首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
针对我国南方海相富有机质页岩时空非均质强、热演化程度高、构造演化历史复杂、页岩气具差异富集和保存条件多样等特点,采用多学科方法对南方五峰组-龙马溪组海相页岩气区进行精细解剖,形成了针对南方复杂地区海相高过成熟页岩气评价参数表征的多项关键技术.研究结果显示富泥硅质页岩和富泥/硅混合质页岩是五峰组-龙马溪组的优质岩相;页岩中孔和宏孔提供了主要的孔体积,微-纳米孔隙结构特征受页岩组分及其孔隙发育程度双重控制;页岩气富集演化具二高、三复杂特点(古温度高,热演化程度高,温压演化复杂,页岩气赋存方式复杂及保存条件复杂).研究中所提出的页岩岩相表征和优选技术、多尺度储集空间全息表征技术、海相页岩复杂演化改造过程表征技术、初步形成的甜点评价参数体系表征方法可有效地应用于南方五峰组-龙马溪组海相页岩气评价.研究成果可为南方页岩气基础地质调查工程提供技术支撑.   相似文献   

2.
王静 《地质与勘探》2021,57(2):450-456
页岩气储层孔隙结构是页岩气富集成藏、储层评价和优选有利区的关键参数,区分孔隙和喉道是表征页岩气储层孔隙结构的关键。本文选择4块具有不同渗透率的湘西北地区奥陶系五峰组页岩为研究对象,基于恒速压汞实验讨论孔隙和喉道的大小、分布特征及其相互关系以及与渗透率的联系。结果表明:具有不同渗透率的页岩样品表现为较为相近的孔径分布特征但差异较大的喉道分布特征。页岩样品渗透率的大小与孔隙半径没有明显相关关系;喉道大小及其分布特征是控制低渗储层孔隙结构的关键要素之一。渗透率较低页岩样品的喉道以喉道半径小且集中分布为特征,而渗透率较大页岩样品的喉道以喉道半径大呈分散分布但主要以大喉道为特征。喉道特征是研究页岩气储层储集空间和吸附能力的重要部分,在以后对页岩气的勘探开发中应特别注意及重视。  相似文献   

3.
川东-武陵构造带下古生界发育的两套海相页岩层系(下寒武统牛蹄塘组和上奥陶统五峰组—下志留统龙马溪组)不仅是区域内重要的滑脱层,也是页岩气勘探开发的重点层位。通过野外详细的构造解析及室内显微观察,从宏观露头—显微尺度分析了页岩的变形特征,认为页岩至少存在两期构造变形:早期顺层向北西或南东的逆冲和晚期的切层断层作用。页岩的变形强度随着与断裂带距离的变化而发生改变,远离断裂带的地区页岩变形主要表现为近直立的微裂隙,属脆性域;靠近断裂带,页岩的变形特征逐渐表现为脆-韧性过渡,开始发育糜棱化构造;在断裂带内部,页岩强烈面理化,发育大量的糜棱化构造,属韧性域。通过氩离子抛光和扫描电镜技术,分析了变形页岩内部的孔隙演化特征,认为随着变形作用从脆性—脆-韧性过渡—韧性的转变,页岩内部的孔隙类型不仅可以发生转换,而且页岩内部孔隙的大小、分布特征也随之改变。在此基础上,进一步讨论了中国南方复杂构造区下古生界页岩变形对页岩气保存的影响,认为顺层剪切滑脱作用会改变页岩内部的孔隙体系,有利于页岩气的富集;切层的伸展或走滑剪切作用不仅会破坏先前形成的油气圈闭,而且会导致油气沿着断裂带从高势区向低势区运移,进而造成油气散失。   相似文献   

4.
页岩储层特征对于页岩气的赋存状态、含气量和后期开发均具有重要意义。湖相页岩多处于生油窗阶段,其储层特征与海相页岩区别较大。以柴达木盆地北缘中侏罗统页岩为研究对象,利用岩芯观察、有机地球化学分析、XRD矿物成分分析、低温氮气吸附、FE-SEM以及甲烷等温吸附等手段分析页岩储层的岩石类型、地化、矿物组成、孔隙结构和含气性特征。结果表明,与海相页岩相比,柴达木盆地北缘中侏罗统页岩具有"两高两低两种类型"的特点,即有机碳含量高、黏土矿物含量高,热演化程度低、脆性矿物含量低,有机质类型以Ⅱ、Ⅲ型为主。较低的热演化程度导致样品有机质孔隙发育较少;有机酸的溶蚀作用及矿物的转化作用是次生孔隙形成的主要因素。与海相页岩不同的是,高丰度低演化程度导致该演化阶段以产液态烃为主,且样品中可溶有机质含量较高,它对于样品的孔隙结构和甲烷赋存状态都有影响,表现为随比表面积增大,样品等温吸附实验结果呈现下降的趋势。对于高丰度低演化程度湖相页岩储层特征的研究,不仅为柴达木盆地北缘中侏罗统页岩气的勘探开发提供地质依据,同时也完善了页岩气地质理论。  相似文献   

5.
宋岩  李卓  姜振学  刘达东  唐相路  张昆  唐令 《地质学报》2023,97(9):2858-2873
保存条件是控制页岩气富集和高产的关键因素,我国四川盆地五峰组—龙马溪组页岩气已实现了商业化开发,但受到保存条件的影响,页岩气富集差异性明显,对勘探开发目标优选提出了挑战。因此,深化中国南方海相页岩气保存机理及模式研究对扩大页岩气勘探开发成效、提高页岩气产量具有重要意义。本文以四川盆地及周缘地区五峰组—龙马溪组页岩为研究对象,应用盆地模拟、流体包裹体分析、覆压孔隙度和渗透率实验、页岩三轴岩石力学测试等技术方法,取得了3方面认识:(1)揭示了页岩气构造保存机理,构造演化控制了页岩微裂缝开启、游离气富集和地层超压发育,差异构造演化过程及强度控制了页岩气赋存状态及含气量,构造抬升开始晚、强度小对页岩气保存有利;(2)阐明了页岩气顶底板封闭机理为岩性和物性封闭,岩性致密、页岩厚度、微观孔隙结构是顶底板封闭的关键控制因素,页岩气自封闭机理为毛管力和分子间作用力封闭,受控于孔隙连通性和甲烷吸附作用;(3)基于埋深和构造变形强度,建立了海相页岩气正向构造高部位和负向构造低部位保存模式。正向构造页岩气保存受控于裂缝发育程度,埋深大于页岩破裂深度、背斜两翼夹角大于120°有利于页岩气保存,负向构造页岩气保...  相似文献   

6.
中国南方寒武系海相页岩含气性在不同地区差异较大,有机质孔隙发育机制不清楚,无法直接用控制五峰组-龙马溪组页岩含气性的有机质丰度和后期构造活动对页岩气的影响来预测其含气性。笔者提出采用历史演化的观点,在动态条件下研究孔隙的形成和发育机制,恢复南方寒武系页岩的有机质转化、油气形成和有机孔隙演化的历史。通过三者的耦合关系研究,为中国独特的高热演化条件下的有机质孔隙的发育机制,在研究方法和理论上探索一条新路。  相似文献   

7.
页岩气是重要的非常规天然气能源。按页岩气储层的沉积环境将页岩分为海相、海陆过渡相和陆相页岩3种类型,由此总结了中国海相、海陆过渡相和陆相富有机质页岩的地层、分布及储层特征。海相页岩单层厚度大、分布范围大,空间连续性好;海陆过渡相地层中页岩具有单层薄、累积厚度大、频繁互层的特征;陆相页岩在平面上规模相对小、展布受到河湖相的控制。不同沉积相页岩在气体成分、赋存状态、气体成因等方面具有一定的共性,但由于页岩气储层的沉积环境不同,海相、海陆过渡相和陆相页岩在厚度、分布和岩性组合特征等方面又有较大差别。对比中美主要产气页岩储层的制约因素,结果表明,有机质丰度、有机质演化程度、有机质类型等因素制约着页岩的生烃;矿物的比例及结构、有机质的演化程度、有机质类型、孔隙及裂隙结构、页岩气赋存及运移条件、埋藏深度和有效厚度等因素影响页岩气富集成藏。  相似文献   

8.
煤的孔隙-裂隙结构特征是研究储层渗透性的关键问题。为了定量描述孔隙-裂隙结构的复杂程度,以黄陇侏罗纪煤田永陇矿区郭家河井田原生结构煤和碎裂结构煤为研究对象,基于压汞实验数据和扫描电镜(SEM)图像,采用Menger分形模型和计盒维数方法,分别计算不同煤体结构煤的孔隙-裂隙分形维数;同时采用不同孔径段的孔隙体积比作为权重值,计算得到孔隙综合分形维数,探讨孔隙-裂隙结构分形维数和渗透率之间的关系。研究结果表明,脆性构造变形作用对孔隙整体复杂性,裂隙孔、渗流孔复杂性以及微观裂隙复杂程度均具有积极改造作用,对吸附孔结构复杂性具有均一化作用;微观裂隙分形维数与渗透率具有较高非线性关系,脆性构造作用改造下形成的碎裂煤,其具有的孔隙-裂隙结构优势配比是决定储层高渗透性的关键。因此,建议优先考虑弱脆性变形的碎裂结构煤为主体的断层、向斜和背斜区域进行煤层气抽采。   相似文献   

9.
近年来我国在四川盆地率先实现了页岩气商业开发,奥陶系五峰组-志留系龙马溪组成为南方海相页岩气开发的主力层系.通过梳理页岩气沉积与分布特征、构造演化特征、构造样式及保存特征、页岩储层特征,提出了我国南方海相页岩气富集高产的主控因素:深水陆棚相富有机质优质页岩是物质基础;构造抬升时间和构造样式是页岩气富集保存的关键因素,总结了构造保存完整型、残留型、破坏型3大类页岩气构造样式;地层超压是页岩气高产的必要条件.最终展望了页岩气发展前景,预测了我国南方几个古隆起的边缘和滇黔桂地区是未来页岩气勘探开发的有利区.   相似文献   

10.
基于常规孔渗测试、核磁共振、扫描电镜等分析,研究了沁水盆地南部煤储层孔隙-裂隙系统发育特征及其对渗透率的贡献。结果表明,煤样孔隙结构以吸附孔为主,渗流孔发育相对较差,可动流体孔隙度很小;多数煤样A类和B类较大裂隙所占比例不高,C类和D类较小裂隙较为发育;大孔孔隙度和微裂隙发育程度对渗透率影响最大。但本区煤样大孔孔隙度低,裂隙多被矿物充填,孔隙、裂隙之间连通性较差,对煤储层渗透率的贡献较小;多期发育的宏观构造裂隙可能对煤储层渗透性起到一定的改善作用。  相似文献   

11.
12.
Middle–Lower Jurassic terrigenous shales constitute a set of significant hydrocarbon source rocks in the Kuqa Depression of the Tarim Basin. Until recently, however, most investigations regarding this set of hydrocarbon source rocks have mainly focused on conventional oil and gas reservoirs, and little research has been conducted on the formation conditions of shale gases. This research, which is based on core samples from nine wells in the Kuqa Depression, investigated the geological, geochemical, mineralogical and porosity characteristics of the shales, analysed the geological and geochemical conditions for the formation of shale gases, and evaluated the shale gas resource potential. The results show that the distribution of the Middle–Lower Jurassic shales is broad, with thicknesses reaching up to 300–500 km. The total organic carbon (TOC) content is relatively high, ranging from 0.2 to 13.5 wt% with a mean of 2.7 wt%. The remaining hydrocarbon generative potential is between 0.1 and 22.34 mg/g, with a large range of variation and a mean value of 3.98 mg/g. It is dominated by type III kerogen with the presence of minor type II1 kerogen. The vitrinite reflectance values range from 0.517 to 1.572%, indicating the shales are in a mature or highly mature stage. The shales are mainly composed of quartz (19–76%), clay (18–68%) and plagioclase (1–10%) with mean contents of 50.36 wt%, 41.42 wt%, and 3.37 wt%, respectively. The pore spaces are completely dominated by primary porosity, secondary porosity and microfractures. The porosity is less than 10% and is mainly between 0.5 and 4%, and the permeability is generally less than 0.1 mD. These results classify the shale as a low-porosity and ultra-low-permeability reservoir. The porosity has no obvious correlation with the brittle or clay mineral contents, but it is significantly positively correlated with the TOC content. The maximum adsorbed gas content is between 0.82 and 8.52 m3/t with a mean of 3.37 m3/t. In general, the shale gas adsorption content increases with increasing the TOC content, especially when the TOC content is greater than 1.0%. The volumetric method, used to calculate the geological resources of the Middle–Lower Jurassic shales in the Kuqa Depression, shows that the geological resources of the Middle and Lower Jurassic shales reach 667.681 and 988.115 × 109 m3, respectively with good conditions for the formation of shale gas and good prospects for shale gas exploration.  相似文献   

13.
The shale gas resources in China have great potential and the geological resources of shale gas is over 100×1012m3,which includes about 20×1012m3 of recoverable resources.Organic-rich shales can be divided into three types according to their sedimentary environments,namely marine,marine-continental transitional,and continental shales,which are distributed in 13 stratigraphic systems from the Mesoproterozoic to the Cenozoic.The Sichuan Basin and its surrounding areas have the highest geological resources of shale gas,and the commercial development of shale gas has been achieved in the Upper Ordovician Wufeng Formation-Lower Silurian Longmaxi Formation in these areas,with a shale gas production of up to 20×109m3 in 2020.China has seen rapid shale gas exploration and development over the last five years,successively achieving breakthroughs and important findings in many areas and strata.The details are as follows.(1)Large-scale development of middle-shallow shale gas(burial depth:less than 3500 m)has been realized,with the productivity having rapidly increased;(2)breakthroughs have been constantly made in the development of deep shale gas(burial depth:3500-4500 m),and the ultradeep shale gas(burial depth:greater than 4500 m)is under testing;(3)breakthroughs have been made in the development of normal-pressure shale gas,and the assessment of the shale gas in complex tectonic areas is being accelerated;(4)shale gas has been frequently discovered in new areas and new strata,exhibiting a great prospect.Based on the exploration and development practice,three aspects of consensus have been gradually reached on the research progress in the geological theories of shale gas achieved in China.(1)in terms of deep-water fine-grained sediments,organic-rich shales are the base for the formation of shale gas;(2)in terms of high-quality reservoirs,the development of micro-nano organic matter-hosted pores serves as the core of shale gas accumulation;(3)in terms of preservation conditions,weak structural transformation,a moderate degree of thermal evolution,and a high pressure coefficient are the key to shale gas enrichment.As a type of important low-carbon fossil energy,shale gas will play an increasingly important role in achieving the strategic goals of peak carbon dioxide emissions and carbon neutrality.Based on the in-depth study of shale gas geological conditions and current exploration progress,three important directions for shale gas exploration in China in the next five years are put forward.  相似文献   

14.
The well-developed continental shale sequences in the Western Sichuan Depression are characterised by extremely low porosity and permeability, complex lithologies and strong lateral facies changes. The overall lack of proper characterisation of the shale properties has restricted gas exploration and development in the region. In this study, shales from the fifth member of the Xujiahe Formation of the Upper Triassic (T3x5) are comprehensively characterised in terms of their organic geochemistry, mineral composition, microscopic pore structure and gas content. In addition, the influence of various geological factors on the adsorbed gas content is investigated. We proposed a new model for predicting the adsorption gas content of continental shale. The T3x5 shale sequence is found to be rich in organic matter but with variable mineral compositions, pore types and reservoir physical properties. The porosity and permeability of shales are better than those of siltstones and fine sandstones interbedded with the shale under an overall densification background. Mesopores (2–50 nm) are common in the shale sequence, followed by micropores and then macropores. The gas-adsorption capacity of organic-rich shales increases with increasing TOC and clay-mineral contents, maturity and pressure, but decreases with increasing quartz content, carbonate minerals and temperature. The gas-adsorption capacity can thus be expressed as a function of organic matter, clay-mineral content, temperature and pressure. The calculated results are in good agreement with the experiment results and indicate that adsorption gas in the studied shales accounts for 78.9% of the total gas content.  相似文献   

15.
中国潜质页岩形成和分布   总被引:2,自引:0,他引:2  
我国页岩盆地发育的大地构造背景复杂,板块规模偏小且地质活动性较强,彼此之间相互影响且在中、新生代以来受外缘板块环境影响较大,表现为南海北陆、南早北晚、南升北降等重大差异,在东西方向上,也由于塔里木与华北板块之间的演变差异而出现较大区别。中国页岩的分布主要受控于板块特点及构造、沉积之间的相互匹配,板块及其相互之间的相对运动造成了不同时代沉降沉积中心的迁移变化。塔里木、华北、华南三个板块均发生了四次沉降沉积中心的转移,但总体上表现为早古生代海相时期的由东向西转移、晚古生代海陆交互相时期的背离板块汇聚中心式转移、中生代陆相和海陆交互相时期的由东向西转移、新生代陆相时期的由西向东转移。潜质页岩及页岩气主要发育在中部地区,具有时代交替、南海北陆、东西分异、时空变迁等特点。南方下古生界海相页岩气原始地质条件优越,但有机质热演化程度高且后期改造强,页岩气的有利区分布既受控于构造与沉积条件,也更决定于构造与沉积两者的相互匹配;晚古生代为主的海陆交互相页岩分布范围广、累积厚度大,常与砂岩、煤系及灰岩频繁互层,有机质热演化程度较为适中,是我国页岩气进一步勘探开发的重要目标层系。北方以中新生代陆相为代表的页岩分布受控于盆地结构,是我国页岩油发育的主体区域。针对各套潜质页岩特点,页岩气勘探宜分别考虑。  相似文献   

16.
Water active rocks consist of minerals that hold water in their crystalline structure and in pore spaces. Free water from drilling fluid can be attracted by the formation depending on the potential differences between pore space and drilling fluid. The fluid movement into the formation or out of the formation can lead to a change in effective stress, thus causing wellbore failures. In all previous studies it is found that the solute transport from or to the formation is primarily controlled by diffusion process and the effect of advection on solute transfer is negligible for a range of very low permeable shale formations (>10−5 mD). In this study a range of permeable shale formations (10−5 to 10−3 mD) commonly encountered in drilling oil and gas wells are considered to investigate the solute transfer between drilling fluid and formation due to advection. For this purpose a finite element model of fully coupled chemo-hydro-mechanical processes was developed. Results of this study revealed that the solute transfer between the drilling fluid and the shale formation is controlled primarily by permeability of the shale formations. For the range of shale formations studied here, there exists a threshold permeability below which the solute transfer is dominated by diffusion process and above which by fluid in motion (fluid flow). Results from the numerical experiments have shown that when the permeability of shales is greater than this threshold permeability, the chemical potential gradient between the pore fluid and drilling fluid reaches equilibrium faster than that when the permeability of shales is below this threshold value. Also it has been found that when advection is taken into account, effective radial and tangential stresses decrease around the wellbore, particularly near the wellbore wall where the solute concentration has reached near equilibrium.  相似文献   

17.
Combined with the actual geological settings, tight oil is the oil that occurs in shale or tight reservoirs, which has permeability less than 1 mD and is interbedded with or close to shale, including tight dolomitic oil and shale oil. The Fengcheng area (FA), at the northwest margin of the Junggar Basin, northwest China, has made significant progress in the tight oil exploration of the Fengcheng (P1f) Formation recently, which indicates that the tight oil resources have good exploration prospects. Whereas the lack of recognition of hydrocarbon generation and expulsion characteristics of Permian P1f source rocks results in the misunderstanding of tight oil resource potential. Based on the comprehensive analysis of geological and geochemical characteristics of wells, seismic inversion, sedimentary facies, tectonic burial depth, etc., the characteristics of P1f source rocks were investigated, and the horizontal distributions of the following aspects were predicted: the thickness of source rocks, abundance and type of organic matter. And on this basis, an improved hydrocarbon generation potential methodology together with basin simulation techniques was applied to unravel the petroleum generation and expulsion characteristics of P1f source rocks in FA. Results show that the P1f source rocks distribute widely (up to 2039 km2), are thick (up to 260 m), have high total organic content (TOC, ranging from 0.15 to 4 wt%), are dominated by type II kerogen and have entered into low mature–mature stage. The modeling results indicate that the source rocks reached hydrocarbon generation threshold and hydrocarbon expulsion threshold at 0.5% Ro and 0.85% Ro and the comprehensive hydrocarbon expulsion efficiency was about 46%. The amount of generation and expulsion from the P1f source rocks was 31.85 × 108 and 15.31 × 108 t, respectively, with a residual amount of 16.54 × 108 t within the source rocks. Volumetrically, the geological resource of shale oil is up to 15.65 × 108 t. Small differences between the amounts calculated by the volumetric method compared with that by hydrocarbon generation potential methodology may be due to other oil accumulations present within interbedded sands associated with the oil shales. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
Shale gas is becoming an important component of the global energy supply, with permeability a critical controlling factor for long-term gas production. Obvious deviation may exist between helium permeability determined using small pressure gradient(SPG) methods and methane permeability obtained under actual field production with variable pressure gradients(VPG). In order to more accurately evaluate the matrix permeability of shale, a VPG method using real gas(rather than He) is established to render permeability measurements that are more representative of reservoir conditions and hence response. Dynamic methane production experiments were performed to measure permeability using the annular space in the shale cores. For each production stage, boundary pressure is maintained at a constant and the gas production with time is measured on the basis of volume change history in the measuring pump. A mathematical model explicitly accommodating gas desorption uses pseudo-pressure and pseudo-time to accommodate the effects of variations in pressuredependent PVT parameters. Analytical and semi-analytical solutions to the model are obtained and discussed. These provide a convenient approach to estimate radial permeability in the core by nonlinear fitting to match the semi-analytical solution with the recorded gas production data. Results indicate that the radial permeability of the shale determined using methane is in the range of 1×10-6– 1×10-5 mD and decreases with a decrease in average pore pressure. This is contrary to the observed change in permeability estimated using helium. Bedding geometry has a significant influence on shale permeability with permeability in parallel bedding orientation larger than that in perpendicular bedding orientation. The superiority of the VPG method is confirmed by comparing permeability test results obtained from both VPG and SPG methods. Although several assumptions are used, the results obtained from the VPG method with reservoir gas are much closer to reality and may be directly used for actual gas production evaluation and prediction, through accommodating realistic pressure dependent impacts.  相似文献   

19.
The Upper Permian Xuanwei Formation widely occurs in western Guizhou, unconformably overlying the Emeishan basalts, and mainly consists of black shales. It is ∼170 m thick at Cuyudong Village, Weining County, West Guizhou, China, where the samples of black shale and sandy shale were collected and analyzed. The shales mainly contain SiO2, 18.9%–44.1%, Al2O3, 14.8%–52.8%, Fe2O3, 1.0%–41.2%, LOI, 3.2%–21.1%, TiO2, 1.0%–6.7%, and MgO, 0.2%–2.5%. The contents of all other major elements are lower than 1.0%. It is shown that the black shales have higher contents of Fe2O3 and LOI than normal shales. The siderites occurred in the black shales with higher contents of Fe2O3, which may be attributed to hydrothermal activities on seafloor. All analyzed shale samples have extremely high Ga, 47.8×10−6–109.9×10−6 (70.5×10−6 on average), higher than the industrial mining standard of Ga Resource Industry Standard. The total contents of rare-earth elements (REE) of 9 black shale samples vary from 213×10−6 to 1460×10−6, suggesting that these black shales are enriched in REE. The shale-normalized REE patterns display both positive and negative Ce anomalies (Ce/Ce* from 0.5 to 1.7), revealing that the Xuanwei shales were precipitated under oxic and anoxic conditions. The Rb-Sr chronological diagram of 6 shale samples in the Xuanwei Formation shows an age of 255±12 Ma. Strontium isotopic ratios (87Sr/86Sr)t0 range from 0.70635 to 0.70711, suggesting that these Xuanwei black shales might be derived from chemical weathering of the Emeishan basalts.  相似文献   

20.
In this article, we describe the geological features of the Ediacaran (upper Sinian), lower Cambrian and lower Silurian shale intervals in the Upper Yangtze Platform, South China, and report on the gas potential of 53 samples from these major marine shale formations. Reflected light microscopy, total organic carbon (TOC) measurement, Rock-Eval, carbon isotope ratio analysis, thermovaporization gas chromatography (Tvap-GC), and open pyrolysis gas chromatography (open py-GC) were used to characterize the organic matter. Measured TOC in this research is normally >2% and averages 5%. TOC contents are roughly positively correlated with increasing geological age, i.e. lower Silurian shales exhibit generally lower TOC contents than lower Cambrian shales, which in turn commonly have lower TOC contents than Ediacaran shales. Kerogen has evolved to the metagenesis stage, which was demonstrated by the abundant pyrobitumen on microphotographs, the high calculated vitrinite reflectance (Ro = 3%) via bitumen reflectance (Rb), as well as δ13 C of gas (methane) inclusions. Pyrolysates from Tvap-GC and open py-GC are quantitatively low and only light hydrocarbons were detected. The lower Silurian shale generally exhibits higher generation of hydrocarbon than the lower Cambrian and Ediacaran shale. Cooles’ method and Claypool’s equations were used to reconstruct the original TOC and Rock-Eval parameters of these overmature samples. Excellent original hydrocarbon generation was revealed in that the original TOC (TOCo) is between 5% and 23%, and original S1+S2 (S1o+S2o) is ranging from 29 to 215 mg HC/g rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号