首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
以重庆南山老龙洞岩溶地下河流域为例,通过分析地下河水DIC变化特征与来源,估算了流域岩溶碳汇通量,并探讨了自然条件和人类活动对岩溶碳汇的影响。研究结果表明,老龙洞地下河的水化学类型为Ca-HCO3-SO4型,显示其形成过程中受碳酸盐岩碳酸溶蚀和硫酸溶蚀共同控制。地下河水DIC浓度为3.1~6.3mmol/L,其中夏季因受降雨稀释作用影响DIC较冬季的低;地下河水δ13CDIC值介于-3.8‰~-13.1‰之间,且夏季比冬季偏高约2‰。根据地下河水DIC浓度和流域径流量计算出流域岩溶净碳汇通量均值约为167.31×103mol/(km2?a)。降雨条件下,流域岩溶碳汇通量随流域径流量的迅速增加而增加。另外,流域碳酸盐岩溶蚀还受到人类活动产生的硫酸型酸雨影响,使得地下水δ13CDIC值相对偏高,它在一定程度上减少了流域碳汇通量。   相似文献   

2.
为研究城市化作用下的岩溶区地下水水质演变状况,基于2008-2012年对老龙洞地下河的pH值、电导率、水温、K+、Na+、Ca2+、Mg2+、HCO3-、Cl-、NO3-、SO42-、PO43-等水物理化学指标的连续监测,分析了老龙洞地下河流域水质的演变趋势,并对2011年8月的单场降雨条件下地下河水质的动态变化进行主成分分析(PCA)。结果表明,在城市化过程中,地下河水Na+、Cl-、PO43-、Ca2+、Mg2+、HCO3-等离子浓度受人类活动影响而明显上升,NO3-、SO42-浓度则因为城市化效应增强和农业活动强度的降低而下降。老龙洞地下河水补给来源复杂,其中碳酸盐岩地质背景、人类活动及水土流失对地下河水质变化起着决定作用。城市化水平的提高、区域环境的变化,使得老龙洞地下河的水质也处于不断变化中,从硝酸盐、硫酸盐的年际变化看,地下河水质已有较大改善。   相似文献   

3.
茶店桥地下河位于西南岩溶区,流域内"三水"转换迅速,地下水是当地的重要饮用水源。本文对流域内雨水、地表水、地下水中的SO_4~(2-)浓度进行了测试,利用氘(δD_(H_2O))、氧(δ~(18) O_(H_2O))同位素示踪地表水、地下水补给来源,用硫酸盐硫(δ~(34)S_(SO4))、氧(δ~(18) O_(SO4))同位素探讨了地表水、地下水中SO_4~(2-)的来源,并计算了地下河出口河水中不同SO_4~(2-)来源的贡献比例。结果表明:1不同水体中SO_4~(2-)浓度大小顺序为地表水地下水雨水,与邻近区域相比,茶店桥地下河流域雨水、地表水、地下水呈现富集SO_4~(2-)的特征。2地表水、地下水的主要补给来源为大气降水,硫酸不仅和HCO_3~-共同参与了流域内碳酸盐岩的溶解,也参与了雨水中含钙镁颗粒物的溶解。3地表水δ~(34)S_(SO4)、δ~(18) O_(SO4)值分别介于-12.98‰~-10.19‰和-0.54‰~+9.13‰之间,地下水δ~(34)S_(SO4)、δ~(18) O_(SO4)值分别介于-14.32‰~+16.58‰和+2.81‰~+14.35‰之间,SW02的SO_4~(2-)主要来源于大气降水,SW01、SW03、GW02、GW03、GW06主要来源于煤层,GW05主要来源于石膏,GW01、GW04为混合输入源。4地下河出口河水中大气降水带来的SO_4~(2-)贡献比例为13%,煤层硫化物氧化的贡献比例为40%,石膏溶解的贡献比例为47%。  相似文献   

4.
贵阳地区夏季雨水硫和氮同位素地球化学特征   总被引:29,自引:6,他引:29  
对贵阳地区小雨和暴雨硫和氮同位素组成特征进行了研究。小雨中硫酸盐δ34S值和硝酸盐δ15N值分别为-7.96‰~+0.73‰(平均-4.90‰)和-3.77‰~+8.49‰(平均+2.00‰),暴雨中则分别为-2.07‰~+18.32‰(平均+4.59‰)和-2.91‰~+10.10‰(平均+4.10‰),表明两种类型雨水中硫酸盐和硝酸盐来源不同。小雨硫酸盐的负δ34S值与当地硫来源(煤炭燃烧和生物成因硫)有关,而暴雨硫酸盐的正δ34S值则为海源(太平洋)结果。小雨硝酸盐的δ15N值范围较宽(-3.77‰~+8.49‰),其来源不清,但该范围内较高δ15N值的样品(>+6.0‰)可能与干沉降和火力发电厂废气有关。暴雨硝酸盐的δ15N值仍然反映海源(太平洋)。小雨铵盐的δ15N值与铵盐含量有较好的相关关系(R2=0.92)。小雨铵盐中低δ15N值的样品(-1.73‰~-22.01‰)与云水(-28.6‰)对15N较少的吸收有关。贵阳地区较高的铵盐含量(平均1.25mg/L)和较低的δ15N值(平均-12.18‰±6.68‰)表明,铵盐来源于农业肥料的大范围施用和土壤NH3的挥发。  相似文献   

5.
重庆市青木关地下河水化学及其δ13C DIC变化特征   总被引:1,自引:0,他引:1  
为了确定地下水中溶解无机碳和地下水中物质的来源,于2010年4月至2011年1月对重庆市青木关地下河流域系统进行了连续监测,分析其常规水化学组成、溶解无机碳含量及其同位素(δ13CDIC)组成变化特征及影响因素,2010年农耕期间(5-6月)又对部分观测点进行了加密取样分析.分析结果表明:(1)地下河水为HCO3-Ca型,其变化受水岩作用和降水作用的影响;(2)地下水中(Ca2++ Mg2+)/HCO3-的摩尔比值为0.6~0.72,平均为0.67,表明碳酸盐岩溶解受C3植被下土壤CO2、HNO3和H2SO4的共同作用的影响;(3)地下河水中由碳酸溶解碳酸盐岩产生的[HCO3-]的贡献率为56.16%~81.25%,平均为66.96%,硝酸和硫酸溶解碳酸盐岩产生的[HCO3-]的贡献率为18.75 %~43.84%,平均为33.04%;(4)青木关地下河出口地下水的δ13 CDIC变化范围为-8.17‰~-13.68‰,平均值为-10.53 ‰.农耕期和枯水期地下河水的δ13 CDIC平均值分别为-9.25‰ 和-12.29‰,农耕期较枯水期偏正,偏正幅度达3‰,表明人类农业活动物质输入对地下河水δ13 CDIC有较大的影响.  相似文献   

6.
为了识别石家庄市南部污灌区地下水硝酸盐污染来源, 采集5种潜在污染源和19组地下水样用于化学和氮同位素分析.灌溉污水NH4+的δ15N值较低(4.0‰), 施化肥土壤和粪堆下土壤NO3-的δ15N值分别为1.4‰和12.4‰; 仅施厩肥的蔬菜种植区下伏近30 m厚包气带沉积物NO3-的δ15N分布显示, 来自动物粪便的NO3-已运移到11.5 m以下包气带, 均值10.9‰; 污水灌溉农田下伏厚层包气带沉积物样品分析结果指示, 土壤层下伏包气带沉积物δ15N值变幅较小, 均值5.7‰.污灌区内除一深井外, 其他水井地下水硝酸盐浓度变化在52.6~124.5 mg/L之间, 均值79.72 mg/L, δ15N值变化在5.3‰~8.3‰之间, 均值7.0‰.污灌区地下水的δ15N值较污灌区土壤层下伏包气带沉积物的δ15N值高, 表明地下水NO3-除了来自灌溉的污水外, 还有δ15N值更高的其他来源, 这些来源主要是人和动物粪便.利用线性混合模型计算, 污灌区地下水NO3-来自灌溉的污水, 约占76%, 而来自人和动物粪便的NO3-约占24%.为控制污灌区地下水NO3-浓度进一步增长, 不仅要加强污水灌溉管理, 还要加强人和动物粪便的管理.   相似文献   

7.
硫和氧同位素示踪黄河及支流河水硫酸盐来源   总被引:10,自引:0,他引:10  
为了准确识别河水硫酸盐受自然风化和人为活动影响的过程,做好地表水资源管理,选择黄河小浪底水库以下干流和支流河水为主要研究对象,分期采集河水样品,采用硫酸盐硫和氧同位素,结合水化学组成及潜在硫酸盐来源硫和氧同位素范围,判定黄河及支流河水硫酸盐的来源及混入比例。结果表明:① 研究区黄河河水硫酸盐主要来源于第四纪黄土中易溶硫酸盐,干流河水SO42-含量均值为2.23 mmol/L,δ34SSO4和δ18OSO4均值分别为+8.9‰和+10.4‰;② 研究区沁河丰水期河水硫酸盐24%来源于大气降水,61%来源于土壤硫酸盐溶解,15%来自于石膏溶解;平水期河水硫酸盐39%来源于大气降水,36%来源于土壤硫酸盐溶解,25%来源于石膏溶解。沁河河水SO42-含量均值为2.44 mmol/L,δ34SSO4和δ18OSO4均值分别为+9.8‰和+9.7‰;③ 研究区洛河河水硫酸盐受生活污水影响较大,伊河河水硫酸盐受到土壤硫酸盐溶解和化学肥料溶解的共同影响,伊洛河河水SO42-含量均值为1.27 mmol/L,δ34SSO4和δ18OSO4均值分别为+10.4‰和+6.5‰。蒸发盐类矿物溶解以及土壤硫酸盐溶解等自然风化过程是控制区域河水硫酸盐来源的重要过程,人为活动对伊洛河河水硫酸盐的贡献不容忽视。  相似文献   

8.
运用氮、氧同位素技术判别常州地区地下水氮污染源   总被引:9,自引:1,他引:9  
本文运用氮、氧同位素技术对常州地区地下水氮的污染来源进行了研究.结果表明:潜水和微承压水中NO3-含量高,平均含量为38.32 mg/L,δ^15N为4.818‰~32.834‰,δ^18O为12.502‰~20.757‰,反映了多数潜水和微承压水受到了厩肥和污水的污染;中深层承压水(第1承压水、第2承压水、第3承压水)中NO3^-含量低,NO3^-平均含量为0.52 mg/L,未受到氮污染,δ^15N为2.163‰~6.208‰,δ^18O为17.051‰~23.201‰,NO3^-应主要来源于早期形成时的大气降水.  相似文献   

9.
贵阳雨水无机氮沉降的氮、氧同位素特征   总被引:1,自引:0,他引:1  
雨水中氮沉降主要以铵盐(NH+4)和硝酸盐(NO-3)形式存在,这与地表生态氮循环和酸雨等环境问题直接相连.我们测定了贵阳地区雨水中的NH+4和NO-3的氮氧同位素值,讨论了氮素形态分布及其同位素组成特征,探讨了雨水中溶解无机氮的成因.雨水中的NH+4和NO-3平均值分别为0.81和o.51mg N/L;铵盐的δ15N平均值为-4.7‰,较硝酸盐的δ15N平均值负,雨水中硝酸盐δ18O值为25.2‰~40.1‰,平均值为34.2±4.3‰,季节性差别不显著.  相似文献   

10.
地下河系统是岩溶地质景观的重要组成部分,利用特殊岩溶地形地貌建立的国家重大科技基础设施成为科研和旅游的胜地。为了解旅游活动对岩溶地下河系统水化学的影响,文章分析了大小井地下河系统入口和出口在不同旅游时段的水化学特征。结果表明:受旅游人数影响,污水水化学变化较大;大小井水化学类型为Ca-HCO3型,水岩相互作用产生的Ca2+、Mg2+和HCO3-从入口到出口逐渐增加,而人类活动输入的K+、Na+、Cl-、NO3-和SO42-则表现出差异性特征。小井地下河系统因受沿途城镇生活排放污水和农业活动影响,水化学波动较大,出口K+、Na+、Cl-和NO3-升高;大井地下河虽受旅游活动输入影响,但K+、Na  相似文献   

11.
贵阳地下水硝酸盐氧同位素特征及应用   总被引:4,自引:0,他引:4  
李思亮  刘丛强 《中国岩溶》2006,25(2):108-111
利用硝酸盐氮氧同位素讨论地下水硝酸盐来源和转化是地下水硝酸盐研究的热点之一。本研究利用燃烧管法测试了贵阳地下水、部分地表水,以及雨水中硝酸盐氧同位素,结果表明地下水中硝酸盐δ18O冬季平均值为+ 12. 6‰± 5. 6 (n= 17) ,夏季为+ 11. 1‰± 4. 8(n= 22)。结合氮同位素揭示了贵阳市地下水硝酸盐污染来源的季节性转化,郊区地下水夏季主要受硝态氮肥等影响,而市区地下水受人为排污影响严重。   相似文献   

12.
基于IsoSource的桂林寨底地下河硝酸盐来源定量研究   总被引:4,自引:0,他引:4       下载免费PDF全文
卢丽  李文莉  裴建国  王喆 《地球学报》2014,35(2):248-254
近些年,随着化肥和农药的广泛使用,地下水中硝酸盐污染日益严峻。本文选择桂林寨底地下河系统为研究区,对研究区进行地下水取样调查以及水化学和氮、氧同位素分析,利用IsoSource软件对其硝酸盐来源进行定量计算,为岩溶区地下水硝酸盐来源定量研究提供了一个新方法。结果表明,寨底地下河硝酸盐主要以NO3–为主,NO3–浓度变化在2.67~17.99 mg/L,平均值为6.3 mg/L,研究区内硝酸盐来源共有三种,分别为化肥、动物粪便与污水和土壤有机氮,其中化肥的变化范围为23%~78%,动物粪便与污水为6%~58%,土壤有机氮为6%~38%。沿地下水流动方向,化肥和动物粪便与污水的比例均发生了明显变化,与离居民区的距离密切相关,距离远时化肥比例较大,动物粪便与污水比例较小,距离近时则相反。  相似文献   

13.
重庆地区岩溶地下河水溶解无机碳及其稳定同位素特征   总被引:6,自引:3,他引:3  
蒲俊兵 《中国岩溶》2013,32(2):123-132
稳定碳同位素是指示岩溶动力系统碳来源及转化的重要指标。为揭示重庆地区岩溶地下水中溶解无机碳基本特征和碳来源,本文对该地区63条岩溶地下河水样进行了水化学和碳同位素分析。研究结果表明,重庆地区地下河水溶解无机碳主要表现形式为HCO3-,雨季由于稀释作用其浓度低于旱季。重庆岩溶地下河水δ13C-DIC(V-PDB)旱季变化范围为-15.34 ‰~-5.89 ‰,雨季变化范围为-17.40 ‰~-4.23 ‰。根据δ13C同位素质量平衡方法,计算得到重庆地下河旱季碳酸盐岩溶蚀对DIC贡献为45.1 % ~79.7 %,雨季平均为34.6 %~82.1 % 。计算结果表明,在人类活动不断增强的情况下,岩溶水体DIC通量中碳酸盐岩溶解来源的DIC和其参与岩溶地下水δ13C值的形成并不一定是岩溶作用理论方程中所计算的50 %,而是有一定的变化范围。因此在计算岩溶作用碳汇时,建议通过δ13C值扣除碳酸盐岩溶蚀形成DIC的通量后再来推算岩溶作用形成的碳汇量。   相似文献   

14.
以广西打狗河为例,对比分析河流东、西两岸地下河的土地覆盖差异及其对岩溶碳汇的影响。打狗河东岸林地占56.13%,耕地占15.15%;而西岸林地、耕地分别只占20.8%、12.95%。但西岸的裸岩和荒地比例大,分别占29.57%和25.95%,而东岸分别占14.19%和10.98%。植被和土壤覆盖差异导致了东、西两岸碳循环的地球化学指标有明显的差异,东岸地下河水的HCO3-、Ca2+、PCO2(平均分别是233.71mg/L、85.5mg/L、909.46Pa)明显高于西岸(分别为177.26mg/L、64.65mg/L、257.37Pa),而东岸的SIC、pH值(分别为0.12和7.40)又低于西岸(分别是0.38和7.85)。因此,东岸有更强的岩溶动力条件,东岸地下河的平均碳汇强度比西岸高14%,其中,东岸下桥地下河的碳汇强度是西岸旦峒地下河的3.7倍。东西岸地下河水的δ13CDIC、TOC资料也进一步证明了土地覆盖条件对地下河岩溶碳汇具有重要的影响。   相似文献   

15.
为准确探究聊城市城郊浅层地下水硝酸盐污染来源,通过分析聊城市城郊区域25个监测点地下水硝酸盐含量,运用氮、氧双同位素追溯地下水硝酸盐污染来源,运用物质平衡混合模型计算各种源的贡献率。结果表明:(1)聊城市城郊的地下水硝酸盐含量介于3.96~38.88mg/L,52%的监测点硝酸盐浓度超过《生活饮用水卫生标准》中Ⅲ类水20mg/L的上限值;(2)聊城市城郊地下水中δ~(15)N-NO_3~-介于-11.3‰~3.9‰之间,δ~(18)O值介于-5.2‰~25.8‰之间,表明地下水硝酸盐污染与农业施肥密切相关,其主要来源为化肥中的NH_4~+和NO_3~-,其次为土壤中N的矿化作用;(3)通过物质平衡混合模型计算,化肥中的NH_4~+对硝酸盐污染的贡献率为82%,化肥中的NO_3~-贡献率为12%,土壤中N矿化作用贡献率为5%;(4)建议加强区域的的化肥施用管理和市政自来水管道建设,区域居民选择饮用市政供水。  相似文献   

16.
任梦梦  黄芬  胡晓农  曹建华  张鹏 《地球科学》2020,45(5):1830-1843
以漓江流域境内地表河和地下河为研究对象,通过测定、分析水体中的水化学组成以及δ13CDIC、δ15N-NO3-、δ18O-NO3-等,利用同位素质量平衡混合模型,初步探讨了漓江流域境内DIC、硝酸盐的分布特征及其来源.结果表明:漓江流域DIC(即HCO3-)浓度和无机碳稳定同位素(δ13CDIC)分别在12.20~402.60 mg·L-1和-17.29‰~-10.01‰,平均值分别为140.3 mg·L-1和-13.06‰.NO3-浓度在2.37~35.38 mg·L-1,δ15N-NO3-在0.99‰~11.09‰,均展现出明显的空间变异特征.有机肥和污水对漓江流域硝酸盐的贡献最为显著,贡献比达57.00%.其次是化肥、降雨中的NH4+和土壤N,贡献比分别是36.45%,6.55%.流域内DIC主要来源于碳酸盐岩的风化和土壤CO2的溶解,同时也受硝酸溶蚀碳酸盐岩和大气CO2的影响.结果可为定制有效的控制硝酸盐的输入途径,净化水质测略提供依据.   相似文献   

17.
在分析岩溶地下河系统范围内水源、污染源特性的基础上,建立了双源调查、源汇追踪和源头阻控为主要内容的岩溶地下河污染修复治理模式——三源模式。以遵义市坪桥地下河系统为例,利用三源模式对该地下河污染进行修复治理实践。结果表明:研究区分布有各类水点25处,以钻孔、岩溶泉点、地下河出口为主,特征污染物为以NH4+、NO3-、SO42-、Mn2+、Se2+为主;分布有各类污染源点15处,以工业废渣堆放场为主,主要分布在地下河系统下游坪桥工业园区一带,特征污染物同样为以NH4+、NO3-、SO42-、Mn2+、Se2+为主;地下河系统范围内有3条地下水污染通道,均分布在地下河出口与坪桥工业园区Z1(1#、2#)废渣处置场之间;通过对2#废渣处置场排洪竖井-地下河出口这一污染通道上游段进行帷幕工程修复后,地下河出口可减排污水排放量47 244...  相似文献   

18.
为研究龙滩水库枯水期溶解态氮、磷营养元素的空间分布特征,在龙滩水库枯水期(2017年1月份)进行分层采样,现场测定水体理化性质及实验室分析水中营养盐浓度。结果表明:龙滩水库水温出现明显垂直分层:0~10m为温跃层;10~60m为混合层;60m以下为底温层;pH值为7.63~7.92,水体呈弱碱性。溶解无机氮(DIN)平均浓度为4.75mg/L。水体溶解性氨氮、硝态氮、亚硝态氮平均值为0.07mg/L、2.62mg/L、2.05mg/L,分别占DIN的1.6%、55.2%、43.2%,硝态氮、亚硝态氮是组成龙滩水库溶解无机氮的主要成分。磷酸盐平均浓度为0.04mg/L。参照潜在性富营养化评价标准,N/P(质量比)比值为73.84,说明龙滩水库枯水期属于磷限制潜在性富营养状态,营养状态空间分布特征:坝前水体双江口红水河镇小马场。  相似文献   

19.
通过野外田间实验,研究了高量施肥处理、低量施肥处理、不施肥处理以及空白对照裸地等不同施肥处理条件下土壤水中各种形态氮的时空分布情况,探讨了地下水环境中氮素在不同施肥处理条件下的迁移转化特征.结果表明,在各种处理条件下,土壤水中硝态氮质量浓度随深度的增大而减小,而亚硝态氮与铵态氮质量浓度在剖面上的变化幅度较大,这种变化主要受土壤水氧化还原电位的影响.硝态氮随时间的变化趋势在4个处理区表现各异:在高量施肥处理区,各层位的土壤水中硝态氮质量浓度总体上呈增大趋势;在低量施肥处理区,硝态氮受作物生长和灌溉的影响呈拍岸浪式向下迁移;在不施肥处理区和空白对照裸地处理区,由于表层土壤中硝态氮背景值较高(0~30 cm处土壤硝态氮平均质量分数达到15.59 g/kg),灌溉水的下渗也导致硝态氮向下迁移.高量施肥处理区和空白对照裸地处理区土壤水的对比表明,施肥可促进0.6~1.5 m深处土壤的反硝化作用,从而增大这些层位土壤水中亚硝态氮和铵态氮的质量浓度.  相似文献   

20.
何师意  梁彬  关碧珠 《中国岩溶》2008,27(4):293-302
用人工断面法和流量堰法测流,高密度采集水样,在室内用称重法测得水体含沙量,对大龙洞地下河出口及其邻近地表河、地下河上游地表河段进行同步输沙特征监测,以为拟建的大龙洞水库泥沙淤积评价提供依据。两个水文年的研究结果均显示,地下河与地表河输沙率呈同步变化特征,平均悬移质输沙模数分别为37. 26~ 58. 33 t /km2 · a 和56. 82~ 76. 80 t /km2· a ,最大日平均输沙率分别为540 mg /L和890 mg /L,说明地下河空间以大型岩溶管道为主,连通性好,系统水力坡度大,对泥沙输出和减轻地下空间淤积有利。最大日平均输沙率均与最大流量峰值对应,说明水土流失主要发生在暴雨期间。选择流域内三种典型生态环境类型,进行原位水土流失观测,获得场雨产流过程和坡面流输沙率变化情况。结果显示,三种类型的平均悬移质输沙模数为65. 35~ 884. 78 t /km2· a ,暴雨期间准森林类最大瞬时输沙率为2 926 mg / L。在此基础上,估算得到在建库条件下50年总淤积量不超过地下库容的10% ,说明水土流失造成的水库淤积程度并不严重。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号