent the decompression stage at 565 °C and 3.5 kbar.  相似文献   

11.
Biotite‐rich selvedges developed between mafic schollen and semipelitic diatexite in migmatites at Lac Kénogami in the Grenville Province of Quebec. Mineral equilibria modelling indicates that partial melting occurred in the mid‐crust (4.8–5.8 kbar) in the range 820–850°C. The field relations, petrography, mineral chemistry and whole‐rock composition of selvedges along with their adjacent mafic schollen and host migmatites are documented for the first time. The selvedges measured in the field are relatively uniform in width (~1 cm wide) irrespective of the shape or size of their mafic scholle. In thin section, the petrographic boundary between mafic scholle and selvedge is defined by the appearance of biotite and the boundary between selvedge and diatexite by the change in microstructure for biotite, garnet, plagioclase and quartz. Three subtypes of selvedges are identified according to mineral assemblage and microstructure. Subtype I have orthopyroxene but of different microstructure and Mg# to orthopyroxene in the mafic scholle; subtype II contain garnet with many mineral inclusions, especially of ilmenite, in contrast to garnet in the diatexite host which has few inclusions; subtype III lack orthopyroxene or garnet, but has abundant apatite. Profiles showing the change in plagioclase composition from the mafic schollen across the selvedge and into the diatexite show that each subtype of selvedge has a characteristic pattern. Four types of biotite are identified in the selvedges and host diatexite based on their microstructural characteristics. (a) Residual biotite forms small rounded red‐brown grains, mostly as inclusions in peritectic cordierite and garnet in diatexite; (b) selvedge biotite forms tabular subhedral grains with high respect ratio; (c) diatexite biotite forms tabular subhedral grains common in the matrix of the diatexite; and (d) retrograde biotite that partially replaces peritectic cordierite and garnet in the diatexite. The four groups of biotite are also discriminated by their major element (EMPA) and trace elements (LA‐Q‐ICP‐MS) compositions. Residual biotite is high in TiO2 and low in Sc and S, whereas retrograde biotite has high Al2O3, but low Sc and Cr. Selvedge and diatexite biotite are generally very similar, but selvedge biotite has higher Sc and S contents. Whole‐rock compositional profiles across the selvedges constructed from micro‐XRF and LA‐Q‐ICP‐MS analyses show: (a) Al2O3, FeO, MgO and CaO all decrease from mafic scholle across the selvedge and into the diatexite; (b) Na2O is lowest in the mafic scholle, rises through the selvedge and reaches its maximum about 20–30 mm into the diatexite host; (c) K2O is lowest in the mafic scholle and reaches its highest value in the first half of the selvedge, then declines before reaching a higher, but intermediate value, about 20 mm into the diatexite. Of the trace elements, Cs and Rb show distributions very similar to K2O.  相似文献   

12.
浙西南遂昌-大柘地区八都岩群在印支期变质事件影响下发生变质变形,通过详细野外调查和岩相学研究,可将其划分为3期变质变形序列:S1变形期,NW向片麻理记录的残留紧闭褶皱,共生矿物组合为石榴子石变斑晶及其内部定向分布的包裹体矿物,石榴子石+黑云母+石英(泥质)和石榴子石+角闪石+斜长石+石英(长英质);S2变形期,区域性宽缓褶皱及NE向缓倾透入性片麻理,共生矿物组合为石榴子石变斑晶及定向分布的基质矿物,矽线石+石榴子石+黑云母+石英+斜长石±钾长石(泥质)和石榴子石+钾长石+斜长石+黑云母+石英(长英质);S3变形期,NE向陡倾透入性片麻理及韧脆性断裂大部分被花岗斑岩脉填充,共生矿物组合为石榴子石变斑晶及其周围退变矿物,石榴子石+矽线石+堇青石+斜长石+黑云母+石英±钾长石(泥质)和角闪石+斜长石+黑云母+钛铁矿(长英质)。结合前人研究成果,八都岩群印支期变质事件峰期变质程度达到麻粒岩相,显示顺时针近等温降压(ITD)型的p-T演化轨迹,S1-S3变质变形反映出从俯冲碰撞到快速折返冷却的演化过程,伴随S3同期侵位的花岗斑岩锆石U-Pb定年结果,将该演化过程完成时间约束在229.7 Ma,可能是浙西南地区对印支期古特提斯洋域内印支-华南-华北板块之间俯冲-碰撞过程的响应。  相似文献   

13.
Cordierite occurs locally and sporadically in biotite-quartz-two feldspar paragneisses of the Precambrian Highlands complex in southeastern New York. Cordieritic and associated non-cordieritic gneisses were compared to determine the significance of cordierite for the metamorphic history of the complex.Microprobe analyses of the ferromagnesian phases show the following ranges in Fe/Mg (mol.): cordierite 0.19–0.43; biotite 0.33–0.73; garnet 1.98–3.56. Feldspar compositional ranges are: plagioclase An25–53; K-feldspar in microperthite Or62–87Ab12–37 An0–1. Garnet and plagioclase associated with cordierite are depleted in Ca relative to those in cordierite-free assemblages.Textural evidence, phase rule considerations and consistent distribution coefficients for FeO and MgO in coexisting garnet, cordierite and biotite from each locality examined suggest that all phases formed in at least local equilibrium during the hornblende-granulite subfacies metamorphism. The assemblages studied limit the conditions of metamorphism to between 700 and 750° C and 3.0 to 5.5. Kb. total pressure, with P T greater than . Differences in mineral compositions and partitioning coefficients among the sampled areas suggest slight local differences within these ranges.Mineral and modal analyses of cordierite-bearing and cordierite-free gneisses show the latter to be enriched in calcium and potassium and depleted in alumina relative to the former. We conclude that the rarity of cordierite in the Highlands paragneisses reflects a scarcity of parent rocks of suitable composition rather than unfavorable physical conditions.  相似文献   

14.
The Leverburgh Belt and South Harris Igneous Complex in South Harris (northwest Scotland) experienced high-pressure granulite facies metamorphism during the Palaeoproterozoic. The metamorphic history has been determined from the following mineral textures and compositions observed in samples of pelitic, quartzofeldspathic and mafic gneisses, especially in pelitic gneisses from the Leverburgh Belt: (1) some coarse-grained garnet in the pelitic gneiss includes biotite and quartz in the inner core, sillimanite in the outer core, and is overgrown by kyanite at the rims; (2) garnet in the pelitic gneiss shows a progressive increase in grossular content from outer core to rims; (3) the AlVI/AlIV ratio of clinopyroxene from mafic gneiss increases from core to rim; (4) retrograde reaction coronas of cordierite and hercynite+cordierite are formed between garnet and kyanite, and orthopyroxene+cordierite and orthopyroxene+plagioclase reaction coronas develop between garnet and quartz; (5) a P–T path is deduced from inclusion assemblages in garnet and from staurolite breakdown reactions to produce garnet+sillimanite and garnet+sillimanite+hercynite with increasing temperature; and (6) in sheared and foliated rocks, hydrous minerals such as biotite, muscovite and hornblende form a foliation, modifying pre-existing textures. The inferred metamorphic history of the Leverburgh Belt is divided into four stages, as follows: (M1) prograde metamorphism with increasing temperature; (M2) prograde metamorphism with increasing pressure; (M3) retrograde decompressional metamorphism with decreasing pressure and temperature; and (M4) retrograde metamorphism accompanied by shearing. Peak P–T conditions of the M2 stage are 800±30 °C, 13–14 kbar. Pressure increasing from M1 to M2 suggests thrusting of continental crust over the South Harris belt during continent–continent collision. The inferred P–T path and tectonic history of the South Harris belt are different from those of the Lewisian of the mainland.  相似文献   

15.
Interpretations based on quantitative phase diagrams in the system CaO–Na2O–K2O–TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2O indicate that mineral assemblages, zonations and microstructures observed in migmatitic rocks from the Beit Bridge Complex (Messina area, Limpopo Belt) formed along a clockwise P–T path. That path displays a prograde P–T increase from 600 °C/7.0 kbar to 780 °C/9–10 kbar (pressure peak) and 820 °C/8 kbar (thermal peak), followed by a P–T decrease to 600 °C/4 kbar. The data used to construct the P–T path were derived from three samples of migmatitic gneiss from a restricted area, each of which has a distinct bulk composition: (1) a K, Al‐rich garnet–biotite–cordierite–sillimanite–K‐feldspar–plagioclase–quartz–graphite gneiss (2) a K‐poor, Al‐rich garnet–biotite–staurolite–cordierite–kyanite–sillimanite–plagioclase–quartz–rutile gneiss, and (3) a K, Al‐poor, Fe‐rich garnet–orthopyroxene–biotite–chlorite–plagioclase–quartz–rutile–ilmenite gneiss. Preservation of continuous prograde garnet growth zonation demonstrates that the pro‐ and retrograde P–T evolution of the gneisses must have been rapid, occurring during a single orogenic cycle. These petrological findings in combination with existing geochronological and structural data show that granulite facies metamorphism of the Beit Bridge metasedimentary rocks resulted from an orogenic event during the Palaeoproterozoic (c. 2.0 Ga), caused by oblique collision between the Kaapvaal and Zimbabwe Cratons. Abbreviations follow Kretz (1983 ).  相似文献   

16.
Grandidierite, kornerupine, and tourmaline occur in high-grade pelitic gneisses from southeastern Ontario, Canada. The kornerupine occurs in quartz-bearing layers associated with biotite, cordierite, garnet, ilmenite, K-feldspar, magnetite, quartz, and, less commonly, sillimanite. Grandidierite is found in quartz-poor, cordierite+sillimanite segregations in contact with biotite, cordierite, ilmenite, K-feldspar, magnetite, sillimanite, and, more rarely, garnet. Tourmaline is sporadically distributed in all compositional layers, but is not in contact with the other borosilicates. There is no textural evidence for a reactive relationship among the three borosilicates. Neither chemical or textural equilibrium has been achieved on the scale of a thin section.It is proposed that the granite, K-feldspar-rich leucosomes, and different borosilicate assemblages in adjacent compositional layers evolved along a path of decreasing pressure and increasing temperature. The P-T path intersected a series of dehydration and melting reactions. This P-T path indicates that uplift had occurred before cooling had started and before the maximum temperature was reached. Corona and symplectite textures developed at various times during uplift both before and after cooling had started.  相似文献   

17.
Meta-graywacke and meta-argillite of Archean age near Yellowknife contain biotite, cordierite, gedrite and sillimanite isograds towards the Sparrow Lake granite pluton. The chemistry of biotite, cordierite, gedrite and garnet in rocks that up-grade from the cordierite isograd indicate a small range of chemical composition, particularly with reference to Mg, Fe and Mn. The analyses show further that among the coexisting ferromagnesian minerals Fe/Fe+ Mg ratio decreases in the sequence: garnet, gedrite, biotite, cordierite while Mn/Fe+Mg+Mn ratio decreases in the sequence garnet, gedrite, cordierite, biotite. The same order is also observed in the distribution diagrams. The regular distribution of Mg, Fe and Mn among the coexisting phases demonstrate that chemical equilibrium was attained and preserved in these Archean rocks. Mg-Fe distribution between cordierite and biotite appears to be dependent on the temperature of crystallization or metamorphic grade.  相似文献   

18.
Zhang Zeming  Xu Zhiqin  Xu Huifen 《Lithos》2000,52(1-4):35-50
The 558-m-deep ZK703 drillhole located near Donghai in the southern part of the Sulu ultrahigh-pressure metamorphic belt, eastern China, penetrates alternating layers of eclogites, gneisses, jadeite quartzites, garnet peridotites, phengite–quartz schists, and kyanite quartzites. The preservation of ultrahigh-pressure metamorphic minerals and their relics, together with the contact relationship and protolith types of the various rocks indicates that these are metamorphic supracrustal rocks and mafic-ultramafic rock assemblages that have experienced in-situ ultrahigh-pressure metamorphism. The eclogites can be divided into five types based on accessory minerals: rutile eclogite, phengite eclogite, kyanite–phengite eclogite, quartz eclogite, and common eclogite with rare minor minerals. Rutile eclogite forms a thick layer in the drillhole that contains sufficient rutile for potential mining. Two retrograde assemblages are observed in the eclogites: the first stage is characterized by the formation of sodic plagioclase+amphibole symplectite or symplectitic coronas after omphacite and garnet, plagioclase+biotite after garnet or phengite, and plagioclase coronas after kyanite; the second stage involved total replacement of omphacite and garnet by amphibole+albite+epidote+quartz. Peak metamorphic PT conditions of the eclogites were around 32 to 40 kbar and 720°C to 880°C. The retrograde PT path of the eclogites is characterized by rapidly decreasing pressure with slightly decreasing temperature. Micro-textures and compositional variations in symplectitic minerals suggest that the decompression breakdown of ultrahigh-pressure minerals is a domainal equilibrium reaction or disequilibrium reaction. The composition of the original minerals and the diffusion rate of elements involved in these reactions controlled the symplectitic mineral compositions.  相似文献   

19.
Contact aureoles of the anorthositic to granitic plutons of the Mesoproterozoic Nain Plutonic Suite (NPS), Labrador, are particularly well developed in the Palaeoproterozoic granulite facies, metasedimentary, Tasiuyak gneiss. Granulite facies regional metamorphism (MR), c. 1860 Ma, led to biotite dehydration melting of the paragneiss and melt migration, leaving behind biotite‐poor, garnet–sillimanite‐bearing quartzofeldspathic rocks. Subsequently, Tasiuyak gneiss within a c. 1320 Ma contact aureole of the NPS was statically subjected to lower pressure, but higher temperature conditions (MC), leading to a second partial melting event, and the generation of complex mineral assemblages and microstructures, which were controlled to a large extent by the textures of the MR assemblage. This control is clearly seen in scanning electron microscopic images of thin sections and is further supported by phase equilibria modelling. Samples collected within the contact aureole near Anaktalik Brook, west of Nain, Labrador, mainly consist of spinel–cordierite and orthopyroxene–cordierite (or plagioclase) pseudomorphs after MR sillimanite and garnet, respectively, within a quartzofeldspathic matrix. In addition, some samples contain fine‐grained intergrowths of K‐feldspar–quartz–cordierite–orthopyroxene inferred to be pseudomorphs after osumulite. Microstructural evidence of the former melt includes (i) coarse‐grained K‐feldspar–quartz–cordierite–orthopyroxene domains that locally cut the rock fabric and are inferred to represent neosome; (ii) very fine‐ to medium‐grained cordierite–quartz intergrowths interpreted to have formed by a reaction involving dissolution of biotite and feldspar in melt; and (iii) fine‐scale interstitial pools or micro‐cracks filled by feldspar interpreted to have crystallized from melt. Ultrahigh temperature (UHT) conditions during contact metamorphism are supported by (i) solidus temperatures >900 °C estimated for all samples, coupled with extensive textural evidence for contact‐related partial melting; (ii) the inferred (former) presence of osumilite; and (iii) titanium‐in‐quartz thermometry indicating temperatures within error of 900 °C. The UHT environment in which these unusual textures and minerals were developed was likely a consequence of the superposition of more than one contact metamorphic event upon the already relatively anhydrous Tasiuyak gneiss.  相似文献   

20.
Abstract Sapphirine-bearing rocks occur in three conformable, metre-size lenses in intrusive quartzo-feldspathic orthogneisses in the Curaçà valley of the Archaean Caraiba complex of Brazil. In the lenses there are six different sapphirine-bearing rock types, which have the following phases (each containing phlogopite in addition): A: Sapphirine, orthopyroxene; B: Sapphirine, cordierite, orthopyroxene, spinel; C: Sapphirine, cordierite; D: Sapphirine, cordierite, orthopyroxene, quartz; E: Sapphirine, cordierite, orthopyroxene, sillimanite, quartz; F: Sapphirine, cordierite, K-feldspar, quartz. Neither sapphirine and quartz nor orthopyroxene and sillimanite have been found in contact, however. During mylonitization, introduction of silica into the three quartz-free rocks (which represent relict protolith material) gave rise to the three cordierite and quartz-bearing rocks. Stable parageneses in the more magnesian rocks were sapphirine–orthopyroxene and sapphirine–cordierite. In more iron-rich rocks, sapphirine–cordierite, sapphirine-cordierite–sillimanite, cordierite–sillimanite, sapphirine–cordierite–spinel–magnetite and quartz–cordierite–orthopyroxene were stable. The iron oxide content in sapphirine of the six rocks increases from an average of 2.0 to 10.5 wt % (total Fe as FeO) in the order: C,F–A,D–B,E. With increase in Fe there is an increase in recalculated Fe2O3 in sapphirine. The four rock types associated with the sapphirine-bearing lenses are: I: Orthopyroxene, cordierite, biotite, quartz, feldspar tonalitic to grandioritic gneiss; II: Biotite, quartz, feldspar gneiss; III: Orthopyroxene, clinopyroxene, hornblende, plagioclase meta-norite; IV: Biotite, orthopyroxene, quartz, feldspar, garnet, cordierite, sillimanite granulite gneiss. The stable parageneses in type IV are orthopyroxene–cordierite–quartz, garnet–sillimanite–quartz and garnet–cordierite–sillimanite. Geothermobarometry suggests that the associated host rocks equilibrated at 720–750°C and 5.5–6.5 kbar. Petrogenetic grids for the FMASH and FMAFSH (FeO–MgO–Al2O3–Fe2O3–SiO2–H2O) model systems indicate that sapphirine-bearing assemblages without garnet were stabilized by a high Fe3+ content and a high XMg= (Mg/ (Mg+Fe2+)) under these P–T conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号