首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Accelerator mass spectrometer radiocarbon ages of the Roxana Silt (loess) along the Upper Mississippi Valley of Wisconsin and Minnesota indicate that loess sedimentation of the Roxana Silt occurred between about 55,000 and 27,000 14 C yr B.P. However, due to local environmental controls, the basal age at any given site may range from 55,000 to 35,000 14C yr B.P. The radiocarbon ages presented here are in agreement with previous radiocarbon ages for the Roxana Silt in its type area of west-central Illinois, but indicate that long-term sedimentation rates along the bluffline of the Upper Mississippi Valley were very slow (4-8 cm/1000 yr) compared to long-term sedimentation rates along the bluffline of the type area (40-70 cm/1000 yr). Comparison of radiocarbon ages for midcontinent middle Wisconsinan loess deposits indicates that sedimentation along the Mississippi River valley may have preceded loess sedimentation along the Missouri River valley by as much as 20,000 yr or that basal ages for middle Wisconsinan loess along the Missouri Valley are erroneously young. The bracketing ages for the Upper Mississippi Valley Roxana Silt indicate that the Mississippi River valley was receiving outwash sedimentation between 55,000 and 27,000 14C yr B.P.  相似文献   

2.
We report new ages on glaciofluvial (outwash) sediment from a large upland in northern Lower Michigan—the Grayling Fingers. The Fingers are cored with > 150 m of outwash, which is often overlain by the (informal) Blue Lake till of marine isotope stage (MIS) 2. They are part of an even larger, interlobate upland comprised of sandy drift, known locally as the High Plains. The ages, determined using optically stimulated luminescence (OSL) methods, indicate that subaerial deposition of this outwash occurred between 25.7 and 29.0 ka, probably associated with a stable MIS 2 ice margin, with mean ages of ca. 27 ka. These dates establish a maximum-limiting age of ca. 27 ka for the MIS 2 (late Wisconsin) advance into central northern Lower Michigan. We suggest that widespread ice sheet stabilization at the margins of the northern Lower Peninsula, during this advance and later during its episodic retreat, partly explains the thick assemblages of coarse-textured drift there. Our work also supports the general assumption of a highly lobate ice margin during the MIS 2 advance in the Great Lakes region, with the Fingers, an interlobate upland, remaining ice-free until ca. 27 ka.  相似文献   

3.
Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880–1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.  相似文献   

4.
天山乌鲁木齐河源末次冰期冰川沉积光释光测年   总被引:6,自引:5,他引:1  
乌鲁木齐河源地区是中国冰川遗迹保存最丰富、地貌最典型的区域之一,是根据冰川遗迹重建第四纪冰川历史的理想地区。大量的研究工作以及技术测年结果也使其成为试验冰川沉积光释光(optically stimulated luminescence,OSL)测年可行性的理想地点。共采集了6个冰碛及上覆黄土样品用于光释光测年。提取38~63 μm的石英颗粒,运用SAR-SGC法测试等效剂量。各种检验表明测试程序是适用的。通过地貌地层关系、重复样品、已有年代的对比等方法,检验该地冰川沉积OSL测年的可行性。结果表明,OSL年代结果与地貌地层新老关系非常吻合,与已有的其他测年技术的年代结果也具可比性,表明这些样品的OSL信号在沉积之前晒退较好,OSL年代是可信的。冰川观测站侧碛垄的OSL年代为14.8±1.2 ka;9号冰川支谷口附近冰碛的OSL年代为13.5±1.1 ka和17.2±1.3 ka;上望峰冰碛的OSL年代为20.1±1.6 ka。综合OSL年代结果与此前其他测年结果,这几套冰碛垄形成于深海氧同位素MIS 2阶段应该是比较统一的认识。上望峰冰碛上覆黄土的OSL年代(10.5±0.8 ka)也印证了该结论。OSL年代指示上望峰冰碛对应于末次冰期最盛期,冰川观测站和9号冰川支谷谷口冰碛对应于晚冰期。下望峰冰碛的OSL年代为36.3±2.8 ka,对应于MIS 3阶段。下望峰冰碛的形成时代,仍有待更多沉积学以及测年工作进一步确定。  相似文献   

5.
Four levels of terraces located along Siang River, north of Main Central Thrust at Tuting, NE Himalaya are dated using Optically Stimulated Luminescence (OSL). The dating technique is applied using (1) Blue LED stimulation on Quartz (2) Infrared Stimulated Luminescence (IRSL) stimulation on Feldspar at 50 °C and (3) Infrared Stimulated Luminescence stimulation on Feldspar at an elevated temperature of 225 °C. The results indicated that the later two protocols on feldspars yielded overestimated ages that suggested incomplete bleaching of luminescence signals in feldspar. The ages derived using quartz suggested a nearly continued valley aggradation from >21–8 ka with three phases of bedrock incision. The phase of aggradation coincides with a climatic transition from cold and dry Last Glacial phase to warm and wet Holocene Optimum. The bedrock incision phases centered at <21 ka, ∼11 ka and ∼8 ka indicate towards major episodes of tectonic uplift in the region around Tuting.  相似文献   

6.
《Quaternary Science Reviews》2007,26(17-18):2265-2280
Well-preserved loess deposits are found on the foothills of mountains along the middle reaches of the Yarlung Zangbo River in southern Tibet. Optically stimulated luminescence (OSL) dating is used to determine loess ages by applying the single-aliquot regeneration technique. Geochemical, mineralogical, and granulometric measurements were carried out to allow a comparison between loess from Tibet and the Chinese Loess Plateau. Our results demonstrate that (i) the loess deposits have a basal age of 13–11 ka, suggesting they accumulated after the last deglaciation, (ii) loess in southern Tibet has a “glacial” origin, resulting from eolian sorting of glaciofluvial outwash deposits from braided river channels or alluvial fans by local near-surface winds, and (iii) the present loess in the interior of Tibet has accumulated since the last deglaciation when increased monsoonal circulation provided an increased vegetation cover that was sufficient for trapping eolian silt. The lack of full-glacial loess is either due to minimal vegetation cover or possibly due to the erosion of loess as glaciofluvial outwash during the beginning of each interglacial. Such processes would have been repeated during each glacial–interglacial cycle of the Quaternary.  相似文献   

7.
Increased flooding caused by global warming threatens the safety of coastal and river basin dwellers, but the relationship of flooding frequency, human settlement and climate change at long time scales remains unclear. Paleolithic, Neolithic and Bronze Age cultural deposits interbedded with flood sediments were found at the Shalongka site near the north bank of the upper Yellow River, northeastern Tibetan Plateau. We reconstruct the history of overbank flooding and human occupation at the Shalongka site by application of optically stimulated luminescence and radiocarbon dating, grain size, magnetic susceptibility and color reflectance analysis of overbank sediment and paleosols. The reliability of OSL dating has been confirmed by internal checks and comparing with independent 14C ages; alluvial OSL ages have shown a systematic overestimation due to poor bleaching. Our results indicate that the Yellow River episodically overflowed and reached the Shalongka site from at least ~ 16 ka and lasting until ~ 3 ka. Soil development and reduced flooding occurred at ~ 15, ~ 8.3–5.4, and after ~ 3 ka, and prehistoric populations spread to the Shalongka site area at ~ 8.3, ~ 5.4, and ~ 3 ka. We suggest that climate change influenced the overbank flooding frequency and then affected prehistoric human occupation of the Shalongka site.  相似文献   

8.
This paper provides a new deglacial chronology for retreat of the Irish Ice Sheet from the continental shelf of western Ireland to the adjoining coastline, a region where the timing and drivers of ice recession have never been fully constrained. Previous work suggests maximum ice-sheet extent on the outer western continental shelf occurred at ~26–24 cal. ka BP with the initial retreat of the ice marked by the production of grounding-zone wedges between 23–21.1 cal. ka BP. However, the timing and rate of ice-sheet retreat from the inner continental shelf to the present coast are largely unknown. This paper reports 31 new terrestrial cosmogenic nuclide (TCN) ages from erratics and ice-moulded bedrock and three new optically stimulated luminescence (OSL) ages on deglacial outwash. The TCN data constrain deglaciation of the near coast (Aran Islands) to ~19.5–18.5 ka. This infers ice retreated rapidly from the mid-shelf after 21 ka, but the combined effects of bathymetric shallowing and pinning acted to stabilize the ice at the Aran Islands. However, marginal stability was short-lived, with multiple coastal sites along the Connemara/Galway coasts demonstrating ice recession under terrestrial conditions by 18.2–17. ka. This pattern of retreat continued as ice retreated eastward through inner Galway Bay by 16.5 ka. South of Galway, the Kilkee–Kilrush Moraine Complex and Scattery Island moraines point to late stage re-advances of the ice sheet into southern County Clare ~14.1–13.3 ka, but the large errors associated with the OSL ages make correlation with other regional re-advances difficult. It seems more likely that these moraines are the product of regional ice lobes adjusting to internal ice-sheet dynamics during deglaciation in the time window 17–16 ka.  相似文献   

9.
对郧县—白河段汉江Ⅰ级河流阶地上风成黄土的沉积学、理化性质、地球化学和年代学进行了系统研究。结果表明,汉江Ⅰ河流阶的形成不晚于25 ka BP;黄土具有马兰黄土(L1)→过渡黄土(Lt)→古土壤(S0)→全新世黄土(L0)→表土(TS)的地层序列,与渭河谷地的黄土地层序列完全可比;25~11.5 ka BP,冬季风强盛,气候冷干,从11.5 ka BP开始,冬季风逐渐减弱,气候开始向暖湿方向逐步转化,从8.5 ka BP开始,夏季风达到了末次冰期结束后的鼎盛时期,3.1 ka BP前后,东亚季风格局发生变化,夏季风减弱,重新进入一个相对干冷的时期,而人类活动对地表的影响形成了表土;汉江上游谷地黄土记录的末次冰期后季风逐渐加强、中全新世季风强盛、随后季风衰退和气候变干的夏季风演变模式与渭河谷地黄土的记录高度一致,与邻区石笋和泥炭记录的季风变化趋势也有良好的可比性,但与石笋/泥炭记录的夏季风强盛期的起始时间(9.3~4.2 ka BP)并不完全一致。  相似文献   

10.
Inactive parabolic dunes are present in southeastern Maryland, USA, along the east bank of the Potomac River. More elongate and finer-grained eolian deposits and paha-like ridges characterize the Potomac River–Patuxent River upland and the west side of Chesapeake Bay. These ridges are streamlined erosional features, veneered with eolian sediment and interspersed with dunes in the low-relief headwaters of Potomac- and Patuxent-river tributaries. Axis data for the dunes and ridges indicate formation by WNW–NW winds. Optically stimulated luminescence and radiocarbon age data suggest dune formation from  33–15 ka, agreeing with the 30–13 ka ages Denny, C.S., Owens, J.P., Sirkin, L., Rubin, M., 1979. The Parsonburg Sand in the central Delmarva Peninsula, Maryland and Delaware. U.S. Geol. Surv. Prof. Pap. 1067-B, 16 pp. suggested for eolian deposits east of Chesapeake Bay. Age range and paleowind direction(s) for eolian features in the Bay region approximate those for late Wisconsin loess in the North American midcontinent. Formation of midcontinent loess and Bay-region eolian features was coeval with rapid growth of the Laurentide Ice Sheet and strong cooling episodes (δ18O minima) evident in Greenland ice cores. Age and paleowind-direction coincidence, for eolian features in the midcontinent and Bay region, indicates strong mid-latitude WNW–NW winds for several hundred kilometers south of the Laurentide glacial terminus that were oblique to previously simulated anticyclonic winds for the last glacial maximum.  相似文献   

11.
Rockfall ages in tectonically active regions provide information regarding frequency and magnitude of earthquakes. In the hyper-arid environment of the Dead Sea fault (DSF), southern Israel, rockfalls are most probably triggered by earthquakes. We dated rockfalls along the western margin of the DSF using terrestrial cosmogenic nuclides (TCN). At each rockfall site, samples were collected from simultaneously exposed conjugate boulders and cliff surfaces. Such conjugate samples initially had identical pre-fall (“inherited”) TCN concentrations. After boulder detachment, these surfaces were dosed by different production rates due to differences in post-fall shielding and geometry. However, in our study area, pre-rockfall inheritance and post-rockfall production rates of TCN cannot be evaluated. Therefore, we developed a numerical approach and demonstrated a way to overcome the above-mentioned problems. This approach can be applied in other settings where rockfalls cannot be dated by simple exposure dating. Results suggest rockfall ages between 3.6 ± 0.8 and 4.7 ± 0.7 ka. OSL ages of sediment accumulated behind the boulders range between 0.6 ± 0.1 and 3.4 ± 1.4 ka and support the TCN results. Our ages agree with dated earthquakes determined in paleoseismic studies along the entire length of the DSF and support the observation of intensive earthquake activity around 4–5 ka.  相似文献   

12.
We study the aggradation and incision of the Alaknanda River Valley during the late Pleistocene and Holocene. The morphostratigraphy in the river valley at Deoprayag shows the active riverbed, a cut terrace, and a fill terrace. The sedimentary fabric of the fill terrace comprises four lithofacies representing 1) riverbed accretion, 2) locally derived debris fan, 3) the deposits of waning floods and 4) palaeoflood records. The sedimentation style, coupled with geochemical analysis and Optically Stimulated Luminescence (OSL) dating, indicate that this terrace formed in a drier climate and the river valley aggraded in two phases during 21–18 ka and 13–9 ka. During these periods, sediment supply was relatively higher. Incision began after 10 ka in response to a strengthened monsoon and aided by increase of the tectonic gradient. The cut terrace formed at ~ 5 ka during a phase of stable climate and tectonic quiescence. The palaeoflood records suggest wetter climate 200–300 yr ago when the floods originated in the upper catchment of the Higher Himalaya and in the relatively drier climate ~ 1.2 ka when locally derived sediments from the Lesser Himalaya dominated flood deposits. Maximum and minimum limits of bedrock incision rate at Deoprayag are 2.3 mm/a and 1.4 mm/a.  相似文献   

13.
Glacial landforms and outwash terraces in the Nenana River valley, Reindeer Hills and Monahan Flat in the central Alaska Range were dated with 60 10Be exposure ages to determine the timing of Late Pleistocene glaciation. In the Nenana River valley, glaciation occurred at 104–180 ka (Lignite Creek glaciation), ca. 55 ka (Healy glaciation), and ca. 16 ka (Carlo Creek phase); glaciers retreated in the Reindeer Hills and Monahan Flat by ca. 14 ka and ca. 13 ka, respectively. The Carlo Creek moraine is similar in age to at least six other moraines in the Alaska Range, Ahklun Mountains and Brooks Range. The new data suggest that post‐depositional geological processes limit the usefulness of 10Be methods to the latter part (≤60 ka) of the late Quaternary in central Alaska. Ages on Healy and younger landforms cluster well, with the exception of Riley Creek moraines and Monahan Flat‐west sites, where boulders were likely affected by post‐depositional processes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Luminescence dating of loess older than 100 ka has long been a challenge. It has been recently reported that, using optically stimulated luminescence (OSL) of fine-grained quartz (4–11 μm) extracted from loess, the range of luminescence dating could be pushed to 0.6 Ma with OSL ages being in agreement with independent ages [Watanuki, T., Murray, A.S., Tsukamoto, S., 2005. Quartz and polymineral luminescence dating of Japanese loess over the last 0.6 Ma: comparison with an independent chronology. Earth and Planetary Science Letters 240, 774–789]. The aim of this study is to provide a luminescence chronology (20 samples) for the standard Luochuan loess section, and to further examine the upper limit of quartz OSL dating for Chinese loess. The growth curve does not saturate at 700 Gy, and should allow reliable equivalent dose (De) determination up to at least 400 Gy. However, when compared with independent chronological control, the De that could be treated as reliable is less than 230 Gy (corresponding to 70 ka in age for Chinese loess), and the De larger than 230 Gy should be underestimated. Ages for samples from the lower part of palaeosol S1 are severely underestimated, with the maximum age of 95 ka for a sample from the bottom of this palaeosol, much younger than the expected age of 128 ka. The maximum De obtained for sample L9/M, collected from loess layer L9 which is below the Matuyama–Brunhes (B/M) boundary whose age is 780 ka, is only 403 Gy which corresponds to an age of 107 ka. The cause of underestimation is not yet clear. The previous results by Watunuki et al. (2005) on the extension of OSL dating of loess to 0.6 Ma is not confirmed. When evaluating the validity of OSL ages in S1, another possibility is to question the already established chronological frame for Luochuan section, which is based on the hypothesis of continuous dust deposition. The assumption of an erosion hiatus between L2 and S1 could make the OSL ages look reasonable. However, if this is the case, then it is difficult to explain why the age of sample L9/M is only 107 ka which could be treated as a saturation age, while the OSL can provide a correct age for loess as old as 94.9 ka for sample LC22 collected from the bottom of S1. Much work is required to clarify these confusions.  相似文献   

15.
Loess accumulated on a Bull Lake outwash terrace of Marine Oxygen Isotope Stage 6 (MIS 6) age in southern Jackson Hole, Wyoming. The 9 m section displays eight intervals of loess deposition (Loess 1 to Loess 8, oldest), each followed by soil development. Our age-depth model is constrained by thermoluminescence, meteoric 10Be accumulation in soils, and cosmogenic 10Be surface exposure ages. We use particle size, geochemical, mineral-magnetic, and clay mineralogical data to interpret loess sources and pedogenesis. Deposition of MIS 6 loess was followed by a tripartite soil/thin loess complex (Soils 8, 7, and 6) apparently reflecting the large climatic oscillations of MIS 5. Soil 8 (MIS 5e) shows the strongest development. Loess 5 accumulated during a glacial interval (~ 76-69 ka; MIS 4) followed by soil development under conditions wetter and probably colder than present. Deposition of thick Loess 3 (~ 43-51 ka, MIS 3) was followed by soil development comparable with that observed in Soil 1. Loess 1 (MIS 2) accumulated during the Pinedale glaciation and was followed by development of Soil 1 under a semiarid climate. This record of alternating loess deposition and soil development is compatible with the history of Yellowstone vegetation and the glacial flour record from the Sierra Nevada.  相似文献   

16.
Although Paleoindian sites in Indiana, USA, are commonly located on late Wisconsin (Last Glacial Maximum) outwash terraces, drainage basin development since deglaciation often obscures the visibility of such sites on flood plains by either burying them under alluvium or destroying them through erosion. Significant clusters of Paleoindian and Early Archaic sites, however, have been identified proximal to the modern White River channel in central Indiana on what is mapped as “floodplain.” These site cluster locations are patterned. They typically occur within bedrock‐controlled river reaches but are rare along unconfined meandering reaches. Subsurface reconnaissance and chronology indicate that despite the fact that they often flood, portions of the so‐called flood plains within bedrock‐confined reaches are actually terraces constructed of late Wisconsin outwash with minimal overbank sedimentation. Terrace preservation in these settings is a result of bedrock structure that protects older sediments from lateral erosion and differentially preserves archaeological sites near the modern channel in bedrock‐controlled reaches. Comparisons of archaeological sites within bedrock‐controlled segments of the White River to those in unconfined meandering segments suggests that significant numbers of Paleoindian and Early Archaic sites may be missing from river settings across the midcontinent. These findings demonstrate that bedrock channel controls are important to recognize when assessing prehistoric settlement distributions.  相似文献   

17.
Pedo-sedimentological fieldwork were carried out in the Lajia Ruins within the Guanting Basin along the upper Yellow River valley. In the eolian loess-soil sections on the second river terrace in the Lajia Ruins, we find that the land of the Qijia Culture (4.20–3.95 ka BP) are fractured by several sets of earthquake fissures. A conglomerated red clay covers the ground of the Qijia Culture and also fills in the earthquake fissures. The clay was deposited by enormous mudflows in association with catastrophic earthquakes and rainstorms. The aim of this study is to provide a luminescence chronology of the sediment stratigraphy of the Lajia Ruins. Eight samples were taken from an eolian loess-soil section (Xialajia section) in the ruins for optically stimulated luminescence (OSL) dating. The OSL ages are in stratigraphic order and range from (31.94 ± 1.99) ka to (0.76 ± 0.02) ka. Combined OSL and 14C ages with additional stratigraphic correlations, a chronological framework is established. We conclude that: (1) the second terrace of the upper part of Yellow River formed 35.00 ka ago, which was followed by the accumulation of the eolian loess-soil section; and (2) the eolian loess-soil section is composed of the Malan Loess of the late last glacial (MIS-2) and Holocene loess-soil sequences.  相似文献   

18.
This paper reports the main sedimentary characteristics, soil micromorphology and optically-stimulated luminescence (OSL) ages, and details the pedosedimentary reconstruction, of the Hudson site situated in the northern Pampas of Buenos Aires province. It also provides the OSL chronology and a reinterpretation of previously reported micromorphological features for the nearby site of Gorina. Finally, the stratigraphic records of both sites are compared and the main environmental events discussed in a regional context.At Hudson, situated at a low altitude environment close to the coastal plain, the basal fine-grained paludal deposits were unconformably covered by coastal marine sediments with an OSL age of ca. 128 ka supporting its correlation with the high stand of sea level of marine isotope stage 5e. A paleosol developed on the marine deposits and the underlying paludal sediments. OSL ages suggest that soil development and its subsequent erosion occurred over some period between ca. 128 and 54 ka. Fine sediment accumulation in a paludal environment continued until prior to ca. 23 ka when the accumulation of the uppermost loess mantle started. It continued until the early Holocene when present soil development began. At Gorina, OSL ages suggest that the upper part of the pedocomplex formed at some stage between ca. 194 and 56 ka. Loess then accumulated followed by an erosional phase; loess deposition restarted by ca. 29 ka and continued until the beginning of the Holocene (ca. 9 ka) when the present land surface was established.The stratigraphic and paleoenvironmental differences exhibited by the Hudson and Gorina records result from their contrasting geomorphological settings. The OSL geochronology suggests that the last interglacial (MIS 5) at Hudson is marked by the accumulation of marine deposits (MIS 5e) and the subsequent development of a paleosol. The equivalent soil-forming interval at Gorina is represented by the upper part of the buried pedocomplex. Both at Gorina and Hudson, loess accumulation was dominant especially during MIS 2. Loess accumulation continued during MIS 1 until the early Holocene with apparently somewhat higher sedimentation rates in Hudson. Pedogenesis has been predominant during the rest of the Holocene, resulting in the formation of the surface soil profiles.  相似文献   

19.
The continental margin of southern South Africa exhibits an array of emergent marginal marine sediments permitting the reconstruction of long-term eustatic sea-level changes. We report a suite of optical luminescence ages and supplementary amino acid racemization data, which provide paleosea-level index points for three sites on this coastline. Deposits in the Swartvlei and Groot Brak estuaries display tidal inlet facies overlain by shoreface or eolian facies. Contemporary facies relations suggest a probable high stand 6.0-8.5 m above modern sea level (amsl). At Cape Agulhas, evidence of a past sea-level high stand comprises a gravel beach (ca. 3.8 m amsl) and an overlying sandy shoreface facies (up to 7.5 m amsl). OSL ages between 138 ± 7 ka and 118 ± 7 ka confirm a last interglacial age for all marginal marine facies. The high stand was followed by a sea-level regression that was associated with the accumulation of eolian dunes dating to between 122 ± 7 ka and 113 ± 6 ka. These data provide the first rigorous numerical age constraints for last interglacial sea-level fluctuations in this region, revealing the timing and elevation of the last interglacial high stand to broadly mirror a number of other far-field locations.  相似文献   

20.
对处于中国西北黄土高原沙漠边缘曹岘厚层黄土剖面上部进行了光释光年代初步研究。实验结果表明,45~63μm石英颗粒的光释光信号以快组分为主,适合应用单片再生剂量法(SAR)测年。在自然和再生剂量预热温度为260℃持续10秒,检测剂量预热温度为160℃持续0秒的条件下,石英单片再生剂量法获得的光释光年龄随样品深度而增加。但是,剖面底部S1古土壤和L2顶部黄土样品的光释光年龄仅为69.1±5.5ka和72.0±4.6ka,表现出30 % ~50 % 的年龄低估。利用多片再生剂量法(MAR)得到的年龄与SAR方法所得年龄无显著差异,即出现了类似的年龄低估现象。在20.1~18.8ka时段内,该剖面的沉积速率超过500cm/ka。末次冰盛期的寒冷气候,与沙漠的距离以及近邻黄河的地貌特点共同造成了如此高的沉积速率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号