首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
A sediment core spanning  7000 cal yr BP recovered from Stella Lake, a small sub-alpine lake located in Great Basin National Park, Nevada, was analyzed for subfossil chironomids (non-biting midges), diatoms, and organic content (estimated by loss-on-ignition (LOI)). Subfossil chironomid analysis indicates that Stella Lake was characterized by a warm, middle Holocene, followed by a cool “Neoglacial” period, with the last two millennia characterized by a return to warmer conditions. Throughout the majority of the core the Stella Lake diatom-community composition is dominated by small, periphytic taxa which are suggestive of shallow, cool, alkaline, oligotrophic waters with extensive seasonal ice cover. A reconstruction of mean July air temperature (MJAT) was developed by applying a midge-based inference model for MJAT (two-component WA-PLS) consisting of 79 lakes and 54 midge taxa (rjack2 = 0.55, RMSEP = 0.9°C). Comparison of the chironomid-inferred temperature record to existing regional paleoclimate reconstructions suggests that the midge-inferred temperatures correspond well to regional patterns. This multi-proxy record provides valuable insight into regional Holocene climate and environmental conditions by providing a quantitative reconstruction of peak Holocene warmth and aquatic ecosystem response to these changes in the Great Basin, a region projected to experience increased aridity and higher temperatures.  相似文献   

2.
We examined the hydroclimatic signal in a record of annual lamina (varve) thickness from High Arctic Lake A, Ellesmere Island (83°00.00′N, 75°30.00′W). In this unglacierized catchment, nival melt is the dominant source for meltwater and transport of sediment to the lake, and autumn snowfall is highly influential on varve thickness through the amount of snow available for melt in the following year. For the period during which climatic data are available, varve thickness in Lake A was significantly correlated (r = 0.50, p < 0.01) with the cumulative snowfall from August to October (ASO) during the previous year and, to a lesser extent, ASO mean daily temperature (r = 0.39, p < 0.01) at Alert, Nunavut (175 km east). The varve thickness record, interpreted as a proxy record of ASO snowfall and, by extension, ASO temperature, indicated above-mean conditions during five periods of the past millennium, including most of the 20th century. These results corresponded well to other available high-resolution proxy climate records from the region, with some discrepancies prior to AD 1500 and during the period AD 1700-1900.  相似文献   

3.
A quantitative high-resolution autumn (September-November) temperature reconstruction for the southeastern Swiss Alps back to AD 1580 is presented here. We used the annually resolved biogenic silica (diatoms) flux derived from the accurately dated and annually sampled sediments of Lake Silvaplana (46°27′N, 9°48′E, 1800 m a.s.l.). The biogenic silica flux smoothed by means of a 9-yr running mean was calibrated (= 0.70, p < 0.01) against local instrumental temperature data (AD 1864-1949). The resulting reconstruction (± 2 standard errors = ± 0.7 °C) indicates that autumns during the late Little Ice Age were generally cooler than they were during the 20th century. During the cold anomaly around AD 1600 and during the Maunder Minimum, however, the reconstructed autumn temperatures did not experience strong negative departures from the 20th-century mean. The warmest autumns prior to 1900 occurred around AD 1770 and 1820 (0.75 °C above the 20th-century mean). Our data agree closely with two other autumn temperature reconstructions for the Alps and for Europe that are based on documentary evidence and are completely unrelated to our data, revealing a very consistent picture over the centuries.  相似文献   

4.
Branched glycerol dialkyl glycerol tetraether (GDGT) distributions observed in a sediment core from Lake McKenzie were utilized to quantitatively reconstruct the pattern of mean annual air temperature (MAAT) from coastal subtropical eastern Australia between 37 and 18.3 cal ka BP and 14.0 cal ka BP to present. Both the reconstructed trend and amplitude of MAAT changes from the top of the sediment core were nearly identical to a local instrumental MAAT record from Fraser Island, providing confidence that in this sediment core branched GDGTs could be used to produce a quantitative record of past MAAT. The reconstructed trend of MAAT during 37 to 18.3 cal ka BP and timing of the Last Glacial Maximum (LGM) in the Lake McKenzie record were in agreement with previously published nearby marine climate records. The amplitude of lower-than-present MAAT during the LGM potentially provides information on the latitude of separation of the Tasman Front from the East Australian current in the subtropical western Pacific. The Lake McKenzie record shows an earlier onset of near modern day warm temperatures in the early Holocene compared to marine records and the presence of a warmer than present day period during the mid-Holocene.  相似文献   

5.
Accurate reconstruction of the paleo-Mojave River and pluvial lake (Harper, Manix, Cronese, and Mojave) system of southern California is critical to understanding paleoclimate and the North American polar jet stream position over the last 500 ka. Previous studies inferred a polar jet stream south of 35°N at 18 ka and at ~ 40°N at 17–14 ka. Highstand sediments of Harper Lake, the upstream-most pluvial lake along the Mojave River, have yielded uncalibrated radiocarbon ages ranging from 24,000 to > 30,000 14C yr BP. Based on geologic mapping, radiocarbon and optically stimulated luminescence dating, we infer a ~ 45–40 ka age for the Harper Lake highstand sediments. Combining the Harper Lake highstand with other Great Basin pluvial lake/spring and marine climate records, we infer that the North American polar jet stream was south of 35°N about 45–40 ka, but shifted to 40°N by ~ 35 ka. Ostracodes (Limnocythere ceriotuberosa) from Harper Lake highstand sediments are consistent with an alkaline lake environment that received seasonal inflow from the Mojave River, thus confirming the lake was fed by the Mojave River. The ~ 45–40 ka highstand at Harper Lake coincides with a shallowing interval at downstream Lake Manix.  相似文献   

6.
We reconstructed late Holocene fluctuations of Kluane Lake in Yukon Territory from variations in bulk physical properties and carbon and nitrogen elemental and isotopic abundances in nine sediment cores. Fluctuations of Kluane Lake in the past were controlled by changes in climate and glaciers, which affected inflow of Slims and Duke rivers, the two largest sources of water flowing into the lake. Kluane Lake fluctuated within a narrow range, at levels about 25 m below the present datum, from about 5000 to 1300 cal yr BP. Low lake levels during this interval are probably due to southerly drainage of Kluane Lake to the Pacific Ocean, opposite the present northerly drainage to Bering Sea. Slims River, which today is the largest contributor of water to Kluane Lake, only rarely flowed into the lake during the period 5000 to 1300 cal yr BP. The lake rose 7-12 m between 1300 and 900 cal yr BP, reached its present level around AD 1650, and within a few decades had risen an additional 12 m. Shortly thereafter, the lake established a northern outlet and fell to near its present level.  相似文献   

7.
Glaciated alpine landscapes are sensitive to changes in climate. Shifts in temperature and precipitation can cause significant changes to glacier size and terminus position, the production and delivery of organic mass, and in the hydrologic energy related to the transport of water and sediment through proglacial environments. A sediment core representing a 12,900-yr record collected from Swiftcurrent Lake, located on the eastern side of Glacier National Park, Montana, was analyzed to assess variability in Holocene and latest Pleistocene environment. The spectral signature of total organic carbon content (%TOC) since ~ 7.6 ka matches that of solar forcing over 70-500 yr timescales. Periodic inputs of dolomite to the lake reflect an increased footprint of Grinnell Glacier, and occur during periods when sediment sinks are reduced, glacial erosion is increased, and hydrologic energy is increased. Grain size, carbon/nitrogen (C/N) ratios, and %TOC broadly define the termination of the Younger Dryas chronozone at Swiftcurrent Lake, as well as major Holocene climate transitions. Variability in core parameters is linked to other records of temperature and aridity in the northern Rocky Mountains over the late Pleistocene and Holocene.  相似文献   

8.
Pollen evidence from sediment cores at Hurleg and Toson lakes in the Qaidam Basin was obtained to examine vegetation and climatic change in the northeastern Qinghai-Tibetan Plateau. The chronologies were controlled by 210Pb and 137Cs analysis and AMS 14C dating. Pollen assemblages from both lakes are dominated by Chenopodiaceae (∼ 40%), Artemisia (∼ 30-35%) and Poaceae (∼ 20-25%), with continued occurrence but low abundance of Nitraria, Ephedra, and Cyperaceae. Artemisia/Chenopodiaceae (A/C) pollen ratios from two lakes show coherent large oscillations at centennial timescale during the last 1000 yr. A/C ratios were high around AD 1170, 1270, 1450, 1700 and 1920, suggesting that the vegetation was more “steppe-like” under a relatively moist climate than that during the intervening periods. Wet-dry climate shifts at the two lakes (2800 m asl) are in opposite phases to precipitation changes derived from tree-ring records in the surrounding mountains (> 3700 m asl) and to pollen and snow accumulation records from Dunde ice core (5300 m asl), showing that a dry climate in the basin corresponds with a wet interval in the mountains, especially around AD 1600. This contrasting pattern implies that topography might have played an important role in mediating moisture changes at regional scale in this topographically complex region.  相似文献   

9.
Burial Lake in northwest Alaska records changes in water level and regional vegetation since ∼ 39,000 cal yr BP based on terrestrial macrofossil AMS radiocarbon dates. A sedimentary unconformity is dated between 34,800 and 23,200 cal yr BP. During all or some of this period there was a hiatus in deposition indicating a major drop in lake level and deflation of lacustrine sediments. MIS 3 vegetation was herb-shrub tundra; more xeric graminoid-herb tundra developed after 23,200 cal yr BP. The tundra gradually became more mesic after 17,000 cal yr BP. Expansions of Salix then Betula, at 15,000 and 14,000 cal yr BP, respectively, are coincident with a major rise in lake level marked by increasing fine-grained sediment and higher organic matter content. Several sites in the region display disrupted sedimentation and probable hiatuses during the last glacial maximum (LGM); together regional data indicate an arid interval prior to and during the LGM and continued low moisture levels until ∼ 15,000 cal yr BP. AMS 14C dates from Burial Lake are approximately synchronous with AMS 14C dates reported for the Betula expansion at nearby sites and sites across northern Alaska, but 1000-2000 yr younger than bulk-sediment dates.  相似文献   

10.
《Sedimentology》2018,65(5):1667-1696
Multi‐proxy analysis of sediment cores from five key locations in hypersaline, alkaline Lake Bogoria (central Kenya Rift Valley) has allowed reconstruction of its history of depositional and hydrological change during the past 1300 years. Analyses including organic matter and carbonate content, granulometry, mineralogical composition, charcoal counting and high‐resolution scanning of magnetic susceptibility and elemental geochemistry resulted in a detailed sedimentological and compositional characterization of lacustrine deposits in the three lake basins and on the two sills separating them. These palaeolimnological data were supplemented with information on present‐day sedimentation conditions based on seasonal sampling of settling particles and on measurement of physicochemical profiles through the water column. A new age model based on 210Pb, 137Cs and 14C dating captures the sediment chronology of this hydrochemically complex and geothermally fed lake. An extensive set of chronological tie points between the equivalent high‐resolution proxy time series of the five sediment sequences allowed transfer of radiometric dates between the basins, enabling interbasin comparison of sedimentation dynamics through time. The resulting reconstruction demonstrates considerable moisture‐balance variability through time, reflecting regional hydroclimate dynamics over the past 1300 years. Between ca 690 and 950 AD , the central and southern basins of Lake Bogoria were reduced to shallow and separated brine pools. In the former, occasional near‐complete desiccation triggered massive trona precipitation. Between ca 950 and 1100 AD , slightly higher water levels allowed the build‐up of high pCO 2 leading to precipitation of nahcolite still under strongly evaporative conditions. Lake Bogoria experienced a pronounced highstand between ca 1100 and 1350 AD , only to recede again afterwards. For a substantial part of the time between ca 1350 and 1800 AD , the northern basin was probably disconnected from the united central and southern basins. Throughout the last two centuries, lake level has been relatively high compared to the rest of the past millennium. Evidence for increased terrestrial sediment supply in recent decades, due to anthropogenic soil erosion in the wider Bogoria catchment, is a reason for concern about possible adverse impacts on the unique ecosystem of Lake Bogoria.  相似文献   

11.
We investigated the modern distribution of fossil midges within a dimictic lake and explored downcore patterns of inferred lake depths over the last 2000 years from previously published proxies. Modern midge distribution within Gall Lake showed a consistent and predictable pattern related to the lake-depth gradient with recognizable assemblages characteristic of shallow-water, mid-depth and profundal environments. Interpretations of downcore changes in midge assemblages, in conjunction with quantitative lake-depth inferences across a priori defined (based on diatom data) ~ 500-yr wet and dry periods, demonstrated that both invertebrate and algal assemblages exhibited similar timing and nature of ecological responses. Midges were quantified by their relative abundance, concentrations and an index of Chaoborus to chironomids, and all showed the greatest differences between the wet and dry periods. During the low lake-level period of the Medieval Climate Anomaly (MCA: AD 900 to 1400), profundal chironomids declined, shallow-water and mid-depth chironomids increased, chironomid-inferred lake level declined and the Chaoborus-to-chironomid index decreased. The coherence between multiple trophic levels provides strong evidence of lower lake levels in Gall Lake during the MCA.  相似文献   

12.
A closed or semi-closed plateau lake, whose sediment records can provide us with plenty of fine and high resolution information, is a sensitive indicator of climatic and environmental changes. During the reconstruction of various short-time-scale climatic and environmental changes, the geochemical records in plateau-lake sediments are superior to other natural files. Based on fine dissection of the vertical profile of sediment particle sizes, this paper reveals the quasi-periodical changes of sediment particle sizes, which indicates the quasi-periodical fluctuations of the regional climate. A synthetic analysis of multiple indexes shows that sediment particle size is a more sensitive and more effective index of climatic and environmental changes than other geochemical indexes. High content of >20μm sediment particles and low content of 2–10μm sediment particles indicate a warm-dry climate and conversely a cold-humid climate, and their ratio can be used as an effective index of climatic changes. The basic climate succession in the region of Lake Erhai is characterized as being alternatively warm-dry and cold-humid and it has been developing into a warm-dry climate as a whole. There exist at least 2 time-scale quasi-periodical fluctuations of the regional climate in Lake Erhai. At present, the region of Lake Erhai is at the end of the warm-dry period and at the beginning of a cold-humid period, so the temperature will go down and the water level will rise. This project was supported by the National Natural Science Foundation of China (Nos. 49894170, 49773207).  相似文献   

13.
We used a 55-cm sediment core from shallow Chaiwopu Lake in the central Tianshan Mountains of Xinjiang, northwest China, to investigate climate and environmental changes in this arid region over the past ~150 years. The core was dated using 137Cs. We compared temporal changes in several sediment variables with recent meteorological and tree-ring records. Organic matter had a positive correlation with the Palmer Drought Severity Index in the central Tianshan Mountains, and the δ13C of organic matter had a positive correlation with regional temperature. We applied constrained incremental sum-of-squares cluster analysis to element concentrations in the core and identified three distinct zones: (1) 55–46 cm, ~1860–1910, (2) 46–26 cm, ~1910–1952, and (3) 26–0 cm, 1952–present. Between 1880 and 1910 AD, following the Little Ice Age (LIA), the sediment environment was relatively stable, climate was cold and dry, and the lake water displayed high salinity, in contrast to conditions during the LIA. During the LIA, westerlies carried more water vapor into Central Asia when the North Atlantic Oscillation was in a negative phase, and encountered the enhanced Siberia High, which probably led to increased precipitation. In the period 1910–1950 AD, the lake was shallow and the regional climate was unstable, with high temperatures and humidity. In the last ~15–20 years, human activities caused an increase in sediment magnetic susceptibility, and heavy metal and total phosphorus concentrations in the sediment were substantially enriched. Mean annual temperature displays a warming trend over the past 50 years, and the lowest temperature was observed in the 1950s. There has been an increase in annual total precipitation since the 1990s. The combined influences of climate and human activity on the lake environment during this period were faithfully recorded in sediments of Chaiwopu Lake. This study provides a scientific basis for environmental management and protection.  相似文献   

14.
High-temporal resolution analyses of pollen, chironomid, and lake-level records from Lake Lautrey provide multi-proxy, quantitative estimates of climatic change during the Late-Glacial period in eastern France. Past temperature and moisture parameters were estimated using modern analogues and ‘plant functional types’ transfer-function methods for three pollen records obtained from different localities within the paleolake basin. The comparison of these methods shows that they provide generally similar climate signals, with the exception of the Bölling. Comparison of pollen- and chironomid-based temperature of the warmest month reconstructions generally agree, except during the Bölling. Major abrupt changes associated with the Oldest Dryas/Bölling, Alleröd/Younger Dryas, and the Younger Dryas/Preboreal transitions were quantified as well as other minor fluctuations related to the cold events (e.g., Preboreal oscillation). The temperature of the warmest month increased by ∼5°C at the start of Bölling, and by 1.5°-3°C at the onset of the Holocene, while it fell by ca. 3° to 4°C at the beginning of Younger Dryas. The comparative analysis of the results based on the three Lautrey cores have highlighted significant differences in the climate reconstructions related to the location of each core, underlining the caution that is needed when studying single cores not taken from deepest part of lake basins.  相似文献   

15.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

16.
To determine where and when glycerol dialkyl glycerol tetraether (GDGT) membrane lipids in lakes are produced, we collected descending particles in Lake Lucerne (Switzerland) using two sediment traps (at 42 and 72 m water depth) with a monthly resolution from January 2008 to late March 2009. Suspended particulate matter (SPM) was monthly filtered from the water column at three different depths. The potential application of GDGTs in palaeoenvironmental and palaeoclimatic reconstructions was investigated by comparing core lipids and their relative GDGT distribution, with lake water temperatures throughout the year. Fluxes of GDGTs and their concentrations in the water column vary according to a seasonal pattern, showing a similar trend in the SPM and sediment traps. Fluxes and concentrations of isoprenoid GDGTs increase with depth, maximum values being observed in the deeper part of the water column, indicating production of isoprenoid GDGTs by Thaumarchaeota in the deep (∼50 m), aphotic zone of Lake Lucerne. The flux-weighted averages of the proxies TEX86 (0.27) and BIT (0.03) based on the total extracted GDGTs are similar at both trap depths. A sediment core from the same location showed that in the first few centimetres of the core TEX86 and BIT values of 0.29 and 0.07, respectively, are similar to those recorded for descending particles and SPM, indicating that the sedimentary TEX86 records the annual mean temperature of deeper waters in Lake Lucerne. TEX86 values are slightly higher below 20 cm in the core. This offset is interpreted to be caused by the present-day trophic state of the lake, which probably resulted in a deeper niche of the Thaumarchaeota. Branched GDGTs represent only a minor fraction of the total GDGTs in the lake and their origin remains unclear. Our data reveal that GDGTs in lakes have a large potential for palaeoclimatic studies but indicate that knowledge of the system is important for accurate interpretation.  相似文献   

17.
Repetitive patterns in the records of total organic carbon (TOC), total nitrogen (TN) and δ13Corg observed in the Lake Hovsgol sediment section from HDP-04 drill core reflect past changes in productivity of Lake Hovsgol and in the isotopic composition of the lake's carbon pool. Lake Hovsgol productivity proxy signals are interpreted to represent the response of the Hovsgol lacustrine system to glacial–interglacial cycles of the Pleistocene. This interpretation is supported by the apparent orbitally-forced pattern in the TOC, TN and δ13Corg records of the past 250 ka in the BDP-96-2 drill core from neighboring Lake Baikal.The intervals with independent age control, such as the radiocarbon-dated last glacial–interglacial transition and the paleomagnetic reversals, make it evident that productivity proxy signals are reliable indicators of past cold-to-warm and warm-to-cold climate transitions, as seen from the agreement with the pattern of global climate change in marine δ18O records. The Brunhes/Matuyama reversal during the MIS 19 interglacial coincides with a distinct peak of TOC and TN in the Hovsgol record, similar to the signal during the Holocene interglacial. By contrast, the upper Jaramillo reversal in the Lake Hovsgol record occurs in a diatom-free calcareous interval characterized by minima in TOC, TN and by a ‘glacial’-type range of δ13Corg values. In both Lake Baikal and Lake Hovsgol records, peaks in TOC and TN contents help distinguishing past interglacials and interstadials, and isotopically-heaviest δ13Corg values help identify past glacial intervals.An age model for the HDP-04 drill core section is proposed based on recognizing the repetitive patterns in Lake Hovsgol productivity and lithologic records as regional paleoclimate cycles of middle to late Pleistocene. Absolute dates and diatom biostratigraphic correlation ties to the Lake Baikal record are used as key controls. In the proposed age model, the interval 81–24 m in the HDP-04 sediment section below the major unconformity is correlated to MIS 27 through late MIS 13, whereas the upper 24 m of the HDP-04 section is suggested to have recovered the sedimentary record of late MIS 7 to MIS 1.  相似文献   

18.
湖泊沉积,特别是内陆高山封闭湖泊沉积是古气候研究的重要载体,可以高分辨率、敏感地记录连续的古气候环境变化。选取祁连山中段天鹅湖沉积岩芯TEB孔的10个陆生植物残体进行AMS 14C测年并建立年代框架,结合对总有机碳(TOC)含量、矿物成分及元素相对含量等指标的分析结果,重建了天鹅湖3 500年来的沉积环境变化特征。初步研究结果表明:碳酸盐含量变化主要受控于地下水补给量的变化,进而反映区域降水量,1 534 BC~1 300 AD期间,天鹅湖区降水呈减少的趋势,尤其是中世纪暖期(720~1 300 AD),是3 500年来最干旱的时期;小冰期开始于1 300 AD,共出现三次降水较多的时期,1 600~1 730 AD为小冰期最盛期。受西风环流影响,天鹅湖沉积记录了该区域中世纪暖期相对暖干,而小冰期较为冷湿的变化特征。同时,该湖记录的小冰期气候相比于中世纪暖期更不稳定。  相似文献   

19.
Speciation of Hg and conversion to methyl-Hg were evaluated in stream sediment, stream water, and aquatic snails collected downstream from the Bonanza Hg mine, Oregon. Total production from the Bonanza mine was >1360 t of Hg, during mining from the late 1800s to 1960, ranking it as an intermediate sized Hg mine on an international scale. The primary objective of this study was to evaluate the distribution, transport, and methylation of Hg downstream from a Hg mine in a coastal temperate climatic zone. Data shown here for methyl-Hg, a neurotoxin hazardous to humans, are the first reported for sediment and water from this area. Stream sediment collected from Foster Creek flowing downstream from the Bonanza mine contained elevated Hg concentrations that ranged from 590 to 71,000 ng/g, all of which (except the most distal sample) exceeded the probable effect concentration (PEC) of 1060 ng/g, the Hg concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Concentrations of methyl-Hg in stream sediment collected from Foster Creek varied from 11 to 62 ng/g and were highly elevated compared to regional baseline concentrations (0.11–0.82 ng/g) established in this study. Methyl-Hg concentrations in stream sediment collected in this study showed a significant correlation with total organic C (TOC, R2 = 0.62), generally indicating increased methyl-Hg formation with increasing TOC in sediment. Isotopic-tracer methods indicated that several samples of Foster Creek sediment exhibited high rates of Hg-methylation. Concentrations of Hg in water collected downstream from the mine varied from 17 to 270 ng/L and were also elevated compared to baselines, but all were below the 770 ng/L Hg standard recommended by the USEPA to protect against chronic effects to aquatic wildlife. Concentrations of methyl-Hg in the water collected from Foster Creek ranged from 0.17 to 1.8 ng/L, which were elevated compared to regional baseline sites upstream and downstream from the mine that varied from <0.02 to 0.22 ng/L. Aquatic snails collected downstream from the mine were elevated in Hg indicating significant bioavailability and uptake of Hg by these snails. Results for sediment and water indicated significant methyl-Hg formation in the ecosystem downstream from the Bonanza mine, which is enhanced by the temperate climate, high precipitation in the area, and high organic matter.  相似文献   

20.
We generate a multi-proxy sub-centennial-scale reconstruction of environmental change during the past two millennia from Itilliq Lake, Baffin Island, Arctic Canada. Our reconstruction arises from a finely subsectioned 210Pb- and 14C-dated surface sediment core and includes measures of organic matter (e.g., chlorophyll a; carbon–nitrogen ratio) and insect (Diptera: Chironomidae) assemblages. Within the past millennium, the least productive, and by inference coldest, conditions occurred ca. AD 1700–1850, late in the Little Ice Age. The 2000-yr sediment record also reveals an episode of reduced organic matter deposition during the 6th–7th century AD; combined with the few other records comparable in resolution that span this time interval from Baffin Island, we suggest that this cold episode was experienced regionally. A comparable cold climatic episode occurred in Alaska and western Canada at this time, suggesting that the first millennium AD cold climate anomaly may have occurred throughout the Arctic. Dramatic increases in aquatic biological productivity at multiple trophic levels are indicated by increased chlorophyll a concentrations since AD 1800 and chironomid concentrations since AD 1900, both of which have risen to levels unprecedented over the past 2000 yr.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号