首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Cosmogenic isotope (36Cl) surface exposure dating of four of the erratic boulders at Norber in the Yorkshire Dales National Park, northwest England, yielded mean ages of ∼22.2 ± 2.0 ka BP and ∼18.0 ± 1.6 ka BP for their emplacement. These two mean values derive from different 36Cl production rates used for exposure age calculation. The ages are uncorrected for temporal variations in production rates and may underestimate the true ages by 5-7%. The former age, although implying early deglaciation for this area of the British ice sheet, is not incompatible with minimum deglaciation ages from other contexts and locations in northwest England. However, the latter age is more consistent with the same minimum deglaciation ages and geochronological evidence for ice-free conditions in parts of the northern sector of the Irish Sea. Within uncertainties, the younger of the mean ages from Norber may indicate that boulder emplacement was associated with North Atlantic Heinrich event 1. The limited spatial (downvalley) extent of the Norber boulders implies that at the time of their deposition the ice margin was coincident with the distal margin of the erratic train. Loss of ice cover at Norber was followed by persistent stadial conditions until the abrupt opening of the Lateglacial Interstadial when large carnivorous mammals colonised the area. The 36Cl ages are between ∼3.0 ka and ∼13.0 ka older than previous estimates based on rates of limestone dissolution derived from the heights of pedestals beneath the erratics.  相似文献   

2.
Rockfalls and rock avalanches are a recurrent process in high mountain areas like the Mont Blanc massif. These processes are surveyed due to the hazard they present for infrastructure and alpinists. While rockfalls and rock avalanches have been documented for the last 150 years, we know very little about their frequency since the Last Glacial Maximum (LGM). In order to improve our understanding, it is imperative to date them on a longer timescale. A pilot campaign using Terrestrial Cosmogenic Nuclide (TCN) dating of five samples was carried out in 2006 at the Aiguille du Midi (3842 m a.s.l.). In 2011, a larger scale study (20 samples) was carried out in five other test sites in the Mont Blanc massif. This paper presents the exposure ages of the 2011 TCN study as well as the updated exposure ages of the 2006 study using newer TCN dating parameters. Most of these exposure ages lie within the Holocene but three ages are Pleistocene (59.87?±?6.10 ka for the oldest). A comparison of these ages with air temperature and glacier cover proxies explored the possible relationship between the most active rockfall periods and the warmest periods of the Holocene: two clusters of exposure ages have been detected, corresponding to the Middle Holocene (8.2–4.2 ka) and the Roman Warm Period (c. 2 ka) climate periods. Some recent rockfalls have also been dated (<?0.56 ka).  相似文献   

3.
40Ar/39Ar ages on the Hat Creek Basalt (HCB) and stratigraphically related lava flows show that latest Pleistocene tholeiitic basalt with very low K2O can be dated reliably. The HCB underlies ∼ 15 ka glacial gravel and overlies four andesite and basaltic andesite lava flows that yield 40Ar/39Ar ages of 38 ± 7 ka (Cinder Butte; 1.65% K2O), 46 ± 7 ka (Sugarloaf Peak; 1.85% K2O), 67 ± 4 ka (Little Potato Butte; 1.42% K2O) and 77 ± 11 ka (Potato Butte; 1.62% K2O). Given these firm age brackets, we then dated the HCB directly. One sample (0.19% K2O) clearly failed the criteria for plateau-age interpretation, but the inverse isochron age of 26 ± 6 ka is seductively appealing. A second sample (0.17% K2O) yielded concordant plateau, integrated (total fusion), and inverse isochron ages of 26 ± 18, 30 ± 20 and 24 ± 6 ka, all within the time bracket determined by stratigraphic relations; the inverse isochron age of 24 ± 6 ka is preferred. As with all isotopically determined ages, confidence in the results is significantly enhanced when additional constraints imposed by other isotopic ages within a stratigraphic context are taken into account.  相似文献   

4.
The Dead Sea fault (DSF) is one of the most active plate boundaries in the world. Understanding the Quaternary history and sediments of the DSF requires investigation into the Neogene development of this plate boundary. DSF lateral motion preceded significant extension and rift morphology by ~ 10 Ma. Sediments of the Sedom Formation, dated here between 5.0 ± 0.5 Ma and 6.2− 2.1inf Ma, yielded extremely low 10Be concentrations and 26Al is absent. These reflect the antiquity of the sediments, deposited in the Sedom Lagoon, which evolved in a subdued landscape and was connected to the Mediterranean Sea. The base of the overlying Amora Formation, deposited in the terminal Amora Lake which developed under increasing relief that promoted escarpment incision, was dated at 3.3− 0.8+ 0.9 Ma. Burial ages of fluvial sediments within caves (3.4 ± 0.2 Ma and 3.6 ± 0.4 Ma) represent the timing of initial incision. Initial DSF topography coincides with the earliest Red Sea MORB's and the East Anatolian fault initiation. These suggest a change in the relative Arabian–African plate motion. This change introduced the rifting component to the DSF followed by a significant subsidence, margin uplift, and a reorganization of relief and drainage pattern in the region resulting in the topographic framework observed today.  相似文献   

5.
The High Plateaus of Utah include seven separate mountain ranges that supported glaciers during the Pleistocene. The Fish Lake Plateau, located on the eastern edge of the High Plateaus, preserves evidence of at least two glacial advances. Four cosmogenic 3He exposure ages of boulders in an older moraine range from 79 to 159 ka with a mean age of 129 ± 39 ka and oldest ages of 152 ± 3 and 159 ± 5 ka. These ages suggest deposition during the type Bull Lake glaciation and Marine Oxygen Isotope Stage (MIS) 6. Twenty boulder exposure ages from four different younger moraines indicate a local last glacial maximum (LGM) of ~ 21.1 ka, coincident with the type Pinedale glaciation and MIS 2. Reconstructed Pinedale-age glaciers from the Fish Lake Plateau have equilibrium-line altitudes ranging from 2950 to 3190 m. LGM summer temperature depressions for the Fish Lake Plateau range from −10.7 to −8.2°C, assuming no change in precipitation. Comparison of the Fish Lake summer temperature depressions to a regional dataset suggests that the Fish Lake Plateau may have had a slight increase (~ 1.5× modern) in precipitation during the LGM. A series of submerged ridges in Fish Lake were identified during a bathymetric survey and are likely Bull Lake age moraines.  相似文献   

6.
The impact of the Laurentide Ice Sheet (LIS) deglaciation on Northern Hemisphere early Holocene climate can be evaluated only once a detailed chronology of ice history and sea‐level change is established. Foxe Peninsula is ideally situated on the northern boundary of Hudson Strait, and preserves a chronostratigraphy that provides important glaciological insights regarding changes in ice‐sheet position and relative sea level before and after the 8.2 ka cooling event. We utilized a combination of radiocarbon ages, adjusted with a new locally derived ΔR, and terrestrial in‐situ cosmogenic nuclide (TCN) exposure ages to develop a chronology for early‐Holocene events in the northern Hudson Strait. A marine limit at 192 m a.s.l., dated at 8.1–7.9 cal. ka BP, provides the timing of deglaciation following the 8.2 ka event, confirming that ice persisted at least north of Hudson Bay until then. A moraine complex and esker morphosequence, the Foxe Moraine, relates to glaciomarine outwash deltas and beaches at 160 m a.s.l., and is tightly dated at 7.6 cal. ka BP with a combination of shell dates and exposure ages on boulders. The final rapid collapse of Foxe Peninsula ice occurred by 7.1–6.9 cal. ka BP (radiocarbon dates and TCN depth profile age on an outwash delta), which supports the hypothesis that LIS melting contributed to the contemporaneous global sea‐level rise known as the Catastrophic Rise Event 3 (CRE‐3).  相似文献   

7.
We present 10Be exposure ages from moraines in the Delta River Valley, a reference locality for Pleistocene glaciation in the northern Alaska Range. The ages are from material deposited during the Delta and Donnelly glaciations, which have been correlated with MIS 6 and 2, respectively. 10Be chronology indicates that at least part of the Delta moraine stabilized during MIS 4/3, and that the Donnelly moraine stabilized ∼ 17 ka. These ages correlate with other dates from the Alaska Range and other regions in Alaska, suggesting synchronicity across Beringia during pulses of late Pleistocene glaciation. Several sample types were collected: boulders, single clasts, and gravel samples (amalgamated small clasts) from around boulders as well as from surfaces devoid of boulders. Comparing 10Be ages of these sample types reveals the influence of pre/post-depositional processes, including boulder erosion, boulder exhumation, and moraine surface lowering. These processes occur continuously but seem to accelerate during and immediately after successive glacial episodes. The result is a multi-peak age distribution indicating that once a moraine persists through subsequent glaciations the chronological significance of cosmogenic ages derived from samples collected on that moraine diminishes significantly. The absence of Holocene ages implies relatively minor exhumation and/or weathering since 12 ka.  相似文献   

8.
The mountain belts of the Dzungarian Alatau (SE Kazakhstan) and the Tien Shan are part of the actively deforming India–Asia collision zone but how the strain is partitioned on individual faults remains poorly known. Here we use terrace mapping, topographic profiling, and 10Be exposure dating to constrain the slip rate of the 160-km-long Usek thrust fault, which defines the southern front of the Dzungarian Alatau. In the eastern part of the fault, where the Usek River has formed five terraces (T1–T5), the Usek thrust fault has vertically displaced terrace T4 by 132 ± 10 m. At two sites on T4, exposure dating of boulders, amalgamated quartz pebbles, and sand from a depth profile yielded 10Be ages of 366 ± 60 ka and 360 + 77/− 48 ka (both calculated for an erosion rate of 0.5 mm/ka). Combined with the vertical offset and a 45–70° dip of the Usek fault, these age constraints result in vertical and horizontal slip rates of ~ 0.4 and ~ 0.25 mm/a, respectively. These rates are below the current resolution of GPS measurements and highlight the importance of determining slip rates for individual faults by dating deformed landforms to resolve the pattern of strain distribution across intracontinental mountain belts.  相似文献   

9.
The routes and timing of human occupation of the Tibetan Plateau (TP) are crucial for understanding the evolution of Tibetan populations and associated paleoclimatic conditions. Many archeological sites have been found in/around the Tarim Basin, on the northern margin of the Tibetan Plateau. Unfortunately, most of these sites are surface sites and cannot be directly dated. Their ages can only be estimated based on imprecise artifact comparisons. We recently found and dated an archeological site on a terrace along the Keriya River. Our ages indicate that the site was occupied at ~ 7.0–7.6 ka, making it the earliest well-dated archeological site yet identified in the Tarim Basin. This suggests that early human foragers migrated into this region prior to ~ 7.0–7.6 ka during the early to mid-Holocene climatic optimum, which may have provided the impetus for populating the region. We hypothesize that the Keriya River, together with the other rivers originating from the TP, may have served as access routes onto the TP for early human foragers. These rivers may also have served as stepping stones for migration further west into the now hyper-arid regions of the Tarim Basin, leading ultimately to the development of the Silk Road.  相似文献   

10.
Four traditionally recognized strandline complexes in the southern basin of glacial Lake Agassiz are the Herman, Norcross, Tintah and Campbell, whose names correspond to towns in west-central Minnesota that lie on a linear transect defined by the Great Northern railroad grade; the active corridor for commerce at the time when Warren Upham was mapping and naming the shorelines of Lake Agassiz (ca.1880–1895). Because shorelines represent static water planes, their extension around the lake margin establishes time-synchronous lake levels. Transitions between shoreline positions represent significant water-level fluctuations. However, geologic ages have never been obtained from sites near the namesake towns in the vicinity of the southern outlet. Here we report the first geologic ages for Lake Agassiz shorelines obtained at field sites along the namesake transect, and evaluate the emerging chronology in light of other paleoclimate records. Our current work from 11 sampling sites has yielded 16 independent ages. These results combined with a growing OSL age data set for Lake Agassiz's southern basin provide robust age constraints for the Herman, Norcross and Campbell strandlines with averages and standard deviations of 14.1 ± 0.3 ka, 13.6 ± 0.2 ka, and 10.5 ± 0.3 ka, respectively.  相似文献   

11.
Direct dating of fossil coral reefs using the U-series chronometer provides an important independent test of the Milankovitch orbital forcing theory of climate change. However, well-dated fossil corals pre-dating the last interglacial period (>130 thousand years ago; ka) are scarce due to, (1) a lack of sampling localities, (2) insufficient analytical precision in U-series dating methods, and (3) diagenesis which acts to violate the assumption of closed-system U-series isotopic decay in fossil corals. Here we present 50 new high-precision U-series age determinations for fossil corals from Henderson Island, an emergent coral atoll in the central South Pacific. U-series age determinations associated with the Marine Isotope Stage (MIS) 9 interglacial and MIS 7.5 interstadial periods are reported. The fossil corals show relatively little open-system U-series behaviour in comparison to other localities with fossil coral reefs formed prior to the last glacial cycle, however, open-system U-series behaviour is still evident in most of the dated corals. In particular, percent-level shifts in the [230Th/238U]act composition are observed, leading to conventional U-series ages that are significantly younger or older than the true sample age. This open-system U-series behaviour is not accounted for by any of the open-system U-series models, indicating that new models should be derived. The new U-series ages reported here support and extend earlier findings reported in Stirling et al. (2001), providing evidence of prolific coral reef development on Henderson Island at ∼320 ka, most likely correlated with MIS 9.3, and subsequent reef development at ∼307 ka during MIS 9.1, while relative sea-level was potentially ∼20 m lower than during MIS 9.3. The U-series ages for additional well-preserved fossil corals are suggestive of minor reef development on Henderson Island during MIS 7.5 (245-230 ka) at 240.3 ± 0.8 and 234.7 ± 1.3 ka. All U-series observations are consistent with the Milankovitch theory of climate change, in terms of the timing of onset and termination of the dated interglacial and interstadial periods. The best preserved samples also suggest that the oceanic 234U/238U during MIS 9 and MIS 7.5 was within five permil of the modern open ocean composition.  相似文献   

12.
Late Quaternary, post-shield lavas from the Mauna Kea and Kohala volcanoes on the Big Island of Hawaii have been dated using the 40Ar/39Ar and U-Th/He methods. The objective of the study is to compare the recently demonstrated U-Th/He age method, which uses basaltic olivine phenocrysts, with 40Ar/39Ar ages measured on groundmass from the same samples. As a corollary, the age data also increase the precision of the chronology of volcanism on the Big Island. For the U-Th/He ages, U, Th and He concentrations and isotopes were measured to account for U-series disequilibrium and initial He. Single analyses U-Th/He ages for Hamakua lavas from Mauna Kea are 87 ± 40 to 119 ± 23 ka (2σ uncertainties), which are in general equal to or younger than 40Ar/39Ar ages. Basalt from the Polulu sequence on Kohala gives a U-Th/He age of 354 ± 54 ka and a 40Ar/39Ar age of 450 ± 40 ka. All of the U-Th/He ages, and all but one spurious 40Ar/39Ar ages conform to the previously proposed stratigraphy and published 14C and K-Ar ages. The ages also compare favorably to U-Th whole rock-olivine ages calculated from 238U-230Th disequilibria. The U-Th/He and 40Ar/39Ar results agree best where there is a relatively large amount of radiogenic 40Ar (>10%), and where the 40Ar/36Ar intercept calculated from the Ar isochron diagram is close to the atmospheric value. In two cases, it is not clear why U-Th/He and 40Ar/39Ar ages do not agree within uncertainty. U-Th/He and 40Ar/39Ar results diverge the most on a low-K transitional tholeiitic basalt with abundant olivine. For the most alkalic basalts with negligible olivine phenocrysts, U-Th/He ages were unattainable while 40Ar/39Ar results provide good precision even on ages as low as 19 ± 4 ka. Hence, the strengths and weaknesses of the U-Th/He and 40Ar/39Ar methods are complimentary for basalts with ages of order 100-500 ka.  相似文献   

13.
The early Holocene final drainage of glacial Lake Minong is documented by 21 OSL ages on quartz sand from parabolic dunes and littoral terraces and one radiocarbon age from a lake sediment core adjacent to mapped paleoshorelines in interior eastern Upper Michigan. We employ a simple model wherein lake-level decline exposes unvegetated littoral sediment to deflation, resulting in dune building. Dunes formed subsequent to lake-level decline prior to stabilization by vegetation and provide minimum ages for lake-level decline. Optical ages range from 10.3 to 7.7 ka; 15 ages on dunes adjacent to the lowest Lake Minong shoreline suggest final water-level decline ∼ 9.1 ka. The clustering of optical ages from vertically separated dunes on both sides of the Nadoway-Gros Cap Barrier around 8.8 ka and a basal radiocarbon date behind the barrier (8120 ± 40 14C yr BP [9.1 cal ka BP]) support the hypothesis that the barrier was breached and the final lake-level drop to the Houghton Low occurred coincident with (1) high meltwater flux into the Superior basin and (2) an abrupt, negative shift in oxygen isotope values in Lake Huron.  相似文献   

14.
Fossils of megaherbivores from eight late Pleistocene 14C- and OSL-dated doline infillings of Ajoie (NW Switzerland) were discovered along the Transjurane highway in the Swiss Jura. Carbon and oxygen analyses of enamel were performed on forty-six teeth of large mammals (Equus germanicus, Mammuthus primigenius, Coelodonta antiquitatis, and Bison priscus), coming from one doline in Boncourt (~ 80 ka, marine oxygen isotope stage MIS5a) and seven in Courtedoux (51–27 ka, late MIS3), in order to reconstruct the paleoclimatic and paleoenvironmental conditions of the region. Similar enamel δ13C values for both periods, ranging from − 14.5 to − 9.2‰, indicate that the megaherbivores lived in a C3 plant-dominated environment. Enamel δ18OPO4 values range from 10.9 to 16.3‰ with a mean of 13.5 ± 1.0‰ (n = 46). Mean air temperatures (MATs) were inferred using species-specific δ18OPO4–δ18OH2O-calibrations for modern mammals and a present-day precipitation δ18OH2O-MAT relation for Switzerland. Similar average MATs of 6.6 ± 3.6°C for the deposits dated to ~ 80 ka and 6.5 ± 3.3°C for those dated to the interval 51–27 ka were estimated. This suggests that these mammals in the Ajoie area lived in mild periods of the late Pleistocene with MATs only about 2.5°C lower than modern-day temperatures.  相似文献   

15.
The Northern Prince Gustav Ice Stream located in Prince Gustav Channel, drained the northeastern portion of the Antarctic Peninsula Ice Sheet during the last glacial maximum. Here we present a chronology of its retreat based on in situ produced cosmogenic 10Be from erratic boulders at Cape Lachman, northern James Ross Island. Schmidt hammer testing was adopted to assess the weathering state of erratic boulders in order to better interpret excess cosmogenic 10Be from cumulative periods of pre-exposure or earlier release from the glacier. The weighted mean exposure age of five boulders based on Schmidt hammer data is 12.9 ± 1.2 ka representing the beginning of the deglaciation of lower-lying areas (< 60 m a.s.l.) of the northern James Ross Island, when Northern Prince Gustav Ice Stream split from the remaining James Ross Island ice cover. This age represents the minimum age of the transition from grounded ice stream to floating ice shelf in the middle continental shelf areas of the northern Prince Gustav Channel. The remaining ice cover located at higher elevations of northern James Ross Island retreated during the early Holocene due to gradual decay of terrestrial ice and increase of equilibrium line altitude. Schmidt hammer R-values are inversely correlated with 10Be exposure ages and could be used as a proxy for exposure history of individual granite boulders in this region and favour the hypothesis of earlier release of boulders with excessive 10Be concentrations from glacier directly at this site. These data provide evidences for an earlier deglaciation of northern James Ross Island when compared with other recently presented cosmogenic nuclide based deglaciation chronologies, but this timing coincides with rapid increase of atmospheric temperature in this marginal part of Antarctica.  相似文献   

16.
The continental margin of southern South Africa exhibits an array of emergent marginal marine sediments permitting the reconstruction of long-term eustatic sea-level changes. We report a suite of optical luminescence ages and supplementary amino acid racemization data, which provide paleosea-level index points for three sites on this coastline. Deposits in the Swartvlei and Groot Brak estuaries display tidal inlet facies overlain by shoreface or eolian facies. Contemporary facies relations suggest a probable high stand 6.0-8.5 m above modern sea level (amsl). At Cape Agulhas, evidence of a past sea-level high stand comprises a gravel beach (ca. 3.8 m amsl) and an overlying sandy shoreface facies (up to 7.5 m amsl). OSL ages between 138 ± 7 ka and 118 ± 7 ka confirm a last interglacial age for all marginal marine facies. The high stand was followed by a sea-level regression that was associated with the accumulation of eolian dunes dating to between 122 ± 7 ka and 113 ± 6 ka. These data provide the first rigorous numerical age constraints for last interglacial sea-level fluctuations in this region, revealing the timing and elevation of the last interglacial high stand to broadly mirror a number of other far-field locations.  相似文献   

17.
This paper aims to provide insight into human occupation and landscape change during the Pleistocene in a central area of the Lower Tejo basin (Portugal). Detailed geomorphological mapping, coupled with lithostratigraphy, sedimentology and luminescence dating, supports the identification of a complete terrace staircase sequence. It consists of six gravely terraces located below the culminant (Pliocene) basin unit. A chronological framework for the sedimentary sequences and associated human industries is proposed and correlated with marine oxygen isotope stages (MIS): T1 terrace, not dated; T2, not dated; T3, >300 ka; T4, ∼300-160 ka (MIS8, MIS7 and MIS6); T5, ∼136-75 ka (MIS5); T6, ∼62-30 ka (MIS3); colluvium and aeolian sands, ∼30-14 ka (MIS2); valley fill deposits, ∼14 ka to present (MIS1). The oldest artefacts were found at the base of the T4 terrace, with the local stratigraphic level dated to ≥175 ± 6 ka (Middle Pleistocene). The lithic assemblages collected from distinct stratigraphic levels (T4, T5 top, T6 terraces and colluvium) are characterized by the predominance of opportunistic technological choices, a feature that can be attributed partly to the preferential exploitation of the available raw material, dominated by local-sourced quartzites and quartz pebbles. The adaptation to local raw material (texture and volume), together with subsistence patterns and behaviours, could explain the rarity of Acheulian types (handaxes and cleavers) and picks in the T4 terraces of the Tejo tributaries; this is in contrast to the same terrace of the Tejo valley, in which these types are found. Interpretation of the environmental conditions (controlled by climate and glacio-eustatic sea-level changes) affecting the hunter-gatherer human groups is also presented.  相似文献   

18.
Our knowledge about the glaciation history in the Russian Arctic has to a large extent been based on geomorphological mapping supplemented by studies of short stratigraphical sequences found in exposed sections. Here we present new geochronological data from the Polar Ural Mountains along with a high‐resolution sediment record from Bolshoye Shchuchye, the largest and deepest lake in the mountain range. Seismic profiles show that the lake contains a 160‐m‐thick sequence of unconsolidated lacustrine sediments. A well‐dated 24‐m‐long core from the southern end of the lake spans the last 24 cal. ka. From downward extrapolation of sedimentation rates we estimate that sedimentation started about 50–60 ka ago, most likely just after a large glacier had eroded older sediments from the basin. Terrestrial cosmogenic nuclide (TCN) exposure dating (10Be) of boulders and Optically Stimulated Luminescence (OSL) dating of sediments indicate that this part of the Ural Mountains was last covered by a coherent ice‐field complex during Marine Isotope Stage (MIS) 4. A regrowth of the glaciers took place during a late stage of MIS 3, but the central valleys remained ice free until the present. The presence of small‐ and medium‐sized glaciers during MIS 2 is reflected by a sequence of glacial varves and a high sedimentation rate in the lake basin and likewise from 10Be dating of glacial boulders. The maximum extent of the mountain glaciers during MIS 2 was attained prior to 24 cal. ka BP. Some small present‐day glaciers, which are now disappearing completely due to climate warming, were only slightly larger during the Last Glacial Maximum (LGM) as compared to AD 1953. A marked decrease in sedimentation rate around 18–17 cal. ka BP indicates that the glaciers then became smaller and probably disappeared altogether around 15–14 cal. ka BP.  相似文献   

19.
Cosmogenic 10Be ages on boulders of 54-51 ka (n = 4) on a penultimate Cordilleran ice sheet (CIS) drift confirm that Marine Oxygen Isotope Stage (MIS) 4 (early Wisconsin) glaciation was extensive in parts of Yukon Territory, the first confirmed evidence in the Canadian Cordillera. We name the glaciation inferred from the mapped and dated drift the Gladstone. These results are in apparent contrast to the MIS 6 (Illinoian) age of the penultimate Reid glaciation to the east in central Yukon but are equivalent to exposure ages on MIS 4 drift in Alaska. Contrasting penultimate ice extents in Yukon requires that different source areas of the northern CIS in Yukon responded differently to climatic forcing during glaciations. The variation in glacier extent for different source areas likely relates to variation in precipitation during glaciation, as the northern CIS was a precipitation-limited system. Causes for a variation in precipitation remain unclear but likely involve the style of precipitation delivery over the St. Elias Mountains possibly related to variations in the Aleutian low.  相似文献   

20.
Quaternary post-Barreiras sediments are widespread along Brazil's passive margin. These deposits are well exposed in the onshore Paraíba Basin, which is one of the rift basins formed during the Pangean continental breakup. In this area, the post-Barreiras sediments consist of sandstones with abundant soft-sediment deformation structures related to seismicity contemporaneous with deposition. The trace fossils Thalassinoides and Psilonichnus are found up to 38 m above modern sea level in sandstones dated between 60.0 (± 1.4) and 15.1 (± 1.8) ka. The integration of ichnological and sedimentary facies suggests nearshore paleoenvironments. Such deposits could not be related to eustatic sea-level rise, as this time coincides with the last glaciation. Hence, an uplift of 0.63 mm/yr, or 1.97 mm/yr if sea level was 80 m lower in the last glaciation, would have been required to ascend the post-Barreiras sediments several meters above the present-day sea level during the last 60 ka. This would suggest that the post-rift stage of the South American eastern passive margin may have experienced tectonic reactivation more intense than generally recognized. Although more complete data are still needed, the information presented herein may play an important role in studies aiming to decipher the Quaternary evolution of this passive margin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号