首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Orbital-scale East Asian Summer Monsoon (EASM) variations inferred from loess deposits in northern China and speleothems from southern China display different dominant periods, complicating our understanding of monsoon response to insolation and ice-volume forcings. Here we integrate a new microcodium δ18O record from a high-resolution last interglacial loess profile with previously published data and provide a composite microcodium δ18O record on the Chinese Loess Plateau (CLP) since the last interglacial. The composite microcodium δ18O record displays distinct precessional cycles, consistent with speleothem δ18O records, but with different amplitude contrast (particularly during the peak interglacials). We propose that both loess and speleothem δ18O records exhibit covariations at precessional timescale oscillations. The discrepancy between loess and speleothem from southern China can be attributed to the influences of other processes besides summer precipitation on the proxies. A slight difference in amplitude between microcodium and speleothem δ18O records implies that the EASM is also influenced by inland surface boundary conditions, which has important impacts on the occurrence of EASM precipitation. Therefore, microcodium δ18O from the Chinese loess–paleosol sequences can be regarded as a representative proxy of EASM precipitation in northern China and then a reliable proxy reflecting the variation of EASM intensity.  相似文献   

2.
Marine Oxygen Isotope Stage (MIS) 2, with its profound environmental and climatic changes from before the last glacial maximum (LGM) to the last deglaciation, is an ideal period for understanding the evolution of the East Asian summer monsoon (EASM) and Indian summer monsoon (ISM), two Asian monsoon sub-systems. With 875 stable oxygen isotope ratios and 43 230Th dates from stalagmites in Sanxing Cave, southwestern China, we construct and interpret a new, replicated, Asian summer monsoon (ASM) record covering 30.9–9.7 ka with decadal resolution. δ18O records from this site and other reported Chinese caves display similar long-term orbitally dominated trends and synchronous millennial-scale strong and weak monsoonal events associated with climate changes in high northern latitudes. Interestingly, Sanxing δ18O and Arabian Sea records show a weakening ISM from 22 to 17 ka, while the Hulu and Qingtian records from East and Central China express a 3-ka intensifying EASM from 20 to 17 ka. This decoupling between EASM and ISM may be due to different sensitivities of the two ASM sub-systems in response to internal feedback mechanisms associated with the complex geographical or land-ocean configurations.  相似文献   

3.
Stalagmite J1 from Jintanwan Cave, Hunan, China, provides a precisely dated, decadally resolved δ18O proxy record of paleoclimatic changes associated with the East Asian monsoon from ∼29.5 to 14.7 ka and from ∼12.9 to 11.0 ka. At the time of the last glacial maximum (LGM), the East Asian summer monsoon weakened and then strengthened in response to changes in Northern Hemisphere insolation. As the ice sheets retreated the East Asian summer monsoon weakened, especially during Heinrich event H1, when atmospheric and oceanic teleconnections transferred the climatic changes around the North Atlantic to the monsoonal regions of Eastern Asia. A depositional hiatus between ∼14.7 and 12.9 ka leaves the deglacial record incomplete, but an abrupt shift in δ18O values at ∼11.5 ka marks the end of the Younger Dryas and the transition into the Holocene. Comparisons of the J1 record to other Chinese speleothem records indicate synchronous climatic changes throughout monsoonal China. Further comparisons to a speleothem record from western Asia (Socotra Island) and to Greenland ice cores support hemispherical-scale paleoclimatic change. Spectral and wavelet analyses reveal centennial- and decadal-scale periodicities that correspond to solar frequencies and to oscillations in atmospheric and oceanic circulation.  相似文献   

4.
青藏高原与黄土高原过渡带的甘肃武都万象洞位于现代夏季风的边缘区, 对气候变化极为敏感.通过洞内一支石笋WX40D的6个高精度TIMS-U系定年数据和616个样品的氧同位素测定, 建立了28.3~23.0 ka B.P., 分辨率约为10年的亚洲季风气候变化序列. 石笋δ18O记录揭示Marine Isotope Stage 2 (MIS2)早期东亚季风气候具有10~100 a尺度高频震荡特征, 从中识别出北大西洋Heinrich 2 (H2)特强冷事件, 且记录显示该事件开始于24.6 ka B.P., 呈突发式降温之后持续跌宕式降温变化. 对比研究发现, 万象洞石笋δ18O记录H2事件与葫芦洞、天鹅洞的石笋记录有差别, 但是与湖南金滩湾洞穴石笋δ18O记录、33°N太阳辐射强度以及极地GRIP冰心记录变化趋势一致, 表明季风边缘区气候变化主要受北半球中纬度太阳辐射能背景、北大西洋冰漂碎屑带的扩张以及低纬太平洋海表温度变化等因素的控制, 同时万象洞特殊的地理位置使得区域气候更易受到与极地气候有密切联系的亚洲冬季风和西风环流变化的影响.   相似文献   

5.
A combination of δ13C and δ18O analyses with U–Th disequilibrium dating on a stalagmite and groundwater from the deep and extensive Arch Cave network on northeastern Vancouver Island has produced a preliminary 12,200 y paleoclimatic profile. Speleothem depositional rates vary from 6 to 41 mm/ka and are consistent with the “Hendy” test for speleothem deposition under high-humidity equilibrium conditions. Relative to present day conditions, warmer periods are indicated at the end of the Younger Dryas, during the Holocene maximum, a possible Medieval Warming event, with the warmest period represented by a narrow peak at 8000 y BP. Relatively cooler periods are recorded at 3500, 8200, 9300 and 11,500 y BP with indications of minor cooling during the Little Ice Age and indications of relatively dry conditions during the earlier part of the Younger Dryas followed by warmer wetter conditions. The profile shows excellent agreement with other paleoclimatic indicators locally, most notably some partial speleothem records from Vancouver Island and Oregon, and some high-resolution global records such as the Greenland ice cores and speleothems from the Hulu Cave, China.  相似文献   

6.
One-year-resolved and annually-counted stalagmite multi-proxies(δ~(18)O, δ~(13)C, and layer width) from Daoguan Cave, Guizhou Province revealed detailed variability regarding the Asian Summer Monsoon(ASM) and local humidity across Bond events(BE) in the Preboreal. During BEs 8 and 7, 1.5‰ enrichments in δ~(18)O values were generally consistent with high-to low-latitude climate changes. In detail, the decadal-scale minor δ~(18)O oscillations in BE8 were broadly less than the mean value, in contrast to the significant changes in local soil moisture derived from the δ~(13)C values and layer records. In the mid-BE7, δ~(18)O variability was generally above the average level, and higher-amplitude variations were observed in the three proxy indicators. Wavelet analysis on the total δ~(18)O time series and across the specific time windows of BEs 8 and 7 identified periodicities of about 130, 60, and 20-a, respectively. Exceptionally strong in BE7, the 60-a cycle, pervasively observed in instrumental studies, became prominent starting at 11.4 kaBP. Thus, glacial background conditions are important for suppressing the ASM intensity in BE8, while during BE7, tropical hydrological circulations were potentially actively involved. Consequently, climate internal oscillations, analogous to modern conditions, might have occurred in the distant past once the link between the tropical ocean and atmosphere was established as occurs today.  相似文献   

7.
We present a new U-series dated speleothem record (PC-1) from the Great Basin that documents deglacial climate variability between ca 20.1 and 15.6 ka. Our data show an abrupt 18.6 ka cold event preceding Heinrich event 1 that is consistent with expansion of the Laurentide Ice sheet during the ‘binge’ phase of ice growth. This event coincided with dessication of pluvial Lake Mojave suggesting cold and dry conditions in the southern Great Basin at this time. PC-1 δ18O values before and during Heinrich event 1 are similar, but an increase in stalagmite growth rates suggests wetter conditions that coincided with deposition of spring deposits in southern Nevada. The time interval of our record is consistent with the timing of pluvial conditions in the Great Basin as evident from a comparison to regional wetness proxies. Our new speleothem record, recovered from the recharge area for Devils Hole, does not show a δ18O increase coincident with the abrupt increase in Devils Hole δ18O at c. 18 ka, challenging the view that the Great Basin experienced an early Termination I. This hypothesis is supported by two other southwest speleothem records that demonstrate deglaciation was synchronous with forcing from the North Atlantic Ocean. We suggest that Devils Hole speleothem δ18O values may partly reflect source water changes in the regional aquifer. Further, Devils Hole δ13C minima coincide with peak global glacial conditions and weak Asian monsoon periods, suggesting that they constrain better the timing of pluvial conditions in the Great Basin.  相似文献   

8.
位于青藏高原与黄土高原过渡带的甘肃武都万象洞石笋WXSM51和WXSM52提供了MIS 5(118~79kaB.P.)高分辨率的δ18 O记录。研究表明, 万象洞石笋δ18 O值与夏季风强度呈负相关关系, 与我国西南部的贵州董歌洞石笋δ18 O记录有良好的对应关系, 并与高纬度的格陵兰NGRIP冰芯δ18 O记录和65°N太阳辐射强度有很好的一致性, 说明万象洞石笋δ18 O记录了118~79kaB.P.期间亚洲季风强度的变化, 同时也说明东亚季风强度的变化和全球气候变化同步, 而且主要受控于北半球太阳辐射强度的变化。同时它与地中海碳酸盐记录有很好的相似性, 和巴西石笋δ18 O记录在千年尺度上表现出相反的变化趋势, 说明东亚季风区、地中海地区以及巴西季风区之间存在密切的联系, 指示了南北半球气候在千年尺度上存在"跷跷板"(seesaw)现象。万象洞石笋δ18 O记录的MIS 5b与MIS 5a突发性转换, 与NGRIP冰芯δ18 O记录相似, 而与神农架记录存在差异, 说明万象洞地区对亚洲季风强度的响应更为敏感。  相似文献   

9.
Heinrich 1(H1)事件是末次冰期向全新世转变过程中,北高纬大冰盖快速崩塌的冰盖不稳定事件,其气候环境影响深远。东亚地区石笋δ18O记录在H1事件时,普遍正偏至冰期的较大值,此正偏值通常指示东亚季风整体减弱。然而,在长江中游地区反映局地水文变化的石笋微量元素和碳同位素记录,显示在H1事件时梅雨量增加。梅雨与东亚季风强度的反相关关系是否存在,这有待更多记录的验证与支持。基于长江下游梅雨区南京葫芦洞石笋铀元素的水文变化特征,发现在H1事件时,梅雨整体增多。在H1事件内部结构特征上,高分辨率石笋δ18O记录显示,以~16.1 ka B.P.为界,东亚季风强度存在两个不同状态,类似的转变过程在铀元素记录中有所体现,表现为梅雨量由低到高的转变特征。石笋δ18O记录的这一季风强度变化过程在20年内完成,铀元素记录尽管分辨率不高,但也表现为快速转变的特征。这种对应的快速转变过程,表明石笋铀元素对东亚季风大气环流变化的积极响应;另一方面,也证实了铀元素对气候环境变化的有效记录。南京葫芦洞石笋铀元素记录了梅雨在长江下游地区H1事件期间增强的特征,进一步支持了梅雨与季风强度变化的反相关关系,提供了中国季风区降水空间差异的东部记录。  相似文献   

10.
神农架全新世东亚季风演化及其热带辐合带控制*   总被引:5,自引:8,他引:5       下载免费PDF全文
文章基于湖北神农架山宝洞3支石笋的13个230Th年龄和505个氧同位素数据,建立了全新世8.45~0.46kaB.P.东亚季风降水序列,其长期演化趋势与33°N夏季太阳辐射能量变化曲线基本一致。神农架山宝洞与阿曼Qunf洞和贵州董哥洞的石笋高分辨率δ18 O记录整体相关(r 分别为0.75和0.94), 说明全新世东亚季风、印度季风系统的演化主要受控于同一驱动机制,即北半球夏季太阳辐射控制下赤道热带辐合带逐渐南移,导致亚洲季风降水持续减弱。功率谱分析表明:5ka以来山宝洞石笋记录具有显著的550a周期旋回,与树轮Δ14 C和北大西洋温盐环流周期基本一致。  相似文献   

11.
A 50-yr resolution reconstruction of climate and environment variability during the period 43–14 ka was developed using 26 high-precision U/Th dates and 390 oxygen isotope (δ18O) data of a stalagmite (SJ1) collected from Songjia Cave in central China, which is close to the northwestern boundary of the Asian summer monsoon (ASM). The δ18O record in SJ1 displays significant millennial-scale changes that correlate well in timing and duration with Dansgaard/Oeschger (D/O) events 5–10 and Heinrich event 4 (H4) identified in high-latitude regions of the Northern Hemisphere. Four 230Th dates constrain the H4 event precisely to the period of 39.7 to 38.3 ka. Notable centennial variations of the ASM activity could be observed within the H4 event. The magnitude and duration of D/O event 4.1 recorded in SJ1 are similar to those archived in east China but different from those documented in southwest China, suggesting that the manifestation of this event may be regionally different. The timing, duration and structure of D/O events 5–10 and Heinrich event 4 suggest that temperature changes in both hemispheres have exerted significant influences on the ASM variations in central China.  相似文献   

12.
The PU‐2 stalagmite from Ursilor Cave provides the first dated Romanian isotope record for the Holocene. The overall growth rate of the speleothem was 3.5 cm kyr?1, corresponding to a temporal resolution of 142 y between each isotope analysis. The ‘Hendy’ tests indicate that isotopic equilibrium conditions occurred during the formation of PU‐2, and hence that it is suitable for palaeoclimatic studies. The relationship between δ18O and temperature was found to be positive. This can be interpreted either as rain‐out with distance from the west‐northwest ocean source of evaporation or shifts in air mass source with changing North Atlantic Oscillation indices. Applying five U–Th thermal ionisation mass spectrometric (TIMS) dates to a 17.5 cm isotope profile (δ18O and δ13C) along the stalagmite growth axis enabled a tentative interpretation of the palaeoclimate signal over the past 7.1 kyr. Spikes of depleted isotopic δ18O values are centred near ca. 7, ca. 5.2 and ca. 4 ka, reflecting cool conditions. The record shows two warm intervals between ca. 3.8 and ca. 3.2 ka (the maximum warmth) and from ca. 2 to ca. 1.4 ka, when the δ18O values were less negative than present. The ‘Holocene Climate Optimum’ spanning the time interval from ca. 6.8 to ca. 4.4 ka is not well expressed in the PU‐2 stalagmite. Individual spikes of lighter δ13C are interpreted as indicative of periods of heavy rainfall, at ca. 7, ca. 5.5, and ca. 3.5 ka. The overall trend to lighter δ13C in the PU‐2 stalagmite may reflect a gradual decrease in water–rock interaction. The results demonstrate that the effect of North Atlantic oceanic changes extended to the investigated area. Nevertheless, some differences in temporal correlation and intensity of stable isotopic response to these climatic events have been found, but the exact nature of these differences and the underlying mechanism is yet to be determined. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

13.
High‐resolution records of carbon isotope composition and grey level were analysed from a stalagmite, BW‐1, from Beijing, China, deposited between c. 14 and 10.5 ka BP, the δ18O profile of which has been used to discuss the timing and structure of the Younger Dryas (YD) event in north China. The high grey level and low δ13C match the milk‐white coloured locations on the polished stalagmite surface and coincide with enhanced luminescent bands within which the concentration of both impurities and the total organic carbon (TOC) are high. Additionally, the fluorescence of speleothems was derived from organic acids that have been flushed onto the stalagmite surface along with impurities from the overlying soil by heavy summer rain and co‐precipitated with the speleothem calcite. Thus, predominantly low δ13C and high grey level values indicate increased summer precipitation that supports abundant vegetation and robust biological productivity. Consequently, three distinct time intervals are defined by the palaeoenvironmental conditions expressed in the δ13C and grey level records of stalagmite BW‐1: (i) a warm‐humid stage (Pre‐YD, 13.97 to 12.85 ka BP, including a hiatus from 12.99 to 13.21 ka BP reported before); (ii) a cool‐arid stage (YD, 12.85 to 11.56 ka BP); and (iii) a warm‐humid stage (Post‐YD, 11.56 to 10.39 ka BP). The inferences based on our research are generally consistent with other regional vegetation and climatic records.  相似文献   

14.
A new Greenland Ice Core Chronology (GICC05) based on multi-parameter counting of annual layers has been obtained for the last 42 ka. Here we compare the glacial part of the new time scale, which is based entirely on records from the NorthGRIP ice core, to existing time scales and reference horizons covering the same period. These include the GRIP and NorthGRIP modelled time scales, the Meese-Sowers GISP2 counted time scale, the Shackleton–Fairbanks GRIP time scale (SFCP04) based on 14C calibration of a marine core, the Hulu Cave record, three volcanic reference horizons, and the Laschamp geomagnetic excursion event occurring around Greenland Interstadial 10. GICC05 is generally in good long-term agreement with the existing Greenland ice core chronologies and with the Hulu Cave record, but on shorter time scales there are significant discrepancies. Around the Last Glacial Maximum there is a more than 1 ka age difference between GICC05 and SFCP04 and a more than 0.5 ka discrepancy in the same direction between GICC05 and the age of a recently identified tephra layer in the NorthGRIP ice core. Both SFCP04 and the tephra age are based on 14C-dated marine cores and fixed marine reservoir ages. For the Laschamp event, GICC05 agrees with a recent independent dating within the uncertainties.  相似文献   

15.
Interhemispheric anti-phasing of rainfall during the last glacial period   总被引:1,自引:0,他引:1  
We have obtained a high-resolution oxygen isotopic record of cave calcite from Caverna Botuverá (27°13′S, 49°09′W), southern Brazil, which covers most of the last 36 thousand years (ka), with an average resolution of a few to several decades. The chronology was determined with 46 U/Th ages from two stalagmites. Tests for equilibrium conditions show that oxygen isotopic variations are primarily caused by climate change. We interpret our record in terms of meteoric precipitation changes, hence the variability of South American Monsoon (SAM) intensity. The oxygen isotopic profile broadly follows local insolation changes and shows clear millennial-scale variations during the last glacial period with amplitudes as large as 3‰ but with smaller centennial-scale shifts (<1‰) during the Holocene. The overall record is strikingly similar to, but strongly anti-correlated with, a number of records from the Northern Hemisphere.We compared our record to other precisely dated contemporaneous records from Hulu Cave eastern China. Minima in δ18O (wet periods, intense SAM) at our site are synchronous with maxima in δ18O (dry periods, weak East Asian Monsoon, EAM) in eastern China (within precise dating errors) and vice versa. This anti-phased precipitation relationship between two low-latitude locations may be interhemispheric in extent, based on comparison with records from other sites. Precipitation anti-phasing may be related to north–south shifts in the mean position of the intertropical convergence zone (ITCZ) and asymmetry in Hadley circulation in two hemispheres, associated not with seasonal changes as observed today, but with millennial-scale climate shifts. The millennial-scale atmospheric see-saw patterns that we observe could have important controls and feedbacks on climate within hemispheres because of water vapor's greenhouse properties.  相似文献   

16.
We present a new reconstruction of summer sea‐surface salinity (SSS) over the past 15 000 years based on a diatom record from piston core 17940, located on the northern slope of the South China Sea (SCS). The reconstructed diatom‐based summer SSS values for the modern period are in accord with instrumental observations of summer SSS in the area. Here, the modern summer SSS is primarily controlled by river runoff, in particular from the Pearl River. The reconstruction presented in this study shows that the summer SSS varied between 33.3 and 34.2 psu over the past 15 000 years. The long‐term summer SSS trend closely followed the trend of the orbitally controlled solar insolation at 20°N, suggesting that orbital forcing was the dominant driver of changes in summer SSS in this area. Comparisons to speleothem δ18O data and studies of surface hydrography in the region suggest that changes in solar insolation affected the summer SSS through changes in the East Asian Monsoon and sea‐level changes associated with the last deglaciation. Univariate spectral analyses indicate that centennial‐scale oscillatory variations in summer SSS were superimposed on the long‐term trend. During the deglacial period (c. 12 000–9000 cal. a BP), the dominant periodicity was centred around 230–250 years, whereas a ~350‐year oscillation dominated in the period 2200–4500 cal. a BP. The balance of evidence suggests that these centennial‐scale changes in summer SSS may have been driven by solar‐induced changes in the East Asian Monsoon, but further evidence is needed to firmly establish this relationship.  相似文献   

17.
The oxygen and carbon stable isotope compositions of cave speleothems provide a powerful method for understanding continental climate change. Here, we examine the question of the regionality of this isotopic record and its linkage with the marine isotopic record in the Eastern Mediterranean (EM) region. The study presents a new, accurately dated 250-kyr δ18O and δ13C record determined from speleothems of the Peqiin Cave, Northern Israel. Its comparison with the continuous 185-kyr isotopic record of the Soreq Cave speleothems from Central Israel reveals striking similarities. Thus, a strong regional climatic signal, brought about by variations in temperature and rainfall amount, is reflected in both cave records. Low δ18O minima in the Peqiin profile for the last 250- to 185-kyr period (interglacial marine isotopic stage 7) match the timing of sapropels 9 to 7 and are indicative of high rainfall in the EM region at these times. The combined Soreq and Peqiin δ18O record for the last 250 kyr excellently matches the published Globigerinoides ruber (G. ruber) marine δ18O record for the EM Sea, with the isotopic compositional difference ΔG.ruber-speleothems remaining relatively constant at −5.6 ± 0.7‰, thus establishing for the first time a robust, exploitable link between the land and the marine isotopic records. The correspondence of low δ18O speleothem values and high cave water stands with low G. ruber δ18O values during interglacial sapropel events indicates that these periods were characterized by enhanced rainfall in the EM land and sea regions. By use of sea surface temperatures derived from alkenone data as a proxy for land temperatures at the Soreq Cave, we calculate the paleorainfall δ18O values and its amounts. Maximum rainfall and lowest temperature conditions occurred at the beginning of the sapropel events and were followed by decrease in rainfall and increase in temperatures, leading to arid conditions. The record for the last 7000 yr shows a trend toward increasing aridity and agrees well with climatic and archeological data from North Africa and the Middle East.  相似文献   

18.
High sedimentation rate (SR) cores retrieved from the South China Sea (SCS) form the basis for studying the marine components of millennial-scale Asian monsoon (AM) variability and for comparison with the AM reconstructions from cave records on land (e.g. Dongge and Hulu). However, carefully correlating the SCS sedimentary records to the cave records that are precisely dated by U/Th methods with resolution of decadal-scale, has not been completed. Such a correlation is essential when comparing AM influences expressed over land and sea, but requires a construction of marine AMS 14C age models that are precise enough to be compared to the cave U/Th age models. For the purpose of establishing such a correlation, this study presents new data from intensive AMS 14C dated marine cores retrieved from the northern SCS (MD972146, MD972148). The discrepancy of marine and cave δ18O record for the interval of ∼18–30 ka might be due to the change of marine 14C reservoir age in SCS surface water during the glacial period, and to the change in interhemispheric dominance of the AM systems. With the new AMS 14C dating on MD972146 and MD972148, we examined the millennial-scale records of planktonic foraminifer δ18O and carbonate contents of MD972146, MD97248, and SONNE 17940-2 and compared those records with Dongge–Hulu δ18O record of the past 30 ka. Our results show that in the intervals corresponding to the high-latitude Northern Hemisphere (NH) Younger Dryas (YD) and Heinrich I event (H1), the AMS 14C dated millennial-scale oscillations show relatively heavy δ18O and low carbonate contents, but H2 and H3 are in the opposite direction. Our results indicate the complexity for the marine cores which were used in interpreting the millennial-scale AM variability.  相似文献   

19.
There has been much recent debate about Holocene climate variation in the monsoon region of China, especially the temporal pattern of variations in precipitation, the time-transgressive nature of the Holocene precipitation maximum, and the extent to which variations in regions influenced by the Indian Summer Monsoon (ISM) and the East Asian Summer Monsoon (EASM) have been synchronous. We summarize and compare carbonate oxygen-isotope records (δ18Ocarb) from ten lakes within the present-day ISM region. We discuss their paleoclimate significance considering the present-day moisture source, isotopic composition of precipitation and the hydrological setting. The δ18Ocarb records are controlled mainly by the isotopic composition of lake water, which in turn is a function of regional Precipitation/Evaporation (P/E) balance and the proportion of precipitation that is monsoon-derived. We normalized the δ18Ocarb data and used these records to generate an integrated moisture index. This index, along with oxygen-isotope records from speleothems and carbon-isotope records (δ13Corg) from peats within the monsoon region, suggests that Holocene climate was broadly synchronous across the monsoon region and, within the limits of accuracy of the existing age models, provides no strong evidence for previously-proposed anti-phasing of the ISM and the EASM. Stable-isotope records from lake sediments and peat bogs have excellent potential for providing high-quality paleoclimate data for monsoon Asia, and complement high-resolution speleothem sequences, which are only found in certain localities.  相似文献   

20.
The Asian Summer Monsoon (ASM) is the dominant climate system of South and East Asia. However, the history of monsoon intensification and the driving forces behind it are controversial. Wind-blown sediments in mid-latitude East Asia and fluvial-derived sediments in the northern South China Sea imply contrasting ASM patterns during the late Cenozoic. Here we use pollen records from the southwest South China Sea (International Ocean Discovery Program (IODP) Site U1433) to reconstruct the ASM evolution in low-latitude Southeast Asia. A slow increase in herbaceous plants since 8 Ma indicates a persistent weakening of precipitation in Indochina, which is dominated by the ASM. This signal is closely associated with a consistent coniferous plant record, indicating a continuous cooling trend that correlates well with Sea Surface Temperature (SST) decrease in the west Pacific Ocean. We propose that the monsoon weakening resulted in as much as a ~ 25% reduction in precipitation over the past 8 Ma in response to the Northern Hemisphere glaciation/global cooling, with some of the increase in conifers being linked to uplift of the Vietnamese Central Highland and the SE flank of the Tibetan Plateau in Yunnan and northern Vietnam.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号